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Abstract. The detection of community or population structure through analysis of explicit cause–effect mod-
eling of given observations has received considerable attention. The complexity of the task is mirrored by the
large number of existing approaches and methods, the applicability of which heavily depends on the design of
efficient algorithms of data analysis. It is occasionally even difficult to disentangle concepts and algorithms.
To add more clarity to this situation, the present paper focuses on elaborating the system analytic framework
that probably encompasses most of the common concepts and approaches by classifying them as model-based
analyses of latent factors. Problems concerning the efficiency of algorithms are not of primary concern here.
In essence, the framework suggests an input–output model system in which the inputs are provided as latent
model parameters and the output is specified by the observations. There are two types of model involved, one
of which organizes the inputs by assigning combinations of potentially interacting factor levels to each observed
object, while the other specifies the mechanisms by which these combinations are processed to yield the obser-
vations. It is demonstrated briefly how some of the most popular methods (Structure, BAPS, Geneland) fit into
the framework and how they differ conceptually from each other. Attention is drawn to the need to formulate
and assess qualification criteria by which the validity of the model can be judged. One probably indispensable
criterion concerns the cause–effect character of the model-based approach and suggests that measures of associ-
ation between assignments of factor levels and observations be considered together with maximization of their
likelihoods (or posterior probabilities). In particular the likelihood criterion is difficult to realize with commonly
used estimates based on Markov chain Monte Carlo (MCMC) algorithms. Generally applicable MCMC-based
alternatives that allow for approximate employment of the primary qualification criterion and the implied model
validation including further descriptors of model characteristics are suggested.

1 Introduction

Lately, methods of model-based ascertainment of hidden
population substructure enjoy considerable popularity (most
of which are variants of the approaches introduced in the
papers of Pritchard et al., 2000; Corander et al., 2003; or
Gouillot et al., 2005). The diversity of these methods, how-
ever, occasionally causes problems in comparing their re-
sults not just for reasons of the indeterminacy inherent in the
complex approximation algorithms (mostly of the Markov
chain Monte Carlo (MCMC) kind) applied to the estimation
of multiple model parameters (for mathematical reasoning
see, e.g., Roberts and Rosenthal, 2004). More basic problems

may arise from the conceptual differences among the meth-
ods to the degree that their common features largely remain
unrecognized. While for particular methods such as Struc-
ture (Pritchard et al., 2000) reviews that critically compare
several variants (e.g., Porras-Hurtado et al., 2013) exist, at-
tempts of comparing results obtainable from different meth-
ods are largely confined to simulation studies (see e.g., Neo-
phytou, 2014).

To shed more light on general relations existing among ap-
proaches, an attempt is made in the present paper to outline
the system analytic basis common to at least the most fre-
quently applied methods and thus to enable clear distinction
between the conclusions to be obtained from the different
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methods. Apparently, the above-cited methods were largely
designed for the analysis of population structure that can be
revealed for genetic characters. Extensions to ecological as-
pects of structure as realized, for example, in species com-
munities or responses to environmental factors do however
not seem to have been attempted, even though, as will be
shown in this paper, they follow easily when generalizing the
underlying reasoning (demonstrated in Sect. 3.1).

The farther-reaching interest in this topic comes from the
common concern that inferences drawn from observations
on collections of biological objects miss relevant informa-
tion because the underlying forces and mechanisms are not
traceable or escaped notice. This is especially disturbing if
well-argued reasons or hypotheses that suggest the existence
of special but untraceable cause–effect relations are at hand.
Such concerns are almost routine in many studies of biolog-
ical communities, for example, that are subject to variable
environmental conditions, most of which escape proper iden-
tification but arguably exist (the above-cited work and its nu-
merous applications are explicitly driven by this challenge).

To prevent possible misunderstanding, the problem ad-
dressed here is not one of descriptive statistics as known from
the various kinds of statistical factor analysis, principal com-
ponent analysis (PCA), data clustering, etc. (see, e.g., Reeves
and Richards, 2009, who also make comparisons with model-
based MCMC procedures), nor is it aimed at testing hypothe-
ses on base populations inferred from samples as is familiar
from inferential statistics. Instead, observations are consid-
ered as given, and questions are formulated as to potential
cause–effect relations by which they can be explained. In
essence, this amounts to the study of input–output model sys-
tems, in which the inputs are provided as latent model param-
eters and the output is specified by the observations. Model
inputs are thus admissible only to the degree that they allow
for realization of the observations. Borrowing from terminol-
ogy of factor analysis, the input variables are referred to as
(latent) factors. Being a variable, each factor can herewith
realize several states called factor levels.

In such a system analytical context, the conjectured (hy-
pothesized) forces are mirrored by the model mechanisms
(the constructive specification of the system; for the sys-
tem theoretic basis see, e.g., Mesarovic and Takahara, 1989).
When population substructure is to be revealed on the ba-
sis of genetic traits, for example, these mechanisms are
largely characterized by mating systems and migration pat-
terns (which is central to the above-cited work on detecting
population substructure for genetic traits) that operate within
and among the potential subpopulations as factors.

