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Abstract. It is routinely understood that the total diversity within a metacommunity (γ -diversity) can be parti-
tioned into one component summarizing the diversity within communities (α-diversity) and a second component
representing the contribution of diversity (or differences) between communities (β-diversity). The underlying
thought is that merging differentiated communities should raise the total diversity above the average level of
diversity within the communities. The crucial point in this partitioning criterion is set by the notion of “diversity
within communities” (DWC) and its relation to the total diversity. The common approach to summarizing DWC
is in terms of averages. Yet there are many different ways to average diversity, and not all of these averages
stay below the total diversity for every measure of diversity, corrupting the partitioning criterion. This raises the
question of whether conceptual properties of diversity measures exist, the fulfillment of which implies that all
measures of DWC obey the partitioning criterion. It is shown that the straightforward generalization of the plain
counting of types (richness) leads to a generic diversity measure that has the desired properties and, together
with its effective numbers, fulfills the partitioning criterion for virtually all of the relevant diversity measures in
use. It turns out that the classical focus on DWC (α) and its complement (β as derived fromα andγ ) in the
partitioning of total diversity captures only the apportionment perspective of the distribution of trait diversity
over communities (which implies monomorphism within communities at the extreme). The other perspective,
differentiation, cannot be assessed appropriately unless an additional level of diversity is introduced that accounts
for differences between communities (such as the joint “type-community diversity”). Indices of apportionment
IA (among which isGST and specially normalized versions ofβ) and differentiationID are inferred, and it is
demonstrated that conclusions derived fromIA depend considerably on the measure of diversity to which it is
applied, and that in most cases an assessment of the distribution of diversity over communities requires additional
computation ofID.

1 Introduction

There seems to be general agreement that a diversity measure
is a real-valued continuous function defined on a frequency
simplex, is invariant towards permutations of the frequency
components, and meets theevenness criterionor condition
(seeMacArthur, 1965; Hill , 1973, p. 429, bottom of right
column;Patil and Taillie, 1982, p. 551, top of right column;
Jost, 2009; Gregorius, 2010; and many more). The evenness
criterion expresses the idea that diversity increases as the dis-

tribution of types becomes more even1, and it implies that
the diversity measure assumes a unique minimum value that
is realized for frequency vectors with one component equal
to 1 and all others equal to 0 (monomorphism), and that for
even (uniform) distributions the measure increases strictly
with the number of types represented in the distribution (for

1The evenness criterion states that diversity increases strictly as
the difference in representation (frequency) between two types de-
creases while the sum of their representations remains the same. If
types are recorded without reference to their representation, then
diversity increases strictly with the number of types.
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52 H.-R. Gregorius: Partitioning of diversity: the “within communities” component

more implications of the evenness criterion seePatil and Tail-
lie, 1982; Gregorius, 2010). Moreover, with this specifica-
tion, each diversity measure is related to its plain notion, i.e.,
the number of types (frequently termed “richness”), via the
concept of effective number (which will be returned to later
on in more detail).

Another essential – though rarely explicitly stated – crite-
rion relates to how assemblages of differentiated communi-
ties affect the diversity of the total assemblage. The criterion
reflects the pervasive perception that merging differentiated
communities ought to increase the total diversity in relation
to the diversity realized in the individual communities (see,
for example,Lewontin, 1972, orGadagkar, 1989). While this
need not apply to each individual community, it must still
apply to the less diverse communities (think about merg-
ing a monomorphic community with a highly polymorphic
one). This perception in turn gave rise to various attempts
to partition the total diversity into a component that sum-
marizes the diversities of the individual communities (akin
to “α-diversity” in ecology) and a component that is com-
monly addressed as “diversity” between communities (akin
to “β-diversity”). Herewith, the latter wording is unfortunate
in that it refers to differences between communities rather
than to the “diversity” of any specified collection of objects
(a reminder that is already implicit in the paper ofWhittaker,
1960, p. 320; also seeRicotta, 2005, paragraph following
Eq. 1). Due to the conceptual structure of the present paper,
however, it is not necessary to join into the ongoing discus-
sion of the notion ofβ-diversity (Tuomisto, 2010, addresses
this discussion in the title of her paper as the “diversity of
beta diversities”).

The notion of “diversity within communities” (abbrevi-
ated DWC in the following) is probably the most central and
crucial facet of the partitioning concept, since its numerical
specification is required as a reference for the “gain” in total
diversity due to differences between communities. The re-
quirement that the total diversity exceeds the DWC (however
it is summarized), with equality only in the absence of differ-
entiation between them, will be termed the partitioning cri-
terion. Note that this criterion always applies when the mea-
sure of DWC is replaced by the minimum of the individual
community diversities.

Usually, the DWC is summarized by some kind of average
over the diversities within the individual communities that
satisfies the partitioning criterion. In many cases, several av-
erages are suitable (and many are not; see, for example, the
arguments given inJost, 2007, andGregorius, 2010) and it
may require additional demands on the diversity measure to
yield a unique specification of the DWC. These demands of
course depend on the purpose of the analysis, which subjects
the notion of DWC and thus the concept of diversity par-
titioning to some equivocality. In every sense, the evenness
criterion and the partitioning criterion are innate to the con-
cept of diversity, which raises the question of whether these
criteria already guarantee the existence of generally legiti-

mate measures of DWC (preferably in the form of averages).
In this case, the possibility that diversity can be partitioned
would indeed be implicit in the concept of diversity, and this
could in turn aid in the design of more targeted indices relat-
ing to the distribution of diversity over communities.

