ID	Function name	Equation
1	Adjusted determinant coefficient (R_{adj}^2)	$R_{\text{adj}}^2 = 1 - \frac{\sum_{i=1}^{n} (H_i - \hat{H}_i)^2}{\sum_{i=1}^{n} (H_i - \overline{H})^2} \frac{n-1}{n-p-1}$
2	Relative mean absolute error (RMA)	$RMA = \frac{\sum_{i=1}^{n} \left \frac{H_i - \hat{H}_i}{\hat{H}_i} \right }{n} \times 100 \%$
3	Root mean square error (RMSE)	$RMSE = \sqrt{\frac{\sum_{i=1}^{n} \left(H_i - \hat{H}_i\right)^2}{n-p}}$
4	Akaike's information criterion (AIC)	$AIC = n \ln(RMSE) + 2p$
Note: H_i is the observed value, \hat{H}_i is the predicted value, \overline{H} is the mean observed value, n is the number of observations used for fitting the model, p is the number of model parameters to be estimated, and n is the natural logarithm.		