Inference is then to be made on the factors and their lev-
els, which may generate the observations and which meet
certain qualification criteria. Especially in models involving
probability laws, these criteria are mostly of a probabilistic
nature and are related to the likelihood of the model pa-
rameters to reproduce the observation. In this context, cali-
bration of model parameters so as to meet the qualification

criteria (such as maximum likelihood or posterior probabil-
ity) is thus of primary relevance. Low (maximum) evaluation
scores, however, can give rise to the decision to reject the
model because of insufficient qualification. This would be
akin to testing the validity of the model (for an overview see,
e.g., Burnham and Anderson, 2003), yet so far it does not
seem to have played a central role in the analysis of latent
forces.

The present paper concentrates on explicating the concep-
tual features of the above-sketched approach to modeling la-
tent forces and demonstrates the integrating capacity of the
concept by application to a small number of common meth-
ods. It does not expand on problems of numerical determi-
nation (estimation) of parameters since appropriate approx-
imation algorithms (such as MCMC methods) are well es-
tablished and efficient software exists. Yet, limitations to the
conclusions to be drawn from application of MCMC algo-
rithms will be outlined. In this context, descriptors of model
qualification criteria will receive due consideration.

2 Model characteristics

A crucial feature of the present model is defined by the mode
according to which the factors interact in generating the trait
states of the observed objects. Modes of interaction include
the absence of interaction in the sense that an observation is
determined by a single factor only. Other modes of interac-
tion are of an additive or multiplicative kind (or more gen-
erally based on separability of factor effects) as are familiar
from statistical factor analysis. Yet, these modes of interac-
tion are difficult or impossible to apply to qualitative or other
more complex traits such as many genetic traits. The same
problem of complexity arises when the species spectrum of
a metacommunity is considered to result from the contribu-
tions of the individual communities acting as primary factors.
Complexity may thus be a relevant issue for both traits and
their causal factors.

It is therefore appropriate to proceed from a more gen-
eral basis of inference as it is provided by the analysis of
response functions. Here, each trait state is considered to be
a response to factors that contribute effects that interact ac-
cording to specified modes to yield the trait state. Two steps
and associated sub-models can thus be distinguished in creat-
ing a response: the first (sub-model 1) determines individual
factor contributions, and the second (sub-model 2) specifies
the mode of interaction among the contributions.

The factor contributions include factor levels (e.g., in
terms of effects on trait expression) as well as the degrees to
which they participate in an object’s trait expression. Since
each observation is assumed to result solely from the contri-
butions of the factors under consideration, it is meaningful
to require that the factor participations of the contributions
sum to 1. Factor contributions can therefore be represented
as vectors with components corresponding to the factors, for
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Figure 1. Illustration of the constituents involved in modeling the
effect of latent factors on the trait expressions of a set of objects
(note that assignment of two objects to the same contribution vector
is not required to always generate the same trait state – as illustrated
for the middle two objects).

which each component consists of two values, one reflecting
the factor level or its effect and the other specifying the de-
gree to which the factor contributes to or participates in trait
expression.

In much of the above-cited work and its extensions con-
cerned with genetic traits, an individual’s observed genotype
is conceived of resulting from a mating system that acts on a
mixture of genes contributed by several populations. Hence,
populations are the factors, the gene frequencies within a
population define its factor level, and the mixture proportions
specify the degrees to which the factors (populations) con-
tribute to the gene pool from which the individual’s genotype
is formed. A contribution vector then appears as a thus struc-
tured gene pool. When populations are grouped into regions,
for example, these regions may be conceived of as higher-
order factors with levels specified by the individual popula-
tions. In other words, factor levels can themselves function
as factors, by which a hierarchy of (higher-order) factors that
may or may not explicitly appear in the factor contributions
would result.

Given these explanations, the observed collection of ob-
jects is conceived to result from an assignment of objects to
contribution vectors (sub-model 1), which is followed by the
generation of trait states from the contribution vectors (sub-
model 2). Apparently, this approach considers the objects of
the observed collection as entities that can be assigned con-
tribution vectors, which in turn determine the entities’ trait
states (for an illustration see Fig. 1). Within each assign-
ment, sub-model 1 can determine in various ways how fac-
tors and their levels are distributed over objects. For exam-
ple, the level of a factor may not be allowed to vary among
the contribution vectors of an assignment. When factors in-
dicate origin as is the case in studies of common descent, this
condition is mandatory. Other relationships among contribu-
tion vectors determined by sub-model 1 could be formulated
in general terms of correlations among factors or among the
levels of a factor. Assignments in the present sense ought
to be distinguished from problems of assigning individuals
to specified categories as is typical of the “assignment prob-
lem”.

