
Web Ecol., 13, 13–19, 2013
www.web-ecol.net/13/13/2013/
doi:10.5194/we-13-13-2013
© Author(s) 2013. CC Attribution 3.0 License.

RGB

Geoscientific 
Instrumentation 
Methods and  
Data SystemsD

is
cu

ss
io

ns

Geoscientific 
Instrumentation 
Methods and  
Data SystemsO

pe
n 

Ac
ce

ss

Web EcologyO
p
en

 A
cc

es
s

Prevalence, statistical thresholds, and accuracy
assessment for species distribution models

B. B. Hanberry and H. S. He

School of Natural Resources, Univ. of Missouri, 203 Natural Resources Building, Columbia, MO 65211, USA

Correspondence to:B. B. Hanberry (hanberryb@missouri.edu)

Received: 16 July 2012 – Revised: 19 March 2013 – Accepted: 22 April 2013 – Published: 13 May 2013

Abstract. For species distribution models, species frequency is termed prevalence and prevalence in samples
should be similar to natural species prevalence, for unbiased samples. However, modelers commonly adjust
sampling prevalence, producing a modeling prevalence that has a different frequency of occurrences than
sampling prevalence. The separate effects of (1) use of sampling prevalence compared to adjusted modeling
prevalence and (2) modifications necessary in thresholds, which convert continuous probabilities to discrete
presence or absence predictions, to account for prevalence, are unresolved issues. We examined effects of
prevalence and thresholds and two types of pseudoabsences on model accuracy. Use of sampling prevalence
produced similar models compared to use of adjusted modeling prevalences. Mean correlation between pre-
dicted probabilities of the least (0.33) and greatest modeling prevalence (0.83) was 0.86. Mean predicted prob-
ability values increased with increasing prevalence; therefore, unlike constant thresholds, varying threshold to
match prevalence values was effective in holding true positive rate, true negative rate, and species prediction
areas relatively constant for every modeling prevalence. The area under the curve (AUC) values appeared to be
as informative as sensitivity and specificity, when using surveyed pseudoabsences as absent cases, but when
the entire study area was coded, AUC values reflected the area of predicted presence as absent. Less frequent
species had greater AUC values when pseudoabsences represented the study background. Modeling prevalence
had a mild impact on species distribution models and accuracy assessment metrics when threshold varied with
prevalence. Misinterpretation of AUC values is possible when AUC values are based on background absences,
which correlate with frequency of species.

1 Introduction

Species distribution models predict the occurrence proba-
bility of species in space based on limited known locations
where species are present. Although modeling with sampling
prevalence, or frequency of samples that contain the species,
may be an appropriate approach (Real et al., 2006; Albert
and Thuiller, 2008; Ward et al., 2009; Li et al., 2011; Mey-
nard and Kaplan, 2012), there also are potential limitations.
Sampling prevalence may not reflect natural species preva-
lence, or frequency of the species over the entire study extent.
That is, sampling prevalence observed in samples may be bi-
ased because for example, frequency may vary throughout
the study area. Indeed, the study area often is a subsample of
the entire distribution range and thus, artificially defined by

the modeler. In some cases, to maintain sampling prevalence
it may be necessary to retain fewer samples, thus reducing
sample size and accuracy of models (Hanberry et al., 2012a).
Furthermore, if background data represent samples that do
not contain the species, then prevalence will vary depending
on resolution (i.e., number of samples) of the background
data (Franklin et al., 2010). Lastly, adjustment from sampled
prevalence that varies by species to a consistent modeling
prevalence applied to all species may be necessary to stan-
dardize comparisons of model predictions among species or
study areas or to map model predictions in similar and con-
ventional classification units, such as equal intervals.

Modeling prevalence is the frequency of occurrence
specifically selected for model training (Jiménez-Valverde et
al., 2008). The most common recommendation is a balanced
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modeling prevalence of 0.50 (McPherson et al., 2004; Liu et
al., 2005), however researchers have suggested unbalanced
modeling prevalence, such as 0.01 when sample sizes are
limited (Lobo and Tognelli, 2011). Although adjustment of
prevalence provides modeling flexibility, bias may reduce
accuracy of models based on adjusted modeling prevalence
more than sampling prevalence, which differ less from natu-
ral species prevalence.

Thresholds, defined by the researcher, specify the pre-
dicted probability above which a species is determined
present. Often a threshold of 0.5 simply is used as a threshold
for species presence, but may not to be the best choice (Liu
et al., 2005; Freeman and Moisen, 2008). Liu et al. (2005)
compared 12 different threshold selection methods and de-
termined five methods that worked better than others to max-
imize both sensitivity (true positive rate) and specificity (true
negative rate). One method was the use of modeling preva-
lence as the threshold. Another method was the use of mean
predicted probability for the species as the threshold, but val-
ues a little lower than the mean also would be more likely
to include the species than other threshold values. Three of
the best five methods required sensitivity and specificity val-
ues, but specificity depends on known absences, which are
uncertain for most datasets.

