Web Ecol., 13, 13-19, 2013

www.web-ecol.net/13/13/2013/
doi:10.5194/we-13-13-2013 - i |
© Author(s) 2013. CC Attribution 3.0 License. Web Ecology

Prevalence, statistical thresholds, and accuracy
assessment for species distribution models

B. B. Hanberry and H. S. He
School of Natural Resources, Univ. of Missouri, 203 Natural Resources Building, Columbia, MO 65211, USA

Correspondence td. B. Hanberry (hanberryb@missouri.edu)

Received: 16 July 2012 — Revised: 19 March 2013 — Accepted: 22 April 2013 — Published: 13 May 2013

Abstract. For species distribution models, species frequency is termed prevalence and prevalence in samples
should be similar to natural species prevalence, for unbiased samples. However, modelers commonly adjust
sampling prevalence, producing a modeling prevalence that haeaedt frequency of occurrences than
sampling prevalence. The separafieets of (1) use of sampling prevalence compared to adjusted modeling
prevalence and (2) modifications necessary in thresholds, which convert continuous probabilities to discrete
presence or absence predictions, to account for prevalence, are unresolved issues. We eX@utised e
prevalence and thresholds and two types of pseudoabsences on model accuracy. Use of sampling prevalence
produced similar models compared to use of adjusted modeling prevalences. Mean correlation between pre-
dicted probabilities of the least (0.33) and greatest modeling prevalence (0.83) was 0.86. Mean predicted prob-
ability values increased with increasing prevalence; therefore, unlike constant thresholds, varying threshold to
match prevalence values waegtive in holding true positive rate, true negative rate, and species precliction
areas relatively constant for every modeling prevalence. The area under the curve (AUC) values appeared to be
as informative as sensitivity and specificity, when using surveyed pseudoabsences as absent cases, but when
the entire study area was coded, AUC values reflected the area of predicted presence as absent. Less frequen
species had greater AUC values when pseudoabsences represented the study background. Modeling prevalence
had a mild impact on species distribution models and accuracy assessment metrics when threshold varied with
prevalence. Misinterpretation of AUC values is possible when AUC values are based on background absences,
which correlate with frequency of species.

1 Introduction the modeler. In some cases, to maintain sampling prevalen
it may be necessary to retain fewer samples, thus reducir]
sample size and accuracy of models (Hanberry et al., 20123
Species distribution models predict the occurrence probagyrthermore, if background data represent samples that
bility of species in space based on limited known locationsnot contain the species, then prevalence will vary dependin
where species are present. Although modeling with samplingyn resolution (i.e., number of samples) of the backgroun
prevalence, or frequency of samples that contain the speciegjata (Franklin et al., 2010). Lastly, adjustment from sample
may be an appropriate approach (Real et al., 2006; Alberprevalence that varies by species to a consistent modelir
and Thuiller, 2008; Ward et al., 2009; Li et al., 2011; Mey- prevalence applied to all species may be necessary to sta
nard and Kaplan, 2012), there also are potential "mitationSdardize comparisons of model predictions among species
Sampling prevalence may not reflect natural species prevastudy areas or to map model predictions in similar and con
lence, or frequency of the species over the entire study extenyentional classification units, such as equal intervals.
That is, sampling prevalence observed in samples may be bi- Modeling prevalence is the frequency of occurrence
ased because for example, frequency may vary throughoWpecifically selected for model training (Bmez-Valverde et