This deterministic view can be extended to include ran-
dom effects in each of the two modeling steps. Thus, the first
step may be governed by a probability distribution of the as-
signments of objects to contribution vectors (sub-model 1),
and at the second step each vector is provided with a prob-
ability distribution on potentially realizable trait states (sub-
model 2). Herewith recall that each assignment corresponds
to a mapping of the collection of objects into the totality of
contribution vectors. One is thus concerned with a distribu-
tion of mappings. Combining both distributions one arrives
at a probability distribution on all assignments of the mem-
bers of a collection to trait states.

Since the actual objective is to use the potential outcomes
of the model to explain the observations, the primary interest
is in assignments that yield the actually observed trait states
of the objects. More precisely, the subject of study is the to-
tality of assignments of objects to contribution vectors that
give rise to the observed trait states. This totality can be fur-
ther narrowed by making assumptions on the initial condi-
tions (which are occasionally referred to as “priors”) and by
applying specific criteria to the qualification of each assign-
ment to yield the observations. When probability distribu-
tions are considered, this amounts to studying the conditional
probability distribution of the assignments given they allow
for the observations. Even though it is not further elaborated
in this paper, it should be noted that this probability distribu-
tion constitutes the stationary state distribution of the Markov
chains applied in MCMC approximations.

The following examples will demonstrate the above-
described model characteristics for a few established ap-
proaches to the analysis of latent factors.
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3 Three examples

3.1 Linear model

A simple deterministic example can be obtained by letting
p1, . . .,pk denote the relative factor participations of k fac-
tors F1, . . .,Fk with real valued levels f1, . . .,fk in the ex-
pression of a trait T . The factors Fi could be different types
of nutrients available at different amounts fi and interacting
in different proportions pi to produce a specific metabolic or
physiological reaction T . A linear model of trait expression
(sub-model 2) could be of the classical form

T (p,f )=
k∑

i=1
pi · fi (1)

familiar from factor analysis, where p and f denote the vec-
tors with components pi (factor loads) and fi (factor levels),
respectively, and the pair (p, f ) of vectors defines a contri-
bution vector. Unlike classical methods of factor analysis, the
trait T here appears as a weighted average of the factor levels
with no error term, where the weight vector p represents the
factor participations. For any given vector f of factor lev-
els, trait states of objects thus are real numbers in the interval
specified by the smallest (minifi) and the largest (maxifi) of
the factor levels.

Turning to the specification of sub-model 1, objects could
be assigned different relative factor participations p of fac-
tors, among which those are admissible that yield the ob-
served trait states t∗j , say, of the j th object. For the observed
trait states to be realizable, the factor levels are required
to satisfy the inequality minifi ≤ t∗j ≤maxifi for each ob-
ject j . Given a fixed set of such factor levels, and assum-
ing that there are no restrictions (or additional qualifica-
tion criteria) on the factor participations p, there will al-
ways be at least one vector p(j ) for each object j for which
T (p(j ),f )= t∗j . Hence, there may be many assignments of
objects to contribution vectors (with a fixed set of factor lev-
els) that yield the objects’ observed trait states and are thus
admissible. This may not hold true if sub-model 1 would re-
quire special conditions (constraints) to be obeyed by the (ad-
missible) factor participations.

The fact that the observations can be explained by many
assignments of objects to contribution vectors asks for fur-
ther qualification criteria for the assignments that are desir-
able or even indispensable. A conceivably desirable criterion
could be based on the perception that the contributions of fac-
tors act more beneficially the more balanced their participa-
tions are. Qualification would then increase with increasing
evenness of the factor participations. Sufficiently low even-
ness could imply extents of imbalance that endanger the in-
tegrity of the system and would thus give rise to rejection of
the model. The qualification criteria may then imply the de-
cision to reject some of the components or even the whole
model as an explanation of the observations.

Stochastic features can be introduced by declaring the
factors F1, . . .,Fk and/or the relative factor participations
p1, . . .,pk as random variables with appropriate probability
distributions. In this case the perhaps most common qualifi-
cation criterion refers to the likelihoods of assignments that
are admissible (i.e., that can realize the observed trait states
under the restrictions of sub-model 1 and under the operation
of sub-model 2). Qualification of factor contributions accord-
ing to their balance as addressed above would then have to be
integrated into the probability laws.

3.2 Metapopulation model A

A more complex situation arises if, for example, latent
metapopulation structure is of interest, in which the con-
stituent but unknown (sub)populations represent the (latent)
factors. For genetic properties as traits of the objects (in-
dividuals), the most basic characteristics of the populations
(i.e., their factor levels) will be sets of allele frequencies at
any number of loci. In its first step (sub-model 1) the model
then specifies the number of populations, the gene frequen-
cies in each (sub)population, and the proportions of genes
that individuals receive from the respective populations (con-
tribution vectors). In its second step (sub-model 2) the model
prescribes the mechanisms according to which the genes
present in each contribution vector are combined into geno-
types (e.g., via the mating system) and thus generate the ge-
netic trait.