In view of the large number of diversity measures, many
of which are highly complex and difficult to interpret, the
present paper will focus on the generic idea of these mea-
sures (i.e., the plain notion of number of types) and make
an attempt to consistently develop this idea further until it
covers virtually all of the relevant measures in use. By doing
this, the focus is set on legitimate specifications of the con-
cept of DWC as mentioned above. The results of the analysis
are used to clarify and extend established and more recent
methods of quantifying the shares that diversity within, and
differences between, communities has in the total diversity
of a metacommunity.

2 Generalizing the plain notion of diversity

The assessment of diversity by simply counting numbers
of types (plain notion) becomes ambiguous if types are not
equally represented or if their representations are given dif-
ferent weights in the evaluation of diversity. Representation
of types may encompass the frequency of individuals, their
biomass, area occupied, etc., and these quantities enter into
the assessment of diversity as relative quantitiespi for theith
type with

∑
i pi = 1. Weights given to representationsp can

be viewed as non-negative functionsω(p) that specify the
contribution of each type’s representation to the overall di-
versity. For example, up to a certain threshold, rare species or
alleles can be argued to contribute more to the adaptability of
communities under varying environments and by this receive
higher weight in the diversity assessment. Yet, at the extreme,
where a type is not represented in a community (p = 0), it
cannot in any sense contribute to its diversity and is there-
fore commonly characterized byω(0) = 0 (for an exception
see the function with superscript 4 in Table1). In fact, the
ways in whichω(p)’s can be specified is virtually unlimited,
as are the ecological models that generate them. This should
be recalled in view of the fact that the vast majority of diver-
sity studies rely on a vanishingly small number of diversity
indices – the significance of which for the studies’ aims is
rarely argued.

With this notation, the plain notion of diversity presents it-
self via the specificationω(p) = 1 for all positivep’s and by
taking the sum

∑
i ω(pi) over types. Hence, continuing this

notion, a direct approach to the assessment of diversity con-
sists in summing the weights of the types’ representations,
i.e., building the generic representationη :=

∑
i ω(pi) of di-

versity. This sum, in turn, may require further transforma-
tion in order to enable the design of indices that allow for
special kinds of interpretation. Such interpretations may re-
fer to the “effective” number of types or to the saturation
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Table 1. Examples of strictly concave weight functionsω(p) together with their respective generic diversitiesη and strictly increasing
transformationsτ that makeτ(η) into diversity effective numbers;pi := relative representation of theith type (onlypi > 0 considered).

Weight function Generic diversity Effective number
ω(p) η =

∑
i ω(pi) τ (η)

ω(p) = 1 for p > 0, ω(0) = 0 plain notion (richness) η

p · (1− pa−1), 1< a 1−
∑

i p
a
i

1 (1− η)
1

1−a

2

pa , 0< a < 1
∑

i p
a
i

η
1

1−a

2

p · (pa−1
− 1), 0 6= a < 1

∑
i p

a
i

− 1 (η + 1)
1

1−a

2

−p · logap, 0< a 6= 1 −
∑

i pi · logapi
3 aη 2

p · (1− p)a , 0< a ≤ 1
∑

i pi · (1− pi)
a 1/

(
1− η

1
a
)

p · cos(p ·
π
2 )

∑
i pi · cos(pi ·

π
2 ) π

2 /arccosη
(1− p)a , 0< a < 1 4 ∑

i(1− pi)
a f −1(η) with 5

f (x) = x1−a(x − 1)a

1 for a = 2, known as the Simpson index;2 also called Hill numbers or Rényi diversity (Hill , 1973; Rényi,
1961); 3 known as Shannon–Wiener index or entropy;4 the requirementω(0) = 0 for weight functions is not
met, yetω is strictly concave, which guarantees thatη is a measure of diversity;5 for x equally frequent
typesη = x · (1− (1/x))a = x1−a (x − 1)a = f (x), wheref (x) is a strictly increasing function forx ≥ 1, so
that the inversef −1 exists as a strictly increasing transformation ofη.

of a community with diversity. While the former example
refers to an essentially unbounded transformation (number
of types), the latter example requires an upper bound for the
transformation (where the upper bound is reached if all mem-
bers differ in type). Denoting the transformations byτ , the
pursued generalization of the plain notion of diversity obtains
the formτ(η), whereη =

∑
i ω(pi) andτ is a non-negative

and strictly monotonic function.

2.1 Implications of the evenness and partitioning
criterion

As the first step, the functionsω andτ must be specified such
that the two criteria (evenness and partitioning) of diversity
measures are realized forτ(

∑
i ω(pi)). The monotonicity of

τ implies that any direction of change in the generic rep-
resentationη =

∑
i ω(pi) is preserved or inverted underτ ,

depending on whetherτ is an increasing or decreasing func-
tion. Hence, validity of the criteria is primarily determined by
η and thus by the structure ofω. Settingr(p) = ω(p)/p for
positivep and imposing the assumptions thatr(p) decreases
strictly with increasingp, Patil and Taillie(1982) referred
to η as a measure of diversity that mirrors the “average rar-
ity” of types. The “standard diversity indices” ofJost(2007,
p. 2429) also follow the generic representation for a special
case.

It is proven in AppendixA thatη obeys the evenness cri-
terion if ω(p) is a strictly concave function ofp. Patil and
Taillie (1982) arrived at a similar statement in their Theo-
rem 4.3, though without explicit proof. Since weight func-
tions should be allowed to take on variable forms, includ-
ing the discontinuities that can occur under threshold condi-
tions, the present proof proceeds from the most comprehen-

sive definition of concavity. The relation to the concept of av-
erage rarity is obtained by the observation that, by the even-
ness criterion, measures of diversity increase strictly with the
numbern of types in an even distribution. In such distri-
butions,η = n · ω(1/n) = r(1/n) therefore increases withn
(decreases with increasing 1/n), which makes it meaningful
to require that this tendency extend from 1/n to all propor-
tionsp. The functionr(p) would then decrease strictly with
increasingp. Henceη is referred to here as a measure of
average rarity, even though in averages the weights given to
measurements are generally independent of the latter.

