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Additional information 1 

 2 

S1 Presentation of the models following the ODD protocol 3 

 4 

S1.1 Foraging model 5 

S1.1.1 Model description 6 

The description of our individual-based Foraging model follows the ODD protocol (Grimm et al., 7 

2006, 2010). The model was implemented in NetLogo (Tisue and Wilensky, 2004). 8 

S1.1.2 Purpose 9 

The purpose of this model is to understand how the qualities of three categories of habitats in 10 

agricultural landscapes affect the residence time of natural enemies in the agricultural plot, and 11 

thereby affect the potential biological control. The Foraging model also serves as a “null 12 

hypothesis” by providing a most simplistic approach to movement rules that can be compared 13 

to more complex models. 14 

S1.1.3 Entities, state variables, and scales 15 

We are not representing pests in the model but only a generic natural enemy species. 16 

The Foraging Model has only one entity, namely individual natural enemies. They are described 17 

by a set of simple state variables characterising the location of the natural enemy and its 18 

movement ability. 19 

 Localisation (x, y) 20 

 Habitat sensitivity (%) 21 

 Movement ability (energy e) 22 

Time steps (ts) are abstract, as well as space units (pixels). Space is described in two 23 

dimensions. The typical simulated plot is a 500 pixels wide square, but its size can be varied by 24 

the experimenter. 25 

The three habitat types are the agricultural crops, the grassy field margins (GFMs) and the 26 

hedgerows. The quality of each habitat type can be varied so that each can be considered 27 

hostile, favourable or of intermediate quality, from the point of view of the natural enemy. 28 

S1.1.4 Process overview and scheduling 29 

The processes of the simulation model are described in the flowchart (Fig. S1).  30 

At each time step, the submodel Forage is executed for all natural enemies in a random order, 31 

and defines their next location. The residence time calculations are then executed for each 32 

pixel, and summarised at the end of the simulation. 33 
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.34 

 35 

Figure S1.1. Flowchart of the Foraging model.  36 

 37 

S1.1.5 Design Concepts 38 

Basic principles: The movements of natural enemies are mainly foraging movements based on 39 

“movement ecology” and “habitat selection” literature and based on a simple non-specific behavioural 40 

assumption: movement is a biased random walk affected by local habitat quality (Bartumeus et al., 2005; Bell, 41 

1991). As a result, movements in the model are in part imposed by the random walk, but some adaptation has 42 

been taken into account. 43 

Emergence: The dynamic of natural enemies’ movements and the resulting residence time in 44 

the habitat categories emerge from the foraging behaviour of the individuals. The interplay between movement, 45 

habitat qualities and their spatial organisation is not straightforward.  46 

Adaptation: Natural enemies adapt their movement to the habitat cell they are to move on: 47 

better cells have a higher probability to be chosen for the next movement. A habitat sensitivity parameter is 48 

provided in the inputs, that increase the probability that the best cell is ignored, and a random cell is chosen 49 

instead. Due to these parameters, individual optimise the time spent foraging in favourable habitats, and minimise 50 

the time spent in unfavourable habitats.  51 

Objectives: Not relevant. 52 

Learning: Not relevant. 53 

Interaction: Not relevant. 54 

Prediction: Not relevant. 55 

Sensing: Natural enemies perceive the habitat quality of the cell they are on at the beginning of 56 

the time step, and that of the eight neighbouring cells. 57 

Stochasticity: In the model, the construction of plots (Initialisation section f.) and the individual 58 

movements are stochastic. Movements are classically modelled by random processes (Codling et al., 2008) 59 

because unpredictability of food distribution for a predator implies stochasticity in the search.  60 
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Observation: At each time step, each pixel occupation status is stored, and its residence time is 61 

incremented if at least one individual is located on it. When the simulation is over (when all individuals have 62 

depleted their energy pool), the mean residence time and its variance, and the proportion of unvisited pixels are 63 

calculated for each habitat type, and stored for statistical calculations in R (R Core Team, 2011). Mean field 64 

residence time and its variance are calculated over the residence times of all pixels belonging to a given habitat 65 

type, summed over all simulation time steps. 66 

 67 

S1.1.6 Forage Submodel 68 

At each time step, individuals compare the habitat quality of eight neighbouring cells, and identify the best one. 69 