If the mechanisms rely on mating systems acting within
one generation, for example, only two parents are involved
in the formation of genetic types so that the contribution vec-
tors cannot be composed of more than two positive compo-
nents (with equal factor / population proportions). Extension
to several generations may then allow the participation of
more populations representing the ancestors of individuals,
which implies contribution vectors consisting of more than
two components.

The probability laws involved in each step then allow com-
putation of the probability for each observed genetic type
of an individual to result from a given contribution vector
(gene frequencies in populations and proportions of genes
from populations) as well as the probability of the individ-
ual to be assigned to this contribution vector. Combination
of both laws yields the conditional probability distribution
of contribution assignments given the genetic types of the
observed individuals. In particular, this results for each in-
dividual in a probability distribution of contribution vectors,
from which one can compute, for example, the expected fac-
tor / population proportions contributed to the individual’s
genetic type. In the same way it is possible to determine for
each factor / population the expected (relative) frequency of
each allele across the contribution vectors of an individual.

More relevant information can be obtained by qualifying
the contribution assignments according to their conditional
probability distribution given the observed genetic types. The
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distribution quantifies the likelihoods of the individual as-
signments, which, in turn, represent one of the most com-
mon methods of qualification. The decision in favor of one
or some of the assignments (meeting the qualification cri-
terion) then rests on maximizing these likelihoods. Contri-
bution vectors with their degrees of population mixture and
allele frequencies within populations can then be directly
determined. Considerations of this kind underlie one of the
most popular population genetic model-based methods of
revealing (sub)population structure (developed by Pritchard
et al. (2000) and named STRUCTURE1). Many variants of
Structure exist that address modifications of sub-model 1
(e.g., Falush et al., 2003, relating to correlations among allele
frequencies; for a review of the variants of the method that
concern sub-model 1 and sub-model 2 see Porras-Hurtado et
al., 2013; also see Alexander et al., 2009).

3.3 Metapopulation model B

Another model of latent metapopulation structure proceeds
from the idea that observed populations may in fact be con-
nected by gene flow to extents that make some of them a
single population. In this case, latent metapopulation struc-
ture results from merging observable populations in vari-
ous ways into single hypothetical populations (Corander et
al., 2003, with corresponding software Bayesian Analysis
of Population Structure, BAPS). In addition to genetic type,
this adds affiliation to observed population as a component
of the observed trait. Each hypothetical population is now
characterized by a genetic composition determined by the
genetic types of the individuals present in the associated
merged observed populations. The observed genetic compo-
sition in each hypothetical population is then considered to
result from the operation of a hypothesized mechanism (sub-
model 2) on an unknown prior genetic composition of the
hypothetical population. The unknown genetic composition
is usually again specified in terms of allele frequencies at
a given number of gene loci, and the mechanism determines
ways in which the alleles are combined into genotypes. Other
ways of specifying prior genetic compositions are conceiv-
able.

In this situation, hypothetical populations are the factors,
their (prior) genetic compositions are the factor levels, and,

1In its version “without admixture”, Structure aims at charac-
terizing the joint distribution of factor assignments (Z) and factor
levels (P ) given the observed collection (X) and under the assump-
tion of independence between assignments of factors and factor lev-
els. Prior distributions are uniform for assignments of factors and
Dirichlet for factor levels (allele frequencies). In the model “with
admixture” the assignment of individuals to factors is replaced by
an assignment of the individual genes of each individual to a factor.
The probability distribution (Q) of this assignment corresponds for
each individual to a contribution vector. Consequently, the assign-
ment of individual genes of an individual to factors is equivalent to
an assignment of individuals to contribution vectors.

since admixture of hypothetical populations is not consid-
ered, only one factor participates in each contribution. More-
over, assignment of an individual to a contribution vector is
admissible only if the factor (hypothetical population) with
positive contribution in the vector includes the individual’s
observed population affiliation. Since gene frequencies are
defined for hypothetical populations, the gene frequencies in
the contribution vectors to which individuals are assigned are
the same for all individuals belonging to the same hypotheti-
cal population. This limits the set of admissible assignments
of individuals to contribution vectors, and it is thus part of
the modeling of assignments (sub-model 1) including speci-
fication of potential probability laws.

Depending on the number of observed populations, there
may be many ways of partitioning the totality of populations
into hypothetical populations by merging the observed pop-
ulations. In each such partition the hypothetical populations
establish factors of the kind explained above. Each partition
can now be conceived of as a higher-order factor with levels
defined by the hypothetical populations making up the par-
tition. One thus arrives at a two-tier hierarchy of factors (as
indicated above), in which the components of contribution
vectors are each composed of a labeling of the partition and
of a hypothetical population associated with the partition (the
dimension of a contribution vector thus equals the number of
hypothetical populations in a partition summed over all parti-
tions). The levels of these multiple factors are again given by
gene frequencies at a given number of gene loci. An assign-
ment of the observed individuals to these contribution vectors
is then admissible only if the partition label is the same in all
of the assigned vectors. Qualification criteria must again be
applicable to the thus defined contribution assignments.