To check the partitioning criterion, consider an assemblage
of communities, for whichpij denotes the frequency of the
ith type in thej th community andcj denotes the frequency
(relative size) of thej th community in the assemblage (the
metacommunity). Thenpi :=

∑
j cj ·pij is the frequency of

the ith type in the metacommunity,ηj :=
∑

i ω(pij ) is the
η-measure within thej th community, and̂η =

∑
i ω(pi) is

theη-measure of the total metacommunity.
Concavity ofω(p) now impliesω(pi) = ω(

∑
j cj ·pij ) ≥∑

j cj ·ω(pij ) and thereforêη ≥
∑

i

∑
j cj ·ω(pij ) =

∑
j cj ·∑

i ω(pij ) =
∑

j cj · ηj , with equality holding only if, for
eachi, thepij ’s are equal for allj . Herein,η̄ :=

∑
j cj ·ηj is

the (linear) average of theη-measures within the individual
communities. It thus turns out that the totalη-measurêη of
the metacommunity exceeds the averageη-measurēη within
communities, and that both become equal only if there is no
differentiation between the communities (Patil and Taillie,
1982, arrived at a similar result in their Chapter 8.3 and The-
orem 5.2).

This demonstrates that the averageη̄ quantifies the notion
of DWC in compliance with the partitioning criterion. Thus,
fulfillment of the evenness condition via strict concavity
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of ω(p) implies fulfillment of the partitioning criterion for
the η-measure. Strict concavity ofω(p) thus makes the
generic representationη a measure of diversity (consult Ta-
ble 1 for a selection of strictly concave weight functionsω

and their generic diversitiesη).
Obviously, application of the transformationτ to the

generic diversityη does not affect the validity of the even-
ness criterion if the transformation is a strictly increasing
function of η. Validity of the partitioning criterion is also
guaranteed, even though the measure of DWC may now ap-
pear as a non-linear average. In fact,τ(η̄) is placed between
the maximum and the minimum of theτ(ηj )’s (the diversi-
ties within the individual communities), and̄η ≤ η̂ implies
τ(η̄) ≤ τ(η̂) with equality only in the absence of differenti-
ation. Thereforeτ(η) satisfies the partitioning criterion, and
the non-linear averageτ(η̄) of the diversitiesτ(ηj ) within
the individual communities provides an appropriate measure
of the DWC. In summary,τ(η) becomes a measure of diver-
sity if ω is a strictly concave function ofp andτ is a strictly
increasing function ofη; under these conditionsτ(η̄) is a
legitimate measure of DWC forτ(η). By “legitimate” it is
meant thatτ(η̄) meets the partitioning criterion.

While τ(η̄) is usually an average of non-linear type, it
is also possible to obtain a linear average that suffices the
partitioning criterion, whenτ is additionally required to be
(not necessarily strictly) concave. This follows directly from∑

j cj ·τ(ηj ) ≤ τ(
∑

j cj ·ηj ) ≤ τ(η̂), with equality between
the left and right end of the chain of inequalities only in
the absence of differentiation. Hence, the “linear” average
τ(η) :=

∑
j cj · τ(ηj ) again constitutes a legitimate measure

of the DWC for the diversity measureτ(η), providedτ is a
strictly increasing and concave function.

It should be noticed at this point that additional averages
other than the above “linear” averageη̄ also comply with
the partitioning criterion forη. One example is the gener-
alized mean for a functiong that is strictly increasing and
concave (or strictly decreasing and convex). For such func-
tions, the generalizedg-mean impliesg−1

(∑
j cj · g(ηj )

)
≤∑

j cj · ηj = η̄. Hence,g−1
(∑

j cj · g(ηj )
)

is a (non-linear)
average that is smaller than the total diversity with equality
only in the absence of differentiation. It is thus a legitimate
measure of DWC. A summary of the properties of the generic
diversity obtained so far is provided in Table2.

2.2 Homogeneity, the opposite of diversity

The significance of the transformationτ is not just confined
to production of versions of diversity measures that promote
interpretation of the generic diversity. Even if the generic rep-
resentation does not meet the conditions of a diversity mea-
sure, it can in certain cases be transformed into such a meas-
ure. An apparent example is provided by weight functions
ω that are strictly convex and therefore give rise to generic
representationsη that are not diversity measures. Yet apply-
ing a strictly decreasing transformationτ to η turnsτ(η) into

a diversity measure. This follows directly from the fact that
all of the above inequalities involvingη for strictly concave
weight functions are simply reversed by convexity, so that ap-
plication of a strictly decreasing transformation restores the
initial inequalities that guarantee fulfillment of the evenness
and partitioning criterion forτ(η) as well as legitimacy of
τ(η̄) as a measure of DWC forτ(η).

This example points to the possibility to conceive the plain
notion of diversity as a plain notion of homogeneity by sim-
ply reverting the line of sight: the fewer types in a commu-
nity, the higher its homogeneity.η would then turn into a
measure of homogeneity by requiring that the weight func-
tionsω be strictly convex functions ofp. As was mentioned
above, under this condition, all of the above inequalities ob-
tained for concave weight functions are reversed, and the no-
tion of homogeneity is confirmed to be simply the opposite
of diversity. This includes the notion of “homogeneity within
communities”, the measurēη of which must now exceed the
total metacommunity homogeneitŷη with equality only in
the absence of differentiation. Strictly decreasing transfor-
mations provide the means for converting measures of homo-
geneity into measures of diversity and vice versa.