the study area. Indeed, the study area often is a subsample gf. 2008). The most common recommendation is a balance
the entire distribution range and thus, artificially defined by
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modeling prevalence of 0.50 (McPherson et al., 2004; Liu etLobo, 2006; Meynard and Kaplan, 2012) may be due to
al., 2005), however researchers have suggested unbalancede of alternative types of prevalence (i.e., sampling preva-
modeling prevalence, such as 0.01 when sample sizes aflence vs. adjusted modeling prevalence) and varying thresh-
limited (Lobo and Tognelli, 2011). Although adjustment of old designations and accuracy assessment metrics. There-
prevalence provides modeling flexibility, bias may reducefore, we explored some unresolved issues about species dis-
accuracy of models based on adjusted modeling prevalenciibution models, thatis, (1) whether sampled prevalence pro-
more than sampling prevalence, whiclffeli less from natu-  duces less biased models than adjusted modeling prevalence,
ral species prevalence. (2) whether modeling prevalence should be balanced at 0.5 or
Thresholds, defined by the researcher, specify the preunbalanced (i.e., sampling prevalence or an alternative mod-
dicted probability above which a species is determinedeling prevalence), (3) whether threshold selection alone can
present. Often a threshold of 0.5 simply is used as a thresholdccount for sampling and adjusted modeling prevalence, and
for species presence, but may not to be the best choice (Lig4) the dfects of prevalence, thresholds, and pseudoabsence
et al., 2005; Freeman and Moisen, 2008). Liu et al. (2005)type on accuracy assessment. It was not possible to main-
compared 12 dierent threshold selection methods and de-tain the sampling prevalence and keep a constant sample size
termined five methods that worked better than others to maxef present cases; however, models were weighted averages
imize both sensitivity (true positive rate) and specificity (true of numerous models (e.g., ensemble trees in random forests)
negative rate). One method was the use of modeling prevaand the cumulative model had access to a greater modeling
lence as the threshold. Another method was the use of measample of present and absent cases. We adjusted modeling
predicted probability for the species as the threshold, but valprevalence from 0.33 to 0.83, while keeping sample size of
ues a little lower than the mean also would be more likely present cases constant. To examiffea of thresholds, we
to include the species than other threshold values. Three afised a constant threshold of 0.50 and thresholds equal to
the best five methods required sensitivity and specificity val-prevalence. We based accuracy assessment on true positive
ues, but specificity depends on known absences, which aretes, AUC values and true negative rates using surveyed and
uncertain for most datasets. background pseudoabsences, and areal extent of predicted
The most common accuracy assessment metric currentlgpecies presence.
is the area under the curve (AUC) of the receiver operating
characteristic (ROC), which plots true positive rate (sensi-
tivity) against false positive rate (1-specificity; commission 5 pethods
error). The AUC values are threshold-independent, which
may not necessarily be a beneficial attribute if (1) the ac- 1 Tree surveys
curacy metric is meant to measure presence and absence
at a specified threshold dividing species presence from abThe USDA Forest Service Forest Inventory and Analysis
sence, (2) omission and commission errors are not equal iiFIA) surveys fixed plots (composed of four subplots that are
importance, and (3) there is inclusion of irrelevant predic- each 7.3 m in radius), which are located uniformly across the
tion ranges (Lobo et al., 2007; Jamez-Valverde, 2011). Fur- landscape, during a five year cycle. The latest complete cycle
thermore, AUC values appear to be sensitive to the extenfor Minnesota’s Laurentian Mixed Forest (Fig. 1) was dur-
and location of species distributions (Elith et al., 2006; Ter-ing 2004—2008 and contained 2666 plots. Because the avail-
mansen, 2006; Lobo et al., 2007; Raes and ter Steege, 2007ble FIA plot locations are perturbed to protect landowner
Pseudoabsences replace absences for most datasets, intppivacy, the USDA Forest Service joined a set of predictor
ducing uncertainty (Jignez-Valverde, 2011). Therefore, re- variables (described below) to plots to provide a table with-
searchers must reinterpret the AUC curve in the context ofout revealing locations but based on accurate spatial locations
pseudoabsences selected from the background (Petersonfet modeling and prediction.
al., 2008; Jinknez-Valverde, 2011) or select pseudoabsences We selected tree species with at least 2500 individuals, to
from surveyed plots rather than pseudoabsences from the urensure that models did not lose accuracy because of small
known background extent (Hanberry et al., 2012b). Anothersamples, and we also created two mixed species groups. The
option is to use the area of predicted presence as a proxgpecies were American basswoddi& americang, balsam
for commission errors (Engler et al., 2004; Hernandez effir (Abies balsaméa balsam poplarRopulus balsamifena
al., 2006) to match researcher-specified thresholds of specidslack ash Fraxinus nigrg; black spruce Ricea mariand,
presence. bur oak Quercus macrocarpajack pine Pinus banksiang
Modeling prevalence, along with the selected threshold,northern white cedarThuja occidentaliy paper birch Be-
may dfect some accuracy metrics, perhaps due to bias awatula papyrifera, red maple Acer rubrun), red pine Pinus
from natural species prevalence (Manel et al., 2001édea-  resinosg, sugar mapleA. saccharurj tamarack [(arix lar-
Valverde and Lobo, 2006). Contradiction about tifieeets  icina), and quaking aspe®@pulus tremuloidesThe species
and bias of prevalence (Fielding and Bell, 1997; Manel etgroups were aspen®dpulus tremuloides, P. balsamif¢ra
al., 2001; McPherson et al., 2004; #&nez-Valverde and and maplesAcer rubrum, A. saccharum
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for the unit, which became the unit for predicted prob-
abilities, from a 30 mDEM (digital elevation model), for
(10) elevation (m), (11) slope (%), (12) transformed aspec
(1+sin(aspe¢ll80x 3.14+0.79); Beers et al., 1966), (13) so-
lar radiation (07:00 to 19:00 in 4 h intervals on summer sol-
stice for re-sampled 60 m DEM), (14) topographic roughnes