Another approach termed Geneland by its authors (Guillot
et al., 2005) is similar to BAPS but defines partitioning into
hypothetical populations in a spatially explicit manner. In ad-
dition to their trait states, individuals are therefore character-
ized by their spatial locations. The partitioning is achieved
by producing a Voronoi tessellation of the habitat area and
merging the tiles of the tessellation into mutually exclusive
sub-domains, the residents of which are considered to form
hypothetical populations. Now the factors are spatially de-
fined subpopulations, and the factor levels are again given
by gene frequencies. As before, interaction among factors is
not considered (only one factor participates in the contribu-
tions). Each partitioning of the tiles into subdomains defines
a higher-order factor with levels provided by the subdomains
in the partition. The set of partitions specifies the higher-
order factors.

4 Qualification criteria for assignments and model
validation

Many highly specific qualification criteria, attributes, and de-
scriptors of these qualification criteria and attributes may be
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desirable. A trivial example is provided by the above linear
model, in which assignments are disqualified if they do not
provide nutrient types in sufficient proportions so as to real-
ize the observed metabolic or physiological processes. Even
if this were achieved, the stability of the processes could de-
cisively depend on the kind of relations among the propor-
tions with the result that more even proportions could guar-
antee higher stability and by this represent assignment of
higher qualification. In metapopulation models A and B, sim-
ilar principles of qualification could apply to the assignment
of gene pools to genotypes if the genes present in a geno-
type either do not appear at all in the gene pool (disqualifi-
cation) or appear at proportions that are more or less likely
to give rise to the genotype under the hypothesized mating
or migration system and mode of inheritance. The qualifica-
tion criterion would in this case be governed by likelihood
considerations.

After all, recalling that the analysis of cause–effect rela-
tions has priority in all deliberations (with contribution vec-
tors as causes and trait states as effects) it is natural to con-
sider ways of quantifying the strictness of these relationships
as manifested in each assignment of individuals to contri-
bution vectors. This is tantamount to measuring the degree
of association of effects with potential causes and thus of
the trait states of the individuals with their contribution vec-
tors (realized in each assignment). As was shown by Gre-
gorius (2011), association of a particular trait state with a
particular contribution vector increases with increasing sepa-
ration of this contribution vector from others not assigned to
the particular trait state2. Herewith, measurement of separa-
tion requires an appropriate measure of dissimilarity among
contribution vectors (see Table 1). The individual associa-
tions can be summarized into a single measure of association
of the trait states with the contribution vectors of an assign-
ment. High degrees of association would then imply that in-
dividuals differing in trait state are more frequently assigned
to distinct contribution vectors.

However, causal relations can also be viewed from the re-
verse (or dual) perspective in which trait states are considered
to determine the factor contributions that can generate them.
With environmental conditions as factors in adaptational pro-
cesses, the two causal perspectives correspond to selection
among phenotypic variants by the environment (e.g., via sur-
vival) and selection of environments by phenotypic variants
(e.g., via migration). Under the reverse perspective, analy-
ses thus refer to associations of factor contributions with trait
states. Strong association would in this case be realized if
individuals assigned to different contribution vectors differ

2Denoting by Y the trait variable and by X the variable of con-
tribution vectors, association can more precisely be described by
(Gregorius, 2011): “The more members of state x of X that also
hold state y of trait Y , and the more distinctly the members not
holding state y differ from x, the more strictly can state y be con-
sidered to be associated with state x”.

more frequently and more distinctly in their trait states. The
distinctness of the effect of a contribution vector therefore
becomes apparent in the degree to which its corresponding
group of trait expressions overlaps with groups correspond-
ing to other expressions. Hence, distinctness of causes should
show in distinctness of their corresponding groups of trait
states. Quantification of this direction of association is mean-
ingful only when based on a dissimilarity measure among
trait states that indicates situations of complete distinctness
by its maximum value.

As is suggested by the above explanations, the measures
of association gain special relevance through their inter-
pretation in terms of differentiation among trait states for
their contribution vectors in the first case and differentia-
tion among contribution vectors for their trait states in the
second case (see Gregorius, 2011). Apparently, for complete
differentiation in the first case, individuals assigned to the
same contribution vector also share their trait state. This re-
flects the case of a proper cause–effect relation in that the
same cause is not allowed to produce different effects. More-
over, distinctness of the causal variables involved in trait ex-
pression could be an important qualification criterion if only
clearly distinguishable causes allow for reliable inference on
the number of factors effectively involved in trait expression,
for example.