3 The diversity effective number of types

To relate any measure of diversity to the plain notion of
diversity, i.e., the number of types present in a commu-
nity, it is common practice to draw on comparisons with
ideal communities in which all types are equally frequent
(MacArthur, 1965). In such communities the number of types
is unambiguously defined. It is thus consistent to specify an
“effective number” of types of a non-ideal community via
the number of types in an ideal community that show the
same diversity measure as in the community under observa-
tion. More generally, the effective number of a measure of
diversity is a strictly increasing transformation of that mea-
sure with the special feature that, for each even distribution
of types, it equals the number of types represented in that
distribution (for the general concept of effective number see
Gregorius, 1991; the problem of definiteness of the effective
number is considered in AppendixB).

In an ideal community withn types, the generic diver-
sity equalsη = n · ω(1/n). Settingr(p) = ω(p)/p for pos-
itive p, this becomesη = r(1/n), and the effective num-
ber of a community equals the value ofn for which its
generic diversity equalsr(1/n). The equationη = r(1/n)

is uniquely solvable forn if n is allowed to be any real
numberx ≥ 1 and if r is strictly monotonic so that its in-
verser−1 exists. As was argued above and in AppendixB,
r(1/n) being a strictly increasing function ofn by the even-
ness criterion, it is indeed appropriate to assume thatr(p)

is a strictly decreasing function across the whole range of
positive proportionsp. The diversity effective numberτe of
the generic diversityη then turns out to beτe(η) = 1/r−1(η)
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Table 2. Summary of properties of the generic diversityη =
∑

i ω(pi).

– The generic representationη becomes a diversity measure (satisfies the evenness and the partitioning criterion) if the
weight functionω is strictly concave on the unit interval. The evenness criterion implies thatr(p) = ω(p)/p decreases
strictly with decreasing numbers of types in even distributions, which supports the assumption thatr(p) decreases
strictly with increasingp.
– A method of quantifying the notion of “diversity within communities” (DWC) that suffices the partitioning criterion
is provided for the diversity measureη by the linear averagēη of the diversities within the individual communities. This
makes the diversity measureη a strictly concave function on the frequency simplex. Replacement of the linear average
by certain generalized means yields further legitimate measures of DWC.
– Under strictly increasing transformationsτ , the generic diversityη retains its properties of a diversity measure, and
τ(η̄) is a (non-linear) average of the transformed diversities within the individual communities that is a legitimate
measure of DWC for the diversity measureτ(η). If the transformation is concave in addition, the linear average of the
transformed diversities within the individual communities is a legitimate measure of DWC forτ(η).

Effective numbers

– Effective numbers exist for all measures of diversity, and they again are measures of diversity. An effective number
of the generic diversityη (having strictly concaveω(p)) can always be obtained as 1/r−1(η) providedr(p) = ω(p)/p

decreases strictly with increasingp.
– The effective number of a strictly monotonic transformation ofη can be specified such that it is the same as the
effective number ofη (scaling invariance of the effective number).
– For the effective number of the diversity measureη, a legitimate measure of DWC is provided by the (non-linear)
average 1/r−1(η̄) given thatr(p) = ω(p)/p decreases strictly with increasingp.

(also comparePatil and Taillie, 1982, Eq. 3.2). Sinceτe(x)

= 1/r−1(x) is a strictly increasing function ofx, τe is a spe-
cial case of a strictly increasing transformation, which was
shown above to always guarantee that the effective number
τe(η) = 1/r−1(η) is a diversity measure with a measure of
DWC given byτe(η̄) = 1/r−1(η̄).

The transformations of the generic diversities listed in
Table1 are chosen such that they yield effective numbers,
and the generic diversities themselves are based on strictly
decreasing functionsr. The Rényi diversities in this list have
measures of DWC that are non-linear averages known as
power means or Hölder means. Fora 6= 1, these means have

the form τe(η̄) =
(∑

j cjη
1−a
j

) 1
1−a (Gregorius, 2010). The

transformationsτe applied to the generic diversitiesη to
arrive at Rényi diversities (as given in Table1) are easily
proven to be convex rather than concave functions ofη. Lin-
ear averages of the transformed diversities within the indi-
vidual communities are therefore not legitimate measures of
DWC, as has been recognized by several authors, probably
starting with the paper ofGadagkar(1989).

One of the reasons why Rényi diversities have been at-
tracting increasing interest recently can be seen in its charac-
teristic of realizing the replication principle. This is closely
related toβ-diversity in that, for this family of diversity, mea-
suresτe(η̂)/τe(η̄) equal the (diversity) effective number of
communities for complete differentiation and equal diver-
sities in all communities (in the more common version of
the replication principle, community sizes are assumed to be
equal, yet this is not necessary for Rényi diversities; seeGre-
gorius, 2010). Clearly, this principle is meaningful only for

diversity effective numbers. The last three examples in Ta-
ble 1 are, however, included to show that not all diversity
effective numbers obey the replication principle. This is mo-
tivated by the fact that, as was mentioned above, the number
of ecologically relevant specifications of weight functionsω

and the resulting generic representations of diversity is virtu-
ally unlimited and should therefore not be restricted to mea-
sures the effective numbers of which follow the replication
principle.

Another characteristic of the effective number is that it can
be specified such that it is “scaling invariant”. By this it is
understood that the effective number of a strictly monotonic
transformation ofη is the same as the effective number ofη.
This is easily checked by lettingg be a strictly monotonic
transformation (which therefore is invertible), and consider-
ing that, for an ideal community withn evenly distributed
types, one obtainsg(η) = g(r( 1

n
)). Given thatr is invertible,

and successively applyingg−1 andr−1 to this equality, one
obtains1

n
= r−1(η). The effective number ofg(η) thus again

equals 1/r−1(η), i.e.,τe(g(η)) = τe(η). Hence, thoughg(η)

need not be a diversity measure (sinceg is allowed to be
either an increasing or a decreasing function ofη), its effec-
tive number meets the criteria for a diversity measure via the
strictly increasing transformation 1/r−1(η). The above re-
sults on the effective numbers of generic diversities are sum-
marized in Table2.