This core process may be affected, according to the habitat sensitivity parameter that has been introduced to 70 

compare different species responses to sets of habitat qualities. This parameter illustrates interspecific variability 71 

in sensitivity to habitat quality (i.e. generalist vs specialist species). The probability that a random cell is chosen 72 

instead of the better one is inversely proportional to the habitat sensitivity of the species (i.e. a species with a low 73 

habitat sensitivity would have a higher probability to ignore the better cells and engage in a pure random walk). 74 

At each time step, the remaining energy pool was decremented by 1-q/100, where q represents habitat quality of 75 

the current cell. This mechanism allows us to mimic the direct and indirect costs of movement (Bonte et al., 2012) 76 

that are high in hostile habitats and low in favourable habitats. The habitat sensitivity parameter (Table 1) is used 77 

to alter the effect of habitat quality on movement cost, as a proxy of interspecific differences in habitat sensitivity. 78 

A random value [-1 <RV> 1] is added to the pixel cost with a probability equal to the habitat sensitivity of the 79 

species/100 (i.e. adding noise around the cost value). The costs of diagonal and orthogonal moves are identical. 80 

 81 

S1.1.7 Initialisation 82 

The model is initialised by assigning habitat types to cells (either “hedgerow”, “grassy field margin” or “agricultural 83 

plot”). A habitat quality parameter is then attributed to each pixel according to its habitat type, and the quality that 84 

has been attributed to it in the inputs. 2000 individuals are then distributed on random hedgerow cells, with a 85 

random initial orientation, and an energy pool of 500e representing their intrinsic initial movement ability. 86 

S1.1.7.1 Plot Generation 87 

Fields shapes and patterns are obtained using a method similar to a T-tessellation (Papaïx et al., 2014) that 88 

consists of seeding the landscape with a defined number of randomly distributed seeds, each of which is a 89 

departure point for three edges that eventually form a rectangle (Figure 1). This method allowed probabilistic 90 

control on the number of polygons, their size and shape, while exploring a diversity of spatial distributions of field 91 

shapes and sizes (Figure 1). In order to focus on habitat quality, the patch density is kept constant to maintain a 92 

stable landscape structure throughout the simulations (see Supplement S2 for the effect of patch density) and we 93 

alter only habitat quality for each landscape element (between extreme values 1 and 99, respectively hostile and 94 

favourable, other values ranging from 5 to 95 with a 5 interval). The landscape is a 500 pixels wide square treated 95 

as a torus, and is composed of 10 to 12 fields surrounded by 4 pixels-wide hedgerows and 5 pixels-wide GFMs 96 

(similar to a typical bocage landscape, Burel et al., 1998; Thenail and Baudry, 2004). Although the field-GFM-97 

hedgerow trio is used as an example for clarity, the structure could apply to fields surrounded by other types of 98 

borders. 99 

S1.1.7.2 Foraging Parameters 100 
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The values used in our case study for foraging parameters are provided in Table 1. They are designed to 101 

represent two hypothetical species, to illustrate the sensitivity of the model to differences in habitat sensitivity. An 102 

“insensitive species” with a movement behaviour that allows individuals to free themselves from local habitat 103 

conditions to reach more easily another region of the landscape: in the Foraging model that species is 104 

characterised by a lower value of the sensitivity to habitat quality parameter (Table1). On the contrary, the 105 

“sensitive species” is characterised by a movement behaviour that depended more strongly on local conditions 106 

(Table 1) with a higher sensitivity to habitat and lower directional persistence.  107 

 108 

S1.2 The Routine & Direct Movements model 109 

S1.2.1 Model description 110 

The description of our individual-based Routine & Direct Movements (RDM) model follows the 111 

ODD protocol (Grimm et al., 2006, 2010). The model was implemented in NetLogo (Tisue and 112 

Wilensky, 2004). 113 

S1.2.2 Purpose 114 

The purpose of this model is to understand how the qualities of three categories of habitats in 115 

agricultural landscapes affect the residence time of natural enemies in the agricultural plot, and 116 

thereby affect the potential biological control. The RDM model is designed to illustrate a 117 

different approach to movement, compared to the Foraging model and the SMS. In the RDM 118 

model, individuals react to changes in habitat quality by changing the shape of their path and 119 

the probabilities to pass habitat boundaries (instead of choosing a destination cell at each step). 120 

S1.2.3 Entities, state variables, and scales 121 

We are not representing pests in the model but only a generic natural enemy species. 122 