In the second case, complete differentiation is realized if
individuals assigned to different contribution vectors differ
completely for their trait states. This does not exclude the
possibility that individuals assigned to the same contribution
vector may differ completely for their trait states. It thus al-
lows for trait variation within groups but rules out trait simi-
larity among members of different groups.

The degree of association can be treated as a qualification
criterion akin to the likelihood by identification of assign-
ments with maximum association. When probability laws are
part of the model so that one obtains a probability distribution
for the assignments, competing decisions as to qualification
aspects may become relevant if maximization of likelihood
and of association yield different assignments. Indeed, this is
very likely to be the case since (as mentioned above) com-
plete and thus maximum association of trait states with con-
tribution vectors, for example, is obtained for assignments in
which each contribution vector is assigned to only one trait
state. Such assignments are almost always admissible. There-
fore, it is appropriate to give priority to the likelihood qualifi-
cation and evaluate the assignments of maximum likelihood
for their associations.

Given the probabilities for the assignments to yield the
observations, a presumably more consistent approach could
however be based on the implied distribution of associations.
In this context, a meaningful qualification criterion is sug-
gested by the likelihoods (or posterior probabilities) of the
associations. Maximization of these likelihoods yields as-
signments that allow for relevant inferences. Both perspec-
tives, association of trait states with factor contributions, and
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Table 1. Measuring dissimilarity among contribution vectors.

For illustration purposes the following examples of measuring dissimilarity could be viewed in a population genetic
context, in which genetic markers are the traits, populations are the factors, gene pools are the levels of the factors, and
mixture proportions of gene pools represent the degrees of factor participation.

– Contribution vectors differ in two respects, factor participations and factor levels. Factor participations provide
weights to factor levels.

– Primary differences are defined among factor levels. The same difference measure applies to levels of the same
factor and levels of different factors (such as genetic distances among populations).

– If the situation of complete distinctness is to be distinguished, difference measures must be dissimilarity measures
with maximum values (usually 1) indicating complete distinctness.

– Complete distinctness between two contribution vectors is realized if among the factors represented in the two
vectors a factor either participates only in one vector (zero participation in the other) or the factor participates in
both vectors with completely distinct levels.

– Measures of association require dissimilarities as difference measures in order to indicate states of complete
association. Quantification of dissimilarity is required for the presumptive causal variable.

– Dissimilarity between two contribution vectors is measured by the minimum degree to which the participations
of the factors in one vector must be transformed in order to make it match the factor participations in the other
vector. This is carried out by shifting the participation excesses of factor levels to other factor levels of deficient
participation, for which shifts occur among as similar of levels as possible (Gregorius et al., 2003).

vice versa are addressed here. For example, if among all fea-
sible associations between trait states and contribution vec-
tors (in either direction) the most likely ones should turn out
to realize comparatively small association values, this would
contradict the expectation that proper causal relations should
range among the most likely. Such an observation would thus
shed doubt on the appropriateness of the assumed probabil-
ity laws or even the whole model structure. Both specifica-
tion of assignments (sub-model 1) and trait generation (sub-
model 2) could be concerned.

While this relates to a vital aspect of the analysis of la-
tent causal factors, measures of association are but one type
of descriptors of assignment characteristics. There are other
assignment characteristics and descriptors that suit different
purposes and could also serve as qualification criteria. For
instance, in population genetic studies with supposed latent
metapopulation structure as in the above three examples (re-
lating to Structure, BAPS, and Geneland), genetic separa-
tion among latent (hypothetical) subpopulations is one of the
most popular qualification attributes. This is especially rele-
vant in metapopulation models B, in which each assignment
is associated with a partitioning of the observed individuals
into hypothetical subpopulations.

Since for these models the contribution vectors consist of
only one factor contribution, separation among subpopula-
tions can be determined for either the levels (hypothetical
gene frequencies) of the factors (subpopulations) or the ac-
tually observed genetic frequencies in the subpopulations.
To avoid ambiguity it should be presumed that in the as-
signments the same population should not be represented

by different gene frequencies (assignment of individuals to
the same factor implies identity of the factor levels). This
is explicitly required in metapopulation model B but not in
metapopulation model A, even in its version without admix-
ture.

In the first case, in which separation among subpopula-
tions is considered on the basis of hypothetical gene frequen-
cies, cause–effect relations as introduced in the above associ-
ation context are not at issue since the observed trait states are
not explicitly involved. Nevertheless, measurements of sep-
aration among hypothetical subpopulations quantify the dis-
tinctness of populations as potential causal factors and could
therefore be a relevant qualification criterion of assignments.
Corander et al. (2003) recommend FST for “measuring ge-
netic separation among populations”. Since FST is not a mea-
sure of differentiation or separation but rather of fixation or
monomorphism of the populations (Jost, 2008), the recom-
mendation is problematic as measured by its purpose. More
appropriate alternatives are provided by indices of compo-
sitional differentiation (for an overview see Gregorius et al.,
2014). Measures of partitioning of diversity (Jost, 2008; Gre-
gorius, 2014) may not be appropriate either since they yield
different values depending on the amount of diversity within
the populations. Conversely, monomorphism of factor contri-
butions could be a desirable qualification criterion for assign-
ments when genetic drift in small and isolated populations is
to be studied.