httpy/arcscripts.esri.cojnand (16) topographic position in-
dex.

2.3 Statistical analyses and prevalence

We applied random forests (Breiman, 2001; Cutler et al.
2007), a classification method based on bootstrap aggreg
tion (bagging) by the majority vote of many trees grown us-
ing random samples of both predictor variables and modelin
data. We used the randomForest package (Liaw and Wiene
2002) in R statistical software (R Development Core Team
2010). We set the number of classification trees at 2000 an
the number of variables randomly sampled at each split 3
the square root of the number of predictors.

We randomly selected a set containing 66 % of plots, to
maximum of 2500, which contained each species for mod
eling, reserving the rest for accuracy assessment. For pse
doabsences, we selected up to 2500 plots that did not co
tain the species. Because random forests classification

Figure 1. Study area (shaded black; contains soils surveys) in Min-21 €nsemble method that averages many trees, we work

nesota’s Laurentian Mixed Forest (shaded black and grey). around the limitations of sampled prevalence by allowing
each classification tree iteration to draw from the com-

plete modeling set. For sampled prevalence, we maintaine
the sampling prevalence for each species of 0.09-0.69, b
we adjusted modeling prevalence with the sample size of
The spatial mapping units or grain were Soil Survey Ge-tion (which is sampled without replacement). We varied
ographic (SSURGO) Database (Natural Resources Consethe prevalence, using a moderate range from 0.33 to 0.8
vation Service httpy/soildatamart.nrcs.usda.gogolygons.  representing ratios of pseudoabsence cases to present ca
Soil surveys have not been completed in Cook, Crow Wing,of 2 : 1 (prevalence of 0.33), 1:1 (0.50), 1:2 (0.67), 1:3
Isanti, Koochiching, Lake, Pine, and St. Louis counties, leav-(0.75), 1:4 (0.8), and 1:5 (0.83). We held the presen
ing a study extent of about 4 895238 ha (Fig. 1). After re- case sample size at 335 while varying the total sample siz
moval of polygons that were water or otherwise miscella-from 400 to 1000, i.e., we set the modeling prevalence g
neous areas (e.g., mines, pits, dumps), there were 31000Q) 335 presenc#B000 total cases (0.33 modeling preva-
polygons with a mean polygon area of 16 ha (58R). lence), (2) 335 preseng@80 total cases (0.50 modeling
We used sixteen predictor variables that are important foprevalence), (3) 335 presen®d0 total cases (0.67 mod-
tree presence. For soil variables, we determined values basealing prevalence), (4) 335 presen@ets total cases (0.75
on polygons with similar characteristics by county (soil map modeling prevalence), (5) 335 preserdés total cases (0.8
units; 2364 map units total). Soil variables were (1) drainagemodeling prevalence), and (6) 335 presef#@s total cases
class (very poorly drained to excessively drained), (2) hydric(0.83 modeling prevalence). It was not possible to achieve
soil presence class, (3) water holding capacity (cm'¢m  sample size of 335 present cases and maintain the sampli
(4) pH, (5) organic matter (%), (6) clay (%), and (7) sand prevalence. Instead, sample sizes of present cases rang
(%). We intersected two more categorical variables to eachrom 164 to 1236 with a mean of 504 samples.
soil polygon: (8) subsection, which is an ecological division
of the study area (ECOMAP, 1993) and (9) bedrock geol- 4
ogy. We created a unique unit based on soil map unit, land "
type association (an ecological classification), and bedrockVe compared predicted probabilities for the same specie
geology, which contained spatially distinct soil polygons for each prevalence using correlation (Proc Corr; SAS soft
that averaged about 210ha. We determined mean valuesare, Version 9.2, Cary, North Carolina, USA). We also