The most common accuracy assessment metric currently
is the area under the curve (AUC) of the receiver operating
characteristic (ROC), which plots true positive rate (sensi-
tivity) against false positive rate (1-specificity; commission
error). The AUC values are threshold-independent, which
may not necessarily be a beneficial attribute if (1) the ac-
curacy metric is meant to measure presence and absence
at a specified threshold dividing species presence from ab-
sence, (2) omission and commission errors are not equal in
importance, and (3) there is inclusion of irrelevant predic-
tion ranges (Lobo et al., 2007; Jiménez-Valverde, 2011). Fur-
thermore, AUC values appear to be sensitive to the extent
and location of species distributions (Elith et al., 2006; Ter-
mansen, 2006; Lobo et al., 2007; Raes and ter Steege, 2007).
Pseudoabsences replace absences for most datasets, intro-
ducing uncertainty (Jiḿenez-Valverde, 2011). Therefore, re-
searchers must reinterpret the AUC curve in the context of
pseudoabsences selected from the background (Peterson et
al., 2008; Jiḿenez-Valverde, 2011) or select pseudoabsences
from surveyed plots rather than pseudoabsences from the un-
known background extent (Hanberry et al., 2012b). Another
option is to use the area of predicted presence as a proxy
for commission errors (Engler et al., 2004; Hernandez et
al., 2006) to match researcher-specified thresholds of species
presence.

Modeling prevalence, along with the selected threshold,
may affect some accuracy metrics, perhaps due to bias away
from natural species prevalence (Manel et al., 2001; Jiménez-
Valverde and Lobo, 2006). Contradiction about the effects
and bias of prevalence (Fielding and Bell, 1997; Manel et
al., 2001; McPherson et al., 2004; Jiménez-Valverde and

Lobo, 2006; Meynard and Kaplan, 2012) may be due to
use of alternative types of prevalence (i.e., sampling preva-
lence vs. adjusted modeling prevalence) and varying thresh-
old designations and accuracy assessment metrics. There-
fore, we explored some unresolved issues about species dis-
tribution models, that is, (1) whether sampled prevalence pro-
duces less biased models than adjusted modeling prevalence,
(2) whether modeling prevalence should be balanced at 0.5 or
unbalanced (i.e., sampling prevalence or an alternative mod-
eling prevalence), (3) whether threshold selection alone can
account for sampling and adjusted modeling prevalence, and
(4) the effects of prevalence, thresholds, and pseudoabsence
type on accuracy assessment. It was not possible to main-
tain the sampling prevalence and keep a constant sample size
of present cases; however, models were weighted averages
of numerous models (e.g., ensemble trees in random forests)
and the cumulative model had access to a greater modeling
sample of present and absent cases. We adjusted modeling
prevalence from 0.33 to 0.83, while keeping sample size of
present cases constant. To examine effect of thresholds, we
used a constant threshold of 0.50 and thresholds equal to
prevalence. We based accuracy assessment on true positive
rates, AUC values and true negative rates using surveyed and
background pseudoabsences, and areal extent of predicted
species presence.

2 Methods

2.1 Tree surveys

The USDA Forest Service Forest Inventory and Analysis
(FIA) surveys fixed plots (composed of four subplots that are
each 7.3 m in radius), which are located uniformly across the
landscape, during a five year cycle. The latest complete cycle
for Minnesota’s Laurentian Mixed Forest (Fig. 1) was dur-
ing 2004–2008 and contained 2666 plots. Because the avail-
able FIA plot locations are perturbed to protect landowner
privacy, the USDA Forest Service joined a set of predictor
variables (described below) to plots to provide a table with-
out revealing locations but based on accurate spatial locations
for modeling and prediction.

We selected tree species with at least 2500 individuals, to
ensure that models did not lose accuracy because of small
samples, and we also created two mixed species groups. The
species were American basswood (Tilia americana), balsam
fir (Abies balsamea), balsam poplar (Populus balsamifera),
black ash (Fraxinus nigra); black spruce (Picea mariana),
bur oak (Quercus macrocarpa), jack pine (Pinus banksiana),
northern white cedar (Thuja occidentalis), paper birch (Be-
tula papyrifera), red maple (Acer rubrum), red pine (Pinus
resinosa), sugar maple (A. saccharum), tamarack (Larix lar-
icina), and quaking aspen (Populus tremuloides). The species
groups were aspens (Populus tremuloides, P. balsamifera)
and maples (Acer rubrum, A. saccharum).
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Figure 1. Study area (shaded black; contains soils surveys) in Min-
nesota’s Laurentian Mixed Forest (shaded black and grey).