The RDM model has only one entity, namely individual natural enemies. They are described by 123 

a set of simple state variables characterising the location of the natural enemy and its 124 

movement ability. 125 

 Localisation (x, y) 126 

 Habitat sensitivity (%) 127 

 Movement ability (energy e) 128 

Time steps (ts) are abstract, as well as space units (pixels). Space is described in two 129 

dimensions. The typical simulated plot is a 500 pixels wide square, but its size can be varied by 130 

the experimenter. 131 

The three habitat types are the agricultural crops, the grassy field margins (GFMs) and the 132 

hedgerows. The quality of each habitat type can be varied so that each can be considered 133 

hostile, favourable or of intermediate quality, from the point of view of the natural enemy. 134 

S1.2.4 Process overview and scheduling 135 

The processes of the simulation model are described in the flowchart (Fig. S1).  136 

At each time step, the submodel RDM is executed for all natural enemies in a random order, 137 

and defines their next location. The residence time calculations are then executed for each 138 

pixel, and summarised at the end of the simulation. 139 
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 140 

Figure S1.2. Flowchart of the RDM model. 141 

 142 

S1.2.5 Design Concepts 143 

Basic principles: The movements of natural enemies are mainly foraging movements based on 144 

“movement ecology” and “habitat selection” literature and based on simple non-specific behavioural assumptions: 145 

movement is a correlated random walk whose shape is affected by local habitat quality and contrast at habitat 146 

boundaries (Bartumeus et al., 2005; Bell, 1991; Van Dyck and Baguette, 2005). As a result, movements in the 147 

model are in part imposed by the random walk, but some adaptation has been taken into account. 148 

Emergence: The dynamic of natural enemies’ movement and the resulting residence time in the 149 

habitat categories emerge from the movement behaviour of individuals. The interplay between movement, habitat 150 

qualities and their spatial organisation is not straightforward.  151 

Adaptation: Natural enemies adapt their movement to the habitat cell they are located on. On 152 

favourable habitat, they move slowly and sinuously, and tend to avoid crossing towards unfavourable habitats. On 153 

the contrary, on unfavourable habitats, they move fast and almost straight, and direct to each favourable habitat 154 

encountered. Due to these changes, they optimise the time they spend foraging in favourable habitats and 155 

minimise the time they spend in unfavourable habitats. The habitat sensitivity parameter is added to compare 156 

different scenarios with different species response to landscape. The effect of habitat quality on the sinuosity of 157 

the path and on the probability to cross a boundary are proportional to the habitat sensitivity of the species: an 158 

insensitive species will be more likely to ignore the current habitat quality when defining its path sinuosity, and to 159 

ignore the contrast of a boundary when deciding if it is to cross it. 160 

Objectives: Not relevant. 161 

Learning: Not relevant. 162 

Interaction: Not relevant. 163 

Prediction: Not relevant. 164 

Sensing: Natural enemies perceive the habitat quality of the cell they are on at the beginning of 165 

the time step, and that of the eight neighbouring cells. 166 
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Stochasticity: In the model, the construction of plots (Initialisation section f.) and the individual 167 

movements are stochastic. Movements are classically modelled by random processes (Codling et al., 2008) 168 

because unpredictability of food distribution for a predator implies stochasticity in the search.  169 

Observation: At each time step, each pixel occupation status is stored, and its residence time is 170 

incremented if at least one individual is located on it. When the simulation is over (when all individuals have 171 

depleted their energy pool), the mean field residence time and its variance, and the proportion of unvisited pixels 172 

are calculated for each habitat type, and stored for statistical calculations in R (R Core Team, 2011). Mean field 173 

residence time and its variance are calculated over the residence times of all pixels belonging to a given habitat 174 

type, summed over all simulation time steps. 175 

 176 

S1.2.6 RDM Submodel 177 

At each time step, individuals read the habitat quality of their current cell. According to their quality, they define 178 

the sinuosity of their path (a higher quality habitat causes higher sinuosity). The sinuosity of the path is then used 179 

to select stochastically a tentative cell for the next movement among the eight neighbour cells. If that tentative cell 180 

has a different habitat quality than the cell of origin, a boundary-crossing routine is executed. The individual 181 

chooses stochastically whether to cross that boundary, with a probability that is proportional to the contrast 182 

between both origin and destination pixel. The habitat sensitivity parameter was added in order to compare 183 

different scenarios with different species response to landscape. The effect of habitat quality on the sinuosity of 184 