2.2 Spatial units and environmental variables

Comparisons, thresholds, and accuracy assessment
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(Sappington et al., 2007), (15) wetness convergence (T. Dilts
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Table 1. Correlation (all species combined) among predicted prob-bined). As prevalence (and predicted probabilities) increased
abilities for varying modeling prevalences at a constant sample sizeand the threshold stayed constant, mean true positive rate
of present cases and sampling prevalence (mean sampling prevand species prediction area increased while true negative rate
lence= 0.28, range= 0.09-0.69). decreased, creating largdferences in values among preva-
lence ratios. Changing the threshold to match the modeling
prevalence 033 05 067 075 08 083 sampling evalence resulted in relatively similar true positive rate,

0.33 100 098 094 090 088 086  0.96 true negative rate, and area for all prevalence values (Fig. 2).
8-27 8-33 é-gg 2-33 8-32 8-2‘; 3-337’ g-gfi Models based on sampling prevalence performed similarly to
0.75 090 096 099 100 100 099 0.88 models based on adjusted moc!ellng preyalence.

0.8 0.88 094 098 100 100 100 085 .Mean AUC values (all species combined) for the mo.d-
0.83 0.86 0.93 097 099 1.00 1.00 0.83 eling prevalence models ranged from 0.92 to 0.94 using

sampling  0.96 098 091 088 0.85 0.83 1.00 surveyed pseudoabsences (Table 2). The AUC values re-
flected true positive and true negative rates at the preva-
lence thresholdR? = 0.97), with a slightly greater influence
determined the mean of predicted probabilities for eachbY true negative rateR¢ = 0.90) compared to true positive
prevalence. For thresholds to accept presence of a specig@te & =0.79). Area was not correlated with AUC values
we used a constant 0.50 threshold and also thresholds th4R = 0.07) and true negative rate at the prevalence threshold
matched the modeling prevalence. We computed true positivéR’ = 0.06). When using the background to provide pseu-
rate, AUC, and true negative rate values (ROCR package ifloabsences, AUC and true negative rate values were lower
R; Sing et al., 2005) using reserved present samples and suflable 2). Area explained more of the variance in AUC values

veyed pseudoabsences from plots that did not have records ¢& = 0.35) and true negative rate at the prevalence threshold

the species and also background pseudoabsences where =0.41).

entire study extent was coded as absent (but we only modeled

using surveyed pseudoabsences). We calculated area pre- _

dicted as present and converted area from an absolute valie DPiscussion

to the fraction of the total area (4 895 238 ha). We examined

the relationship between area predicted as present and trygere appears to be only a minor influence by prevalence,

negative rate and AUC values (Proc Reg; SAS software, Verwhether based on sampling or adjusted for modeling, on
sion 9.2, Cary, North Carolina, USA). species distribution models for common species (and for

uncommon species, Janez-Valverde et al., 2009). Models

with a prevalence ratio ranging from (lower than) 0.33 to
3 Results 0.83 will be highly correlated. Modeling prevalence therefore

does not need to be balanced (as recommended by McPher-
Independent of sampling prevalence and thresholds, correlsson et al., 2004; Liu et al., 2005). However, better models
tions indicated that the relationship of the predicted proba-may result from increased representation by the present case,
bilities differed only slightly with modeling prevalence val- rather than models with increased representation of the un-
ues. Correlation values among models based on modelingnown case.
prevalence (all species combined) at a constant sample size Threshold selection alone can account for changing val-
for present cases ranged from 0.86 (correlation between thaes of prediction probabilities in species distribution models
most distant modeling prevalences of 0.33 and 0.83) to 1.0@lue to modeling prevalence. Using a constant threshold for
(correlation between the closest modeling prevalences; Tadifferent prevalence values clearly wilf@ct accuracy met-
ble 1). Models based on sampling prevalences were slightlyics by minimizing either omission (at greater prevalence) or
less similar to models based on modeling prevalences, in patommission (at lower prevalence) errors. Retaining a thresh-
due to varying sample size. Correlation values ranged fronold that is similar to prevalence will maintain fairly constant
0.96 at the lower modeling prevalences to 0.83 at the greaterror rates, no matter the selected prevalence, similar to find-
est modeling prevalence. In addition, predicted probabilitiesings reported by Liu et al. (2005).
increased with modeling prevalence. Mean predicted proba- Summary statistics and thresholds provide ways to assess
bilities for all species combined increased from 0.25 for thespecies distribution models. True positive rate, true nega-
modeling prevalence of 0.33 to 0.60 for the modeling preva-tive rate, and AUC values are basic measures of whether the
lence of 0.83 (Table 2). model is able to predict presence and absence of species. One