2.2 Spatial units and environmental variables

The spatial mapping units or grain were Soil Survey Ge-
ographic (SSURGO) Database (Natural Resources Conser-
vation Service,http://soildatamart.nrcs.usda.gov) polygons.
Soil surveys have not been completed in Cook, Crow Wing,
Isanti, Koochiching, Lake, Pine, and St. Louis counties, leav-
ing a study extent of about 4 895 238 ha (Fig. 1). After re-
moval of polygons that were water or otherwise miscella-
neous areas (e.g., mines, pits, dumps), there were 310 000
polygons with a mean polygon area of 16 ha (SD=92).

We used sixteen predictor variables that are important for
tree presence. For soil variables, we determined values based
on polygons with similar characteristics by county (soil map
units; 2364 map units total). Soil variables were (1) drainage
class (very poorly drained to excessively drained), (2) hydric
soil presence class, (3) water holding capacity (cm cm−1),
(4) pH, (5) organic matter (%), (6) clay (%), and (7) sand
(%). We intersected two more categorical variables to each
soil polygon: (8) subsection, which is an ecological division
of the study area (ECOMAP, 1993) and (9) bedrock geol-
ogy. We created a unique unit based on soil map unit, land
type association (an ecological classification), and bedrock
geology, which contained spatially distinct soil polygons
that averaged about 210 ha. We determined mean values

for the unit, which became the unit for predicted prob-
abilities, from a 30 m DEM (digital elevation model), for
(10) elevation (m), (11) slope (%), (12) transformed aspect
(1+sin(aspect/180×3.14+0.79); Beers et al., 1966), (13) so-
lar radiation (07:00 to 19:00 in 4 h intervals on summer sol-
stice for re-sampled 60 m DEM), (14) topographic roughness
(Sappington et al., 2007), (15) wetness convergence (T. Dilts,
http://arcscripts.esri.com), and (16) topographic position in-
dex.

2.3 Statistical analyses and prevalence

We applied random forests (Breiman, 2001; Cutler et al.,
2007), a classification method based on bootstrap aggrega-
tion (bagging) by the majority vote of many trees grown us-
ing random samples of both predictor variables and modeling
data. We used the randomForest package (Liaw and Wiener,
2002) in R statistical software (R Development Core Team,
2010). We set the number of classification trees at 2000 and
the number of variables randomly sampled at each split as
the square root of the number of predictors.

We randomly selected a set containing 66 % of plots, to a
maximum of 2500, which contained each species for mod-
eling, reserving the rest for accuracy assessment. For pseu-
doabsences, we selected up to 2500 plots that did not con-
tain the species. Because random forests classification is
an ensemble method that averages many trees, we worked
around the limitations of sampled prevalence by allowing
each classification tree iteration to draw from the com-
plete modeling set. For sampled prevalence, we maintained
the sampling prevalence for each species of 0.09–0.69, but
we adjusted modeling prevalence with the sample size op-
tion (which is sampled without replacement). We varied
the prevalence, using a moderate range from 0.33 to 0.83,
representing ratios of pseudoabsence cases to present cases
of 2 : 1 (prevalence of 0.33), 1 : 1 (0.50), 1 : 2 (0.67), 1 : 3
(0.75), 1 : 4 (0.8), and 1 : 5 (0.83). We held the present
case sample size at 335 while varying the total sample size
from 400 to 1000, i.e., we set the modeling prevalence at
(1) 335 presences/1000 total cases (0.33 modeling preva-
lence), (2) 335 presences/700 total cases (0.50 modeling
prevalence), (3) 335 presences/500 total cases (0.67 mod-
eling prevalence), (4) 335 presences/446 total cases (0.75
modeling prevalence), (5) 335 presences/419 total cases (0.8
modeling prevalence), and (6) 335 presences/400 total cases
(0.83 modeling prevalence). It was not possible to achieve a
sample size of 335 present cases and maintain the sampling
prevalence. Instead, sample sizes of present cases ranged
from 164 to 1236 with a mean of 504 samples.