Many situations are conceivable whereknowledge of both
the diversity and its corresponding effective numberis de-
sirable. A simple example is provided by Simpson’s index

N
N−1 · (1−

∑
i p

2
i ) of diversity (Simpson, 1949), which is

a very widely used special version of the generic diversity
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(with ω(p) =
N

N−1 ·(1−p) ·p). In this version (which Simp-
son referred to as an unbiased estimate), the index equals the
probability of sampling without replacement in a commu-
nity of sizeN two individuals that differ in type. The prob-
ability and thus the index reach their maximum value of 1
only if all community members differ from each other. This
case describes a state of complete saturation of a community
with diversity. Hence, Simpson’s index measures the degree
to which a community is saturated with diversity, but it pro-
vides no information on the number of types involved. This
number is obtained by transforming the index into its well-
known effective number 1/

∑
i p

2
i (note the absence ofN ).

The example demonstrates thatone can only obtain an idea
about the number of types involved in producing the original
measure after the originally considered measure of diversity
is transformed into its effective number.

4 Concluding remarks

The above demonstrations show that acceptance of two ba-
sic characteristics of diversity measures – fulfillment of the
evenness criterion and the generic representation – implies
a generally and consistently applicable realization of the no-
tion of DWC together with specifications of legitimate mea-
sures of DWC. By this, validity of the principles of partition-
ing diversity into components within and between commu-
nities is guaranteed, and no additional requirements such as
concavity of the diversity measure on the frequency simplex
are needed (as inPatil and Taillie, 1982, p. 552).

4.1 Quantifying the distribution of diversity within and
between communities

Legitimate measures of DWC provide the basis for essen-
tially all methods that quantify the distribution of diversity
within and between communities. In ecology, DWC is usu-
ally addressed asα-diversity and is mostly measured by any
of the specifications ofτ(η̄). In this context, the total di-
versity τ(η̂) is termedγ -diversity, and eitherτ(η̂) − τ(η̄)

or τ(η̂)/τ (η̄) are conceived of as assessments ofβ-diversity
(for a discussion of the relations between the two versions
of β-diversity seeRicotta, 2005). As it comes to the design
of indices that indicate the extent to which diversity is dis-
tributed over communities, two basic perspectives have to be
distinguished that describe (a) tendencies of members of the
same community to hold the same trait state (the apportion-
ment perspective) vs. (b) tendencies of members of different
communities to hold different trait states (the differentiation
perspective; seeWhittaker, 1972, or Gregorius, 2009).

Apparently, complete apportionment of type diversity to
communities is reached if all communities are monomorphic
and thus have minimum diversity. This is characteristic of
the apportionment perspective as is realized in indices such
as the classicGST used in population genetics. Denoting the
minimum value ofτ(η) by τ(η)min, indices of apportionment

(includingGST) are typically of the form

IA :=
τ(η̂) − τ(η̄)

τ (η̂) − τ(η)min
, (1)

which involves both the additive and multiplicative versions
of β-diversity and which vary between 0 (absence of differ-
entiation) and 1 (monomorphism within all communities) as
required.The index measures the proportion of the excess of
total type diversity over the minimum value of the diversity
measure that is due to the apportionment (allocation) of types
to communities. IA becomesGST for ω(p) = p · (1−p) and
for τ equal to the identity mapping (so thatτ(η)min = ηmin =

0 andη equals the Simpson index; see Table1).
The corresponding characteristic of the differentiation

perspective identifies complete differentiation as a state
where membership of different communities implies differ-
ence in type. Complete differentiation can be realized for
monomorphic as well as polymorphic communities. Indices
of diversity-based differentiation were developed only re-
cently byJost(2006) (termed 1−S) andJost(2008) (termed
D), the latter of which has since attracted considerable atten-
tion in population genetics.

Under both perspectives, a lack of any tendencies in the
distribution of diversity over communities is defined by the
absence of differentiation. Since the absence or presence of
differentiation is determined by the difference between DWC
and total diversity, knowledge of DWC is essential from both
perspectives. Yet knowledge of DWC and total type diversity
is not sufficient for the determination of degrees of differen-
tiation, since neither of the two nor any combination of them
can indicate the situation of complete differentiation.

Measures of differentiation that solely refer to the distri-
bution of diversity over communities require a third order
of diversity called thejoint diversity of the metacommu-
nity (Gregorius, 2010). In the measurement of joint diver-
sity, each individual is characterized jointly by its type (trait
state) and community membership. Joint diversityτ(η̈), say,
then results from application ofτ(η) to the joint distribution
of type and community membership. Using the above nota-
tion, the generic joint diversity readsη̈ =

∑
ij ω(cj ·pij ). The

relationship to differentiation is provided by the inequality
τ(η̈) ≥ τ(η̂), with equality only for complete differentiation
(follows from the evenness criterion; seeGregorius(2010).
Using this relationship, Jost’s approaches turn out to belong
to the class of diversity-basedindices of differentiationthat
are typically of the form

ID :=
τ(η̂) − τ(η̄)

τ (η̈) − τ(η̄)
, (2)

which vary between 0 (absence of differentiation) and 1
(complete differentiation) as required. When applied to
Rényi diversities with equal community sizes,ID equals the
1− S of Jost(2006) and more generally theDm of Grego-
rius (2010). For effective numbers, multiplication ofID by
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Table 3. Relations between the three orders of diversity (DWC, total, joint), the ranges of diversity orders covered by the apportionment and
differentiation perspective and their indicesIA andID, and effects on diversity associated with the transitions between diversity orders.
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Table 3.Relations between the three orders of diversity (DWC, total, joint), the ranges of diversity orders covered by the apportionment and
differentiation perspective and their indicesIA andID, and effects on diversity associated with the transitions between diversityorders.