Because predicted probabilities varied with prevalence AUC value may be more helpful than two summarized values

thresholds modified the traddfdetween true positive rate of true positive rate and true negative rate, even though for
and true negative rate due to prevalence, as balance in conrost datasets, true absent cases are uncertain. Any research
mission (false positive rate) and omission (false negativethat uses AUC (or true negative rate) values must adjust com-
rate) errors changed (Fig. 2; mean values for all species conmission error so that it does not reflect merely frequency of
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Table 2. Mean values for predicted probability, true positive rate, AUC, and true negative rate for varying modeling prevalences and sampling

prevalence (mean sampling prevalesc@.28, range= 0.09—-0.69).

Prevalence 0.33 050 0.67 075 0.80 0.83 Sampling
Mean value

Predicted probability 0.25 034 045 051 0.56 0.60 0.25
True positive rate at 0.5 threshold 0.79 089 095 097 098 0.98 0.78
True positive rate at prevalence threshold 091 0.89 087 0.86 0.85 0.84 0.91
AUC with surveyed absences 094 094 093 092 092 0.92 0.95
AUC with background absences 090 090 0.89 0.89 0.89 0.88 0.91
True negative rate at 0.5 threshold 095 085 0.70 0.62 056 0.50 0.92

True negative rate at prevalence threshold 085 0.85 0.85 0.85 0.85 0.85 0.85
True negative rate at prevalence

threshold with background absences 0.68 0.73 0.75 0.77 0.77 0.77 0.67
1.00 " p—
0.90 —r—l— -
. - & H‘. = True positive rate at a 50%
080 5 w threshold
2070 " ——True positive rate at prevalence
[ threshold
[oTed
] *
o 0-60 N # True negative rate at a 50%
2 A threshold
5050 L
E —4—True negative rate at
% 0.40 . prevalence threshold
0.20 7*‘%‘ A Area (fraction of total) at a 50%
threshold
020 4 )
A —i— Area (fraction of total) at
0.10 . T T prevalence threshold
0.25 0.45 0.65 0.85

Prevalence

Figure 2. True positive rate, true negative rate, and area (fraction of total area) at 0.50 thresholds and prevalence thresholds. The pre
threshold maintained true positive rate, true negative rate, and area at a relatively constant value among modeling prevalence ratios. S
prevalence (points located at the 0.28 x-axis, the mean sampling prevalence) digcigperformance.

species when the background is coded as absent. If the backredicted probabilities. Increasing modeling prevalence int

ground is coded as absent, AUC values indicate whether areased predicted probabilities. Even though predicted prot
species is widespread or restricted in range within the studyability values are consequential for a species, it is not cef
extent; models for species with small or restricted ranges willtain what the predicted probabilities mean in terms of fre-
have greater AUC values due to the match between low preguency, particularly when compared to other species (Lob
dicted probabilities and background areas scored as abseat al., 2007). For some conservation or monitoring goals, i
(Elith et al., 2006; Stokland et al., 2011). When we codedmay be useful to select areas where the species is very like
the background rather than surveyed areas as absent for a® be present at the expense of excluding potential areas
sessment, albeit using surveyed pseudoabsences in modelingesence. Under those circumstances, setting the threshg
the relationship between AUC values and area predicted aat the mean predicted probability for known presences wil
present increased. That R? increased from 0.07 to 0.35 in  target locations with greater probabilities of presence.

our study becausB? values between true negative rate and
area increased from 0.06 to 0.41. Additionally, it appeared
that no matter the extent of commission error, if the true posi-
tive rate was high then the AUC value also will be high (Wisz Modeling prevalence had a mild impact on species distri
etal., 2008). bution models if thresholds for accepting species preseng

5 Conclusions

Greater predicted probabilities should be meaningful in-varied with prevalence and sample size was removed from

dicators about the probability of species presence, howeveimodeling prevalence. We did not examine thiéeets of

it is important to realize factors can increase and decreaseéhanging modeling prevalence for other statistical methods
and dfects may dier if the method is not an ensemble
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threshold selection using artificial neural networks as the eration for species distribution models, PLoS ONE, 7, e44486,
statistical method. Modelers certainly should (1) specify doi:10.137%journal.pone.004448&012b.
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