2.4 Comparisons, thresholds, and accuracy assessment

We compared predicted probabilities for the same species
for each prevalence using correlation (Proc Corr; SAS soft-
ware, Version 9.2, Cary, North Carolina, USA). We also
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Table 1. Correlation (all species combined) among predicted prob-
abilities for varying modeling prevalences at a constant sample size
of present cases and sampling prevalence (mean sampling preva-
lence= 0.28, range= 0.09–0.69).

prevalence 0.33 0.5 0.67 0.75 0.8 0.83 sampling

0.33 1.00 0.98 0.94 0.90 0.88 0.86 0.96
0.5 0.98 1.00 0.98 0.96 0.94 0.93 0.98
0.67 0.94 0.98 1.00 0.99 0.98 0.97 0.91
0.75 0.90 0.96 0.99 1.00 1.00 0.99 0.88
0.8 0.88 0.94 0.98 1.00 1.00 1.00 0.85
0.83 0.86 0.93 0.97 0.99 1.00 1.00 0.83
sampling 0.96 0.98 0.91 0.88 0.85 0.83 1.00

determined the mean of predicted probabilities for each
prevalence. For thresholds to accept presence of a species,
we used a constant 0.50 threshold and also thresholds that
matched the modeling prevalence. We computed true positive
rate, AUC, and true negative rate values (ROCR package in
R; Sing et al., 2005) using reserved present samples and sur-
veyed pseudoabsences from plots that did not have records of
the species and also background pseudoabsences where the
entire study extent was coded as absent (but we only modeled
using surveyed pseudoabsences). We calculated area pre-
dicted as present and converted area from an absolute value
to the fraction of the total area (4 895 238 ha). We examined
the relationship between area predicted as present and true
negative rate and AUC values (Proc Reg; SAS software, Ver-
sion 9.2, Cary, North Carolina, USA).

3 Results

Independent of sampling prevalence and thresholds, correla-
tions indicated that the relationship of the predicted proba-
bilities differed only slightly with modeling prevalence val-
ues. Correlation values among models based on modeling
prevalence (all species combined) at a constant sample size
for present cases ranged from 0.86 (correlation between the
most distant modeling prevalences of 0.33 and 0.83) to 1.00
(correlation between the closest modeling prevalences; Ta-
ble 1). Models based on sampling prevalences were slightly
less similar to models based on modeling prevalences, in part
due to varying sample size. Correlation values ranged from
0.96 at the lower modeling prevalences to 0.83 at the great-
est modeling prevalence. In addition, predicted probabilities
increased with modeling prevalence. Mean predicted proba-
bilities for all species combined increased from 0.25 for the
modeling prevalence of 0.33 to 0.60 for the modeling preva-
lence of 0.83 (Table 2).

Because predicted probabilities varied with prevalence,
thresholds modified the trade-off between true positive rate
and true negative rate due to prevalence, as balance in com-
mission (false positive rate) and omission (false negative
rate) errors changed (Fig. 2; mean values for all species com-

bined). As prevalence (and predicted probabilities) increased
and the threshold stayed constant, mean true positive rate
and species prediction area increased while true negative rate
decreased, creating large differences in values among preva-
lence ratios. Changing the threshold to match the modeling
prevalence resulted in relatively similar true positive rate,
true negative rate, and area for all prevalence values (Fig. 2).
Models based on sampling prevalence performed similarly to
models based on adjusted modeling prevalence.

Mean AUC values (all species combined) for the mod-
eling prevalence models ranged from 0.92 to 0.94 using
surveyed pseudoabsences (Table 2). The AUC values re-
flected true positive and true negative rates at the preva-
lence threshold (R2 = 0.97), with a slightly greater influence
by true negative rate (R2 = 0.90) compared to true positive
rate (R2 = 0.79). Area was not correlated with AUC values
(R2 = 0.07) and true negative rate at the prevalence threshold
(R2 = 0.06). When using the background to provide pseu-
doabsences, AUC and true negative rate values were lower
(Table 2). Area explained more of the variance in AUC values
(R2 = 0.35) and true negative rate at the prevalence threshold
(R2 = 0.41).

4 Discussion

There appears to be only a minor influence by prevalence,
whether based on sampling or adjusted for modeling, on
species distribution models for common species (and for
uncommon species, Jiḿenez-Valverde et al., 2009). Models
with a prevalence ratio ranging from (lower than) 0.33 to
0.83 will be highly correlated. Modeling prevalence therefore
does not need to be balanced (as recommended by McPher-
son et al., 2004; Liu et al., 2005). However, better models
may result from increased representation by the present case,
rather than models with increased representation of the un-
known case.

Threshold selection alone can account for changing val-
ues of prediction probabilities in species distribution models
due to modeling prevalence. Using a constant threshold for
different prevalence values clearly will affect accuracy met-
rics by minimizing either omission (at greater prevalence) or
commission (at lower prevalence) errors. Retaining a thresh-
old that is similar to prevalence will maintain fairly constant
error rates, no matter the selected prevalence, similar to find-
ings reported by Liu et al. (2005).