orders of diversity
monomorphism DWC total joint

τ(η)min ≤ τ(η̄) ≤ τ(η̂) ≤ τ(η̈)

(1) (2) (3)

apportionmentIA

differentiationID

(1) deviation of DWC from monomorphism

(2) gain in total type diversity as against DWC due to differentiation

(3) deficiency of total type diversity as against complete differentiation (distance to complete differentiation)

Appendix A: Concavity and evenness

Lemma: Let g be a real-valued function defined on a closed
interval with left and right extremity 0 andc, respectively.595

If g is (not necessarily strictly) concave thenf(x) := g(x)+
g(c−x) increases (not necessarily strictly) asx approaches
c/2 from above or below.

Proof: Considerf(x′)− f(x) = g(x′)− g(x)+ g(c−x′)−
g(c−x) with all arguments in the interval of definition.600

Concavity ofg implies that[g(x′)− g(x)]/[x′ −x] is mono-
tonically non-increasing inx′ for fixed x andx′ 6= x (non-
increasing slope). Forx < x′ ≤ c/2, and thereforex′ ≤ c−
x′, one thus obtains[g(x′)− g(x)]/[x′ −x] ≥ [g(c−x′)−
g(x)]/[c−x′−x], or [g(x′)−g(x)] ≥ [g(c−x′)−g(x)]·[x′−605

x]/[c−x′ −x]. By the same means, sincex ≤ c−x, [g(c−
x′)− g(x)]/[c−x′−x] ≥ [g(c−x′)− g(c−x)]/[x−x′] or
[g(c−x′)−g(c−x)] ≥ [g(c−x′)−g(x)]·[x−x′]/[c−x′−x].
Hence,

f(x′)− f(x) ≥[g(c−x′)− g(x)] ·
x′ −x

c−x′ −x
+610

+ [g(c−x′)− g(x)] ·
x−x′

c−x′ −x
= 0

Sincef(x) = f(c−x) it follows analogously that forc/2 ≤
x′ < x, f(x′) ≥ f(x). QED

Proposition: If ω(p) is concave, then
∑

i ω(pi) fulfills the615

evenness condition.

Proof: Let pi +pj = c, and setp = pi, pj = c−p andg(p) =
ω(p). Then the above Lemma implies thatω(pi)+ω(pj)
and thus

∑

k ω(pk) increases as|pi − pj | decreases while
pi + pj = c. QED — Also compare the pertaining results of620

Patil & Taillie (1982, p. 551).

Note: ω(p) is concave, for example, ifr(p) = ω(p)/p is a
decreasing and concave function ofp > 0.

Appendix B: Definiteness of the effective number

The problem of definiteness lies in the requirement that for625

each non-ideal system there exists an ideal system with iden-
tical value of the characteristic variable (i.e. the diversity
measure; see Gregorius (1991)). Ideal systems, i.e. even dis-
tributions, do not realize all admissible values of the char-
acteristic variable. In a strict sense, the unique relationship630

between the diversity effective number and the diversity mea-
sure therefore exists only for even distributions, where the di-
versity measure uniquely corresponds to the number of types,
and where the evenness criterion implies that the diversity
measure increases strictly with the number of types in an635

even distribution. One therefore requires an extension of the
effective number, such that it is defined for all diversity val-
ues and is a strictly increasing function of these.

One way to achieve this goal consists in linear inter-
polation between the values realized for even distributions640

(polygonal line). Ifvn is the diversity of an even distribu-
tion with n types for a given measurev of diversity, then
for any valuev′ of v with vn < v′ < vn+1, its effective num-
ber lies betweenn and n+1. For the polygonal interpo-
lation, the effective numberτe would thus attain the form645

τe(v
′) = n+(v′ − vn)/(vn+1 − vn).

The more common alternative, however, is based on the
condition thatvn can be considered as a functionṽ of n
in which n can be replaced by any real numberx ≥ 1, so
that ṽ = ṽ(x) is a strictly increasing function ofx with650

ṽ(n) = vn. This condition is realized for most of the com-
mon measures of diversity. In the case of the generic diversity
η, an even distribution withn types yieldsη = vn = r(1/n),
where by the evenness conditionr(1/n) is a strictly in-
creasing function ofn (strictly decreasing function of1/n).655

Hence, replacing1/n by arbitrary positive proportionsp,
r(p) = ω(p)/p is required to strictly decrease with increas-
ing p. The function ṽ(x) thus obtains the representation
r(1/x) for x ≥ 1.

(1) Deviation of DWC from monomorphism, (2) gain in total type diversity as against DWC due to
differentiation, and (3) deficiency of total type diversity as against complete differentiation (distance to
complete differentiation).

τe(η̈)/τe(η̂) yields theD′
m of Gregorius(2010), which im-

plies theD of Jost(2008) when applied to Rényi diversities
of order 2 and equal community sizes.

For an illustration of the range of diversity orders cov-
ered by the apportionment and differentiation perspective
and their indicesIA and ID, see Table3. From this it be-
comes more evident that in particularthe indexID measures
the proportion of the excess in joint type-community diversity
over DWC that is due to the distribution (division) of types
between communities.

In all of these indices of the distribution of diversity over
communities, DWC is the only quantity that is not by itself
a measure of diversity in that it is not based on the distri-
bution of a particular trait in a particular collection of ob-
jects. Its consistent specification provides the reference for
the absence of differentiation in a diversity context, and thus
it defines the starting point for any attempt at partitioning di-
versity into components within and between communities.
The second component, the “diversity between communi-
ties”, again does not refer to the diversity of any collection
of objects and is seen to not be simply described by the com-
plement of DWC with respect to the total type diversity.