the path and on the probability to cross a boundary are proportional to the habitat sensitivity of the species: an 185 

insensitive species will be more likely to ignore the current habitat quality when defining its path sinuosity, and to 186 

ignore the contrast of a boundary when deciding if it is to cross it. 187 

At each time step, the remaining energy pool was decremented by 1-q/100, where q represents habitat quality of 188 

the current cell. This mechanism allows us to mimic the direct and indirect costs of movement (Bonte et al., 2012) 189 

that are high in hostile habitats and low in favourable habitats. The habitat sensitivity parameter (Table 1) is used 190 

to alter the effect of habitat quality on movement cost, as a proxy of interspecific differences in habitat sensitivity. 191 

A random value [-1 <RV> 1] is added to the pixel cost with a probability equal to the habitat sensitivity of the 192 

species/100 (i.e. adding noise around the cost value). The costs of diagonal and orthogonal moves are identical. 193 

 194 

S1.2.7 Initialisation 195 

The model is initialised by assigning habitat types to cells (either “hedgerow”, “grassy field margin” or “agricultural 196 

plot”). A habitat quality parameter is then attributed to each pixel according to its habitat type, and the quality that 197 

has been attributed to it in the inputs. 2000 individuals are then distributed on a random hedgerow cell, with a 198 

random initial orientation, and an energy pool of 500e representing their intrinsic initial movement ability. 199 

S1.2.7.1 Plot Generation 200 

Fields shapes and patterns are obtained using a method similar to a T-tessellation (Papaïx et al., 2014) that 201 

consists of seeding the landscape with a defined number of randomly distributed seeds, each of which is a 202 

departure point for three edges that eventually form a rectangle (Figure 1). This method allowed probabilistic 203 

control on the number of polygons, their size and shape, while exploring a diversity of spatial distributions of field 204 

shapes and sizes (Figure 1). In order to focus on habitat quality, the patch density is kept constant to maintain a 205 

stable landscape structure throughout the simulations (see Supplement S2 for the effect of patch density) and we 206 

alter only habitat quality for each landscape element (with a 5 interval, from 1 to 99, respectively hostile to 207 
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favourable). The landscape is a 500 pixels wide square treated as a torus, and is composed of 10 to 12 fields 208 

surrounded by 4 pixels-wide hedgerows and 5 pixels-wide GFMs (similar to a typical bocage landscape, Burel et 209 

al., 1998; Thenail and Baudry, 2004). Although the field-GFM-hedgerow trio is used as an example for clarity, the 210 

structure could apply to fields surrounded by other types of borders. 211 

S1.2.7.2 RDM Parameters 212 

The values used in our case study for foraging parameters are provided in Table 1. They are designed to 213 

represent two hypothetical species, to illustrate the sensitivity of the model to differences in habitat sensitivity. An 214 

“insensitive species” with a movement behaviour that allows individuals to free themselves from local habitat 215 

conditions to reach more easily another region of the landscape: in the RDM model that species is characterised 216 

by a lower value of the sensitivity to habitat quality parameter (Table1). On the contrary, the “sensitive species” is 217 

characterised by a movement behaviour that depended more strongly on local conditions (Table 1) with a higher 218 

sensitivity to habitat and lower directional persistence.  219 

 220 

  221 
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 222 

S2 Effects of movement ability, population size and patch density 223 

 224 

Mean field residence time Proportion of unvisited pixels 

  

A

 

D 

 

B

 

E

 

C

 

F

 

Figure S2.1. Mean field residence time (in ts, A — C) and proportion of unvisited field pixels (0 ≥ p ≤ 1, D-F) as a 225 

function of interactions between movement ability (pixels, A, C, D, F), population size (number of individuals at 226 

initiation, A, B, D, E), and patch density (number of fields in the landscape, B, C, E, F). C: the three lines are 227 

shown but overlap. 228 
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Figure S3.1. Examples of individual movement paths (yellow lines) generated by the RDM model (Routine & Direct Moves: A, C) 229 

and the SMS (Stochastic Movement Simulator: B, D). Agricultural fields (dark green) are separated by grassy field margins (light 230 

green) surrounding hedgerows (black). The habitat qualities of agricultural fields, grassy field margins and hedgerows vary 231 

(respectively of quality 55, 30, 15 in figures 5A, B and 15, 30, 55 in figures 5C, D). N = 50 individual paths, paths length = 200 p.  232 
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