The second case of separation among subpopulations,
which focuses on the observed trait states (genetic types)
rather than on hypothetical gene frequencies, apparently re-
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ceived little or no attention in the relevant literature. This is
surprising since the primary objects of analysis are the ob-
served genetic types and the latent substructure among their
carriers. In terms of associations, one is in this case con-
cerned with association of subpopulation affiliation with trait
state. In conventional experimental studies this direction of
association essentially is the only one taken into considera-
tion since it measures differentiation among communities.

The above considerations demonstrate that qualification
criteria and their descriptors can be viewed to serve two pur-
poses: (1) qualification of assignments and (2) qualification
of the model. Assignment qualification can be classified as a
problem of optimization theory in which objective functions
are analyzed as to the “best available” values they can attain
on a defined domain of inputs. Usually these values are max-
ima or minima of the objective function. In the present con-
text posterior probabilities are examples of objective func-
tions that have to be maximized on the domain of admissi-
ble assignments in order to obtain the desired assignment.
Measures of association in turn can be used as means for as-
sessment or validation of the model, possibly in combination
with assignment qualification. In fact, maximum posterior
probability can by itself also be used for model validation.

The constituent sub-models 1 and 2 of the combined
model of latent factors contribute to its validation via restric-
tions made on the admissibility of the assignments (includ-
ing assumptions on their prior distributions) and the mech-
anism that generates the observations from the contribution
vectors. Problems of circular reasoning could emerge here if
the specifications of sub-model 1 would anticipate the most
qualified assignment (see, e.g., Mank and Avise, 2004). This
would however require that the mechanisms of sub-model 2
are largely determined by the assignment specifications of
sub-model 1, which, in turn, would lead to apparently tauto-
logical statements.

5 Assignment of observed objects to factors

Especially the metapopulation examples direct attention to
the possibility of conceiving of latent factors as represent-
ing conditions that subdivide collections in concert with the
modeled forces into separate groups of defined function. Re-
productive, behavioral, or ecological compatibility or isola-
tion of organisms may be considered factors, the functions
of which give rise to the formation of groups. Joint ances-
try or other separable forms of descent are further examples,
not to forget the wide field of environmental stimuli. In some
sense, such factors would define identities or origins of ob-
jects. However, in many of these cases, several factors con-
tribute to an object’s trait state, which makes it difficult to
justify assignment of individual objects to just one factor.
Exceptions are the above examples of latent metapopulation
structure in which admixture of hypothetical populations is

not taken into account (Structure with the option “without
admixture”, BAPS, and Geneland).

A possibly more comprehensive approach to this problem
is suggested by considering assignments of objects to single
factors as a special case of a contribution assignment. Such
assignments, which could be called “factor assignments”, are
characterized by contribution vectors with one component
of the relative factor participations equal to 1 and all oth-
ers equal to 0. In a factor assignment all objects are assigned
to such contribution vectors so that each object is associated
with a single factor. Factor assignments are therefore special
cases of contribution assignments. Since qualification crite-
ria are defined for all admissible factor contributions, they
apply in particular to the subset of (admissible) factor assign-
ments, so that comparison of qualifications between general
contribution assignments and factor assignments in particu-
lar is possible. In the population genetic context this relates
to comparisons between models with and without admixture
(migration, gene flow).

Maximum qualification can then be separately determined
for factor assignments and for contribution assignments, for
which the former cannot exceed the latter. However, the
closer the maximum of factor assignments approaches the
overall maximum of contribution assignments, the more sup-
port there is for the idea that the factors reflect “identities”
or “origins” (including population or community affiliation)
of the objects in the above sense. This would be all the more
convincing if for each object in the contribution assignment
of maximum qualification, the factor with the largest partici-
pation would equal the factor to which the object is assigned
in the factor assignment of maximum qualification. Again, in
the population genetic context this simply states that the pop-
ulation to which an individual is assigned in the absence of
migration is also the population that contributes most of the
genes present in that individual’s genotype when migration
is allowed.