4.2 Apportionment and differentiation are not
complementary perspectives

Indeed, in the two perspectives, the notion of differentiation
refers to different and non-complementary characteristics.
While in the apportionment perspective differentiation as-
pects areimplicitly involved in creating an excess of total
type diversity over DWC, these aspects determine the differ-
entiation perspectiveexplicitly. The latter even prompts con-
sideration of an additional order of diversity, the joint diver-
sity.

This difference in focus suggests that the concept of
partitioning diversity should be distinguished into two ap-
proaches, one (the classical view) focusing on the share that

DWC has in the total type diversity (apportionment), and
the other focusing on the distribution of total type diver-
sity between communities (differentiation). That these ap-
proaches are not just complementary can be demonstrated
in various ways with the help of the indicesIA andID. The
interpretation ofID values is fairly straightforward in that it
reflects differences between communities without any pro-
nounced effect of the diversity within the communities. The
index of apportionmentIA , however, is more intricate due
to its implicit involvement of differentiation aspects and its
special dependence on DWC as an indicator of monomor-
phism within communities. Therefore, in AppendixC, some
relevant characteristics ofIA are pointed out that underline
the differences between the apportionment and differentia-
tion perspective and demonstrate the effects of the kind of
diversity measure applied.

Probably most interesting is the observation that, for
generic diversities based on the weight functionω(p) =

p · (1− pa−1) with a > 1 (which yield Rényi diversities as
effective numbers; see Table1), IA may become arbitrarily
small simply as the result of high diversity effective num-
bers within the communities and irrespective of the degree
of differentiation. This holds for all parametersa > 1, and
it generalizes earlier results obtained for the Simpson index
(in which caseIA = GST; seeHedrick, 1999; Gregorius et
al., 2007). Viewing apportionment as a process that eventu-
ally leads to monomorphism within communities, one could
argue that high DWC indeed indicates low degrees of appor-
tionment, so that smallIA values make sense in this case. The
fact that, irrespective of the degree of differentiation, high
polymorphism within communities may reduceIA to levels
that could equally be reached by small degrees of polymor-
phism combined with little differentiation among communi-
ties, however, suggests additional consideration ofID.

The picture becomes even more involved as one considers
the weight functionω(p) = pa for positive parametersa < 1
(which again yield Rényi diversities as effective numbers;

www.web-ecol.net/14/51/2014/ Web Ecol., 14, 51–60, 2014



58 H.-R. Gregorius: Partitioning of diversity: the “within communities” component

see Table1). It is shown in AppendixC that, for generic di-
versities,IA may now attain all values between 0 and 1 for
arbitrarily large effective numbers of types within the com-
munities. Again, additional consideration ofID is thus re-
quired in order to distinguish between effects of apportion-
ment and differentiation. Moreover, these examples demon-
strate clearly that the assessment of degrees of apportionment
decisively depends on the measure of diversity that enters
into the indexIA .

On the other hand, when generic diversities are replaced
by their effective numbers in the computation ofIA , a prop-
erty shows up that is consistent across all diversity measures
but that frequently does not apply toIA when it is determined
for generic diversities. Diversity effective numbers causeIA
to approach a value of 1 arbitrarily closely when imposing an
upper bound to the average effective number of types within
communities and letting the total effective number of types
increase indefinitely (see AppendixC). This reflects a rela-
tive view of apportionment, where communities appear to be
the more homogeneous, the smaller the diversity within com-
munities is as compared with the total diversity in the meta-
community. The assessment of the degree of apportionment
of type diversity to communities therefore critically depends
on whether it is based on generic diversities or on their di-
versity effective numbers. Moreover, as the above examples
show, as a rule it is impossible to conclude from the degree
of apportionment of trait diversity to communities the extent
to which this is due to differentiation without explicitly com-
puting the degree of differentiation.
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Appendix A: Concavity and evenness

Lemma: letg be a real-valued function defined on a closed
interval with left and right extremity 0 andc, respectively. If
g is (not necessarily strictly) concave, thenf (x) := g(x) +

g(c − x) increases (not necessarily strictly) asx approaches
c/2 from above or below.

Proof: considerf (x′)−f (x) = g(x′)−g(x)+g(c−x′)−

g(c−x) with all arguments in the interval of definition. Con-
cavity of g implies that [g(x′) − g(x)]/[x′

− x] is mono-
tonically non-increasing inx′ for fixed x andx′

6= x (non-
increasing slope). Forx < x′

≤ c/2, and thereforex′
≤ c −

x′, one thus obtains[g(x′) − g(x)]/[x′
− x] ≥ [g(c − x′) −

g(x)]/[c−x′
−x], or [g(x′)−g(x)] ≥ [g(c−x′)−g(x)]·[x′

−

x]/[c − x′
− x]. By the same means, sincex ≤ c − x, [g(c −

x′)−g(x)]/[c−x′
−x] ≥ [g(c−x′)−g(c−x)]/[x −x′

] or
[g(c−x′)−g(c−x)] ≥ [g(c−x′)−g(x)]·[x−x′

]/[c−x′
−x].

Hence,

f (x′) − f (x) ≥ [g(c − x′) − g(x)] ·
x′

− x

c − x′ − x
+

+ [g(c − x′) − g(x)] ·
x − x′

c − x′ − x
= 0.

Since f (x) = f (c − x), it follows analogously that for
c/2 ≤ x′ < x, f (x′) ≥ f (x): QED.

Proposition: ifω(p) is concave, then
∑

i ω(pi) fulfills the
evenness condition.