Summary statistics and thresholds provide ways to assess
species distribution models. True positive rate, true nega-
tive rate, and AUC values are basic measures of whether the
model is able to predict presence and absence of species. One
AUC value may be more helpful than two summarized values
of true positive rate and true negative rate, even though for
most datasets, true absent cases are uncertain. Any research
that uses AUC (or true negative rate) values must adjust com-
mission error so that it does not reflect merely frequency of
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Table 2. Mean values for predicted probability, true positive rate, AUC, and true negative rate for varying modeling prevalences and sampling
prevalence (mean sampling prevalence= 0.28, range= 0.09–0.69).

Prevalence 0.33 0.50 0.67 0.75 0.80 0.83 Sampling

Mean value

Predicted probability 0.25 0.34 0.45 0.51 0.56 0.60 0.25
True positive rate at 0.5 threshold 0.79 0.89 0.95 0.97 0.98 0.98 0.78
True positive rate at prevalence threshold 0.91 0.89 0.87 0.86 0.85 0.84 0.91
AUC with surveyed absences 0.94 0.94 0.93 0.92 0.92 0.92 0.95
AUC with background absences 0.90 0.90 0.89 0.89 0.89 0.88 0.91
True negative rate at 0.5 threshold 0.95 0.85 0.70 0.62 0.56 0.50 0.92
True negative rate at prevalence threshold 0.85 0.85 0.85 0.85 0.85 0.85 0.85
True negative rate at prevalence
threshold with background absences 0.68 0.73 0.75 0.77 0.77 0.77 0.67

24 

 

 

 

 

 

 

Figure 2. True positive rate, true negative rate, and area (fraction of total area) at 0.50 thresholds and prevalence thresholds. The prevalence
threshold maintained true positive rate, true negative rate, and area at a relatively constant value among modeling prevalence ratios. Sampling
prevalence (points located at the 0.28 x-axis, the mean sampling prevalence) did not affect performance.

species when the background is coded as absent. If the back-
ground is coded as absent, AUC values indicate whether a
species is widespread or restricted in range within the study
extent; models for species with small or restricted ranges will
have greater AUC values due to the match between low pre-
dicted probabilities and background areas scored as absent
(Elith et al., 2006; Stokland et al., 2011). When we coded
the background rather than surveyed areas as absent for as-
sessment, albeit using surveyed pseudoabsences in modeling,
the relationship between AUC values and area predicted as
present increased. That is,R2 increased from 0.07 to 0.35 in
our study becauseR2 values between true negative rate and
area increased from 0.06 to 0.41. Additionally, it appeared
that no matter the extent of commission error, if the true posi-
tive rate was high then the AUC value also will be high (Wisz
et al., 2008).

Greater predicted probabilities should be meaningful in-
dicators about the probability of species presence, however
it is important to realize factors can increase and decrease

predicted probabilities. Increasing modeling prevalence in-
creased predicted probabilities. Even though predicted prob-
ability values are consequential for a species, it is not cer-
tain what the predicted probabilities mean in terms of fre-
quency, particularly when compared to other species (Lobo
et al., 2007). For some conservation or monitoring goals, it
may be useful to select areas where the species is very likely
to be present at the expense of excluding potential areas of
presence. Under those circumstances, setting the threshold
at the mean predicted probability for known presences will
target locations with greater probabilities of presence.

5 Conclusions

Modeling prevalence had a mild impact on species distri-
bution models if thresholds for accepting species presence
varied with prevalence and sample size was removed from
modeling prevalence. We did not examine the effects of
changing modeling prevalence for other statistical methods,
and effects may differ if the method is not an ensemble
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18 B. B. Hanberry and H. S. He: Prevalence, statistical thresholds, and accuracy assessment

method. However, Liu et al. (2005) had similar results for
threshold selection using artificial neural networks as the
statistical method. Modelers certainly should (1) specify
the modeling prevalence and threshold for species presence
and accuracy assessment and (2) standardize threshold
values among modeled species so that models have similar
balance between omission and commission errors. The AUC
(and true negative rate) values appeared to be meaningful
as measures of whether models produce greater predicted
probabilities where a species was present than where it was
unknown (Phillips et al., 2006). However, interpretation
is misleading because with known commission error of
scoring the entire background as absent, AUC (and true
negative rate) values reflected the area predicted as present,
that is, the frequency of species, rather than simply error.
Any AUC values that trend inversely with extent of species
distributions may be artifacts of pseudoabsence selection.

Edited by: M. Bezemer
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