The closeness of an assignment to a factor assignment can
be quantified by considering the diversity of factor participa-
tions for each object. This is meaningful since the factor par-
ticipations of an individual form a set of relative frequencies
to which any acceptable measure of diversity is applicable.
Preference might be given to explicit measures that vary be-
tween 1 and the number of participating factors with equality
to 1 if only one factor participates and equal to the number of
factors only if all of them participate equally. In this sense, di-
versity corresponds to the degree of admixture. The average
of these diversities taken over all individuals thus establishes
a reasonable assignment descriptor in that it becomes 1 only
for true factor assignments and increases with the number of
factors that effectively participate in an individual’s trait ex-
pression.
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6 Concluding remarks

Identifying assignments of maximum qualification as well as
validation of the model are the primary goals in the model-
based analysis of latent factors. It was pointed out that the
former appears to be a special case of the general optimiza-
tion problem, in which entities (such as assignments) from
a defined domain are to be found that maximize or mini-
mize an objective function. A large number of algorithms are
available that may help to solve the optimization problem
for complex situations by generating sequences of entities
along which the objective function consistently increases or
decreases, respectively (e.g., Boyd and Vandenberghe, 2009).
Among these is the well-known expectation maximization
(EM) algorithm that is designed for maximizing likelihoods
and posterior probabilities. Yet, the EM method is rarely
adopted, probably because of the limited range in which it
was shown to operate efficiently (see, e.g., Alexander et al.,
2009).

Apparently, MCMC algorithms belong to the most fre-
quently employed methods in model-based analyses of la-
tent factors, and this justifies briefly outlining their essen-
tial features and potential results. MCMC methods rest on
Markov chains with states specified by the contribution as-
signments and stationary-state distribution given by the con-
ditional probability distribution of the assignments that allow
for the observations. Appropriate transition probabilities that
guarantee convergence to the stationary distributions can al-
ways be obtained with Metropolis–Hastings or Gibbs algo-
rithms, for example. The central result from Markov chain
theory that is relevant for the analysis of assignment charac-
teristics confirms that, when applying a real valued function
to the states of a developing Markov chain, the average of the
values converges with a probability of 1 to the expectation
of this function realized for the stationary-state distribution
(see, e.g., Roberts and Rosenthal, 2004). This implies that
on the basis of efficient MCMC runs, one can estimate the
expectation of real valued characteristics of the assignments
including descriptors of qualification criteria of assignments.

It is essential to note that generally this does not include
estimation of assignments of maximum likelihood or pos-
terior probability. An exception is provided by small num-
bers of potential assignments so that their frequencies can be
recorded by a finite number of indicator variables along an
extending Markov chain. Yet, in most applications, such as
the above examples of metapopulation models, potential as-
signments form highly dimensional continuous sets, which
excludes their representations solely by indicator variables
along Markov chains. However, suitable partitions of the de-
scriptor range into intervals may at least allow for the iden-
tification of ranges of descriptor values of maximum proba-
bility. Explicit identification of individual assignments may
not be possible. Nevertheless, when considering association
descriptors, it is at least possible in this way to obtain an idea
of the validity of the model by checking whether the most

probable range comprises the largest associations (see above
explanations).

Otherwise, one is confined to estimates of the expecta-
tion of real valued descriptors of assignments evaluated at
the (stationary) assignment distribution. If all factors and
their levels can be covered by descriptors (some in the form
of indicator variables), joint convergence of their averages
may help to identify an appropriate “expected” assignment.
Provided the expected assignment belongs to the admissible
ones, it need, of course, not be the most probable. This caveat
applies especially to the above-detailed models A and B of
metapopulations. The size of average associations in either
direction can nevertheless be used in addition to validate the
causal relevance of the model.

Moreover, a distinction has to be made between the ex-
pected association over the assignments and the association
realized in the expected assignment. This might also be rele-
vant for other assignment descriptors. As is mentioned above,
consideration of expected assignments has substance only if
they are admissible so that the respective descriptor is appli-
cable. For example, if the model allows by definition only
for single factors to be involved in trait expression (no ad-
mixture in the metapopulation models), factor assignment to
individuals is specified by indicator variables (e.g., popula-
tion affiliation of an individual). The average or expectation
of an indicator variable, however, is not any more an indi-
cator variable, so that descriptors that rely on such variables
cannot be applied to expected assignments. This pertains for
example to the BAPS model of Corander et al. (2003), who
correctly consider the average (expectation) of the FST val-
ues of assignments to describe differentiation among popu-
lations (albeit addressing FST as a measure of differentiation
is problematic as was recalled above).

In the same context it is worth mentioning that averages
(or expectations) taken over population affiliations (as indi-
cator variables) are difficult to distinguish from average (ex-
pected) degrees of admixture resulting from the correspond-
ing models. It may therefore be appropriate to consider in the
same model the above suggestion to treat factor assignments
(absence of admixture; see Sect. 5) as a subset of all admis-
sible assignments and compare the results obtainable from
that subset with those from the total set of admissible assign-
ments. The ambiguity inherent in expected population affili-
ations is avoided altogether when considering the expected
individual diversity of factor participations as a descriptor
of the degree of admixture. When comparing the measures
of association with and without admixture (or factor inter-
action), information can be obtained about the strictness of
cause–effect relations realized in the two situations. This can
be realized either for expected associations or for distribu-
tions of association over appropriate partitions of the range
of associations into intervals.

Data availability. No data sets were used in this article.
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