Proof: let pi + pj = c, and setp = pi , pj = c − p and
g(p) = ω(p). Then the above lemma implies thatω(pi) +

ω(pj ) and thus
∑

k ω(pk) increases as|pi − pj | decreases
while pi +pj = c: QED. Also compare the pertaining results
of Patil and Taillie(1982, p. 551).

Note:ω(p) is concave, for example, ifr(p) = ω(p)/p is
a decreasing and concave function ofp > 0.

Appendix B: Definiteness of the effective number

The problem of definiteness lies in the requirement that, for
each non-ideal system, there exists an ideal system with iden-
tical value of the characteristic variable (i.e., the diversity
measure; seeGregorius, 1991). Ideal systems, i.e., even dis-
tributions, do not realize all admissible values of the char-
acteristic variable. In a strict sense, the unique relationship
between the diversity effective number and the diversity mea-
sure therefore exists only for even distributions, where the di-
versity measure uniquely corresponds to the number of types,
and where the evenness criterion implies that the diversity
measure increases strictly with the number of types in an
even distribution. One therefore requires an extension of the
effective number, such that it is defined for all diversity val-
ues and is a strictly increasing function of these.

One way to achieve this goal consists in linear inter-
polation between the values realized for even distributions
(polygonal line). Ifvn is the diversity of an even distribu-
tion with n types for a given measurev of diversity, then, for
any valuev′ of v with vn < v′ < vn+1, its effective number
lies betweenn and n + 1. For the polygonal interpolation,
the effective numberτe would thus attain the formτe(v

′) =

n + (v′
− vn)/(vn+1 − vn).

The more common alternative, however, is based on the
condition thatvn can be considered as a functionṽ of n in
which n can be replaced by any real numberx ≥ 1, so that
ṽ = ṽ(x) is a strictly increasing function ofx with ṽ(n) = vn.
This condition is realized for most of the common measures
of diversity. In the case of the generic diversityη, an even dis-
tribution with n types yieldsη = vn = r(1/n), whereby the
evenness conditionr(1/n) is a strictly increasing function
of n (strictly decreasing function of 1/n). Hence, replacing
1/n by arbitrary positive proportionsp, r(p) = ω(p)/p is
required to strictly decrease with increasingp. The function
ṽ(x) thus obtains the representationr(1/x) for x ≥ 1.

Inversion ofṽ (i.e., ṽ−1(v)) then yields the effective num-
berτe(v) corresponding to the diversityv, where in particu-
lar τe(vn) = ṽ−1(vn) = n. For the generic diversity, this im-
pliesτe(η) = 1/r−1(η). Sinceτe = ṽ−1 is a strictly increas-
ing function of the values of the diversity measurev, valid-
ity of the evenness criterion and the partitioning criterion for
v is transferred tõv−1(v), with the result that the effective
numberτe(v) = ṽ−1(v) again is a measure of diversity. This
proves that,for each measure of diversity, there exists at least
one diversity effective number that is again a measure of di-
versity.
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Appendix C: Properties of IA

When determined for the generic diversitiesη, the index of
apportionmentIA = (η̂ − η̄)/(η̂ − ηmin) can be analyzed in
more detail with the help of the effective numbersτe(η)

of the generic diversities. For weight functionω(p) = p ·

(1− pa−1) with a > 1 (that yield Rényi diversities as ef-
fective number of the pertaining generic diversity), for ex-

ample, one has (see Table1) τe(η) = (1− η)
1

1−a and thus
η = 1− τe(η)1−a . Sinceηmin = 0, one obtains

IA =
η̂ − η̄

η̂
=

τe(η̄)1−a
− τe(η̂)1−a

1− τe(η̂)1−a
=

=
τe(η̂)a−1

− τe(η̄)a−1

τe(η̄)a−1 · (τe(η̂)a−1 − 1)
≤

1

τe(η̄)a−1
.

The expression after the third equality sign is obtained by
multiplication of numerator and denominator byτe(η̄)a−1

·

τe(η̂)a−1; the inequality follows fromτe(η̄) ≥ 1. Hence,IA
tends to zero as the average effective numbers of types in the
communities tends to infinity. This statement does not de-
pend on the degree of differentiation between communities,
and it should be considered as a special property of this fam-
ily of generic diversities.

For the weight functionω(p) = pa with 0 6= a < 1 (which
also yields Rényi diversities), one has (see Table1) τe(η) =

η
1

1−a and thusη = τe(η)1−a . Since nowηmin = 1, one obtains

IA =
η̂ − η̄

η̂ − 1
=

τe(η̂)1−a
− τe(η̄)1−a

τe(η̂)1−a − 1
.

Consider the special case whereτe(η̂) = c ·τe(η̄) with con-
stantc > 1. Then

IA =
τe(η̄)1−a

· (c1−a
− 1)

(c · τe(η̄))1−a − 1
=

c1−a
− 1

c1−a − τe(η̄)a−1
,

and this converges to 1− ca−1 asτe(η̄) tends to infinity.
Hence, contrasting with the casea > 1, for a < 1 the index
IA does not tend to zero asτe(η̄) tends to infinity but can
rather realize all values between 0 and 1 depending onc.

On the other hand, whenIA is computed for effective num-
bers,τe(η)min = 1 and

IA =
τe(η̂) − τe(η̄)

τe(η̂) − 1
= 1−

τe(η̄) − 1

τe(η̂) − 1
.

As becomes immediately clear from this representation, ir-
respective of the size of the average effective numberτe(η̄) of
types within the communities,IA may approach 1 arbitrarily
closely when imposing an upper bound toτe(η̄) and letting
the total effective numberτe(η̂) increase indefinitely. This
can be realized, for example, by ever-increasing the number
of communities that show about the same diversities and are
strongly differentiated. Yet, in the above example, whereIA

is determined for generic diversities, the effective numbers of
which are Rényi diversities with parametera > 1, such situ-
ations cannot occur.
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