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Abstract. Globally, most bare-looking areas in dryland regions are covered by biocrusts which play a crucial
role in modifying several soil surface properties and driving key ecosystem processes. These keystone communi-
ties face important threats (e.g. climate change) that place their conservation at risk and in turn the sustainability
of the ecosystems they inhabit. Therefore, there is an urgent need to develop ecosystem management strategies
to ensure their protection. However, to provide a solid path towards biocrust conservation, the understanding by
stakeholders and governance structures of the ecological functions of these communities, their role as benefit
providers, and the pressures threatening their important effects are indispensable. Whereas the ecological scope
of biocrust has been widely studied in the last decades, the social dimension of their role remained unexplored.
By reviewing literature in biocrusts from a social–ecological approach, here we identified knowledge gaps and
new research areas that need to be addressed in order to produce scientific knowledge that better guides dryland
conservation policies and actions. This research agenda is a prerequisite to advance biocrust conservation.

1 Introduction

Most open areas in dryland regions around the world are
covered by biological soil crusts or “biocrusts” (Rodriguez-
Caballero et al., 2018a), which are poikilohydric communi-
ties composed of associations between soil particles and eu-
karyotic algae, cyanobacteria, lichen, mosses, and liverworts
growing together with heterotrophic micro-decomposers in
a faunal food web (Bowker et al., 2018). By covering the
soil surface, biocrusts play a key role in maintaining arid
ecosystems at the global scale, as they promote biodiver-
sity (Bowker et al., 2010a), direct numerous key ecosys-
tem processes (reviewed in Weber et al., 2016), and provide
multiple regulating services (Concostrina-Zubiri et al., 2017;
Rodriguez-Caballero et al., 2018b). For example, it has been
demonstrated that although biocrusts only represent a very
thin layer at the soil surface, they regulate soil biogeochemi-
cal and water fluxes (Chamizo et al., 2016; Maier et al., 2018)

and form a cohesive network that stabilizes soil (Belnap et
al., 2014).

Biocrust-forming organisms are well adapted to aridity
and survive some of the most extreme environments on Earth
(i.e. polar regions or hyperarid deserts). However, they are
highly vulnerable to subtle changes in climate conditions
and to disturbance derived from human activities (Maestre et
al., 2013; Reed et al., 2019). Consequently, global biocrust
coverage is expected to decrease dramatically by the end
of this century (Rodriguez-Caballero et al., 2018a). In addi-
tion, manipulation experiments on different regions revealed
that disturbance and climate change will cause the loss of
some biocrust constituents such as lichens and mosses, lead-
ing to a community shift towards early cyanobacteria domi-
nance. Both biocrust coverage loss and community compo-
sition changes are expected to have strong negative impacts
on soil biodiversity and on the functioning and resilience of
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dryland landscapes (Maestre et al., 2013; Ladrón de Guevara
et al., 2014; Reed et al., 2019).

Given the importance of biocrusts for the sustainability of
global drylands and the increasing pressure these commu-
nities undergo and that threatens their conservation, there is
an urgent need to develop legal frameworks that underpin
the protection and conservation of these keystone communi-
ties. Scientific evidence obtained from more than 2 decades
of intensive research around the world (reviewed in Belnap
and Lange, 2003, and Weber et al., 2016) represents a great
resource to support the importance of biocrust conservation
and the achievement of sustainable biocrust management in
dryland ecosystems. However, it is widely recognized that
there are barriers between science and governance decision-
making that hinder translation of the scientific evidence to
conservation actions (Ellison, 2016). In an attempt to address
this conservation challenge, there are certain voices within
the international research community that encourage adopt-
ing new research framings focused on producing knowledge
able to properly inform policy actions and management prac-
tices (Mastrángelo et al., 2019). Within the multiple conser-
vation framings in use today (Mace, 2014), literature increas-
ingly recognizes the social–ecological approach as an ade-
quate scientific means to achieve it (Ban et al., 2013; Díaz
et al., 2015; Mastrángelo et al., 2019). The social–ecological
approach is based on the paradigm of “people and nature”
and emphasizes the importance of institutions and social
structures for transitioning towards sustainable interactions
between human societies and the natural environment (Mace,
2014). Adopting the so-far underused social–ecological per-
spective would be a novel approach for biocrust researchers
to build new scientific knowledge to address the demanding
challenge in drylands which is the conservation of biocrust
communities.

The BIOCOST project (http://www2.ual.es/cecoual/
costras-biologicas/, last access: 19 September 2020) aims
to deal with the current biocrust conservation challenge by
means of facilitating the use of scientific evidence for policy
actions and management practices. In order to instigate the
project, we selected Spain as a pilot area. Given the extent
(about 75 % of the national territory; Martínez-Valderrama et
al., 2020) and the whole range of favourable environmental
conditions for biocrusts, Spanish drylands are characterized
by a great diversity of biocrust-forming organisms that play
a crucial role in many ecosystem processes and represent an
excellent field laboratory to work with biocrusts (Maestre
et al., 2011). Indeed, Spain has become one of the world’s
biggest spots for biocrust studies (Rodriguez-Caballero et
al., 2018a), as reflected in the increasing trend of research
groups doing biocrust research over the past decades
(Maestre et al., 2011). As a first step to achieve this goal, we
conducted a literature review on biocrusts through the lens
of a social–ecological approach with the aim of (1) analysing
how biocrust research has evolved in Spain, (2) identifying
to which extent biocrust research has contributed to different

knowledge areas required for supporting biocrust conserva-
tion, and (3) elucidating knowledge gaps and new research
opportunities for conservation actions.

2 Conceptual framework

To develop the study, we used the conceptual framework
adopted by the Intergovernmental Platform on Biodiversity
and Ecosystem Services (IPBES) (Díaz et al., 2015) (Ap-
pendix A, Fig. A1). The IPBES framework is built upon a
social–ecological approach and aims at providing a shared
language that catalyses the generation of new scientific
knowledge for supporting policy formulation and implemen-
tation on conservation biodiversity. According to Díaz et
al. (2015), the IPBES framework is formed by 16 elements
(six categorized components and 10 linkages among them)
that represent a social–ecological system that operates at var-
ious scales in time and space (Appendix A, Fig. A1). These
six components and concepts are (1) nature, “the natural
world with an emphasis on biodiversity, ecosystems, ecosys-
tem structure and functioning, the evolutionary process, the
biosphere, living natural resources”; (2) nature’s contribu-
tions to people, “all the benefits that humanity obtains from
nature, including ecosystem goods and services”; (3) anthro-
pogenic assets, “highlight that a good life is achieved by a
co-production of benefits between nature and various assets
built by people, and it refers to built infrastructure, health fa-
cilities, knowledge, technology, and financial assets, among
others”; (4) institutions and governance systems and other in-
direct drivers of change, “the ways in which people and soci-
eties organize themselves and their interactions with nature at
different scales”; (5) direct drivers of change, “natural direct
drivers are those that are not the result of human activities
and whose occurrence is beyond human control, whereas an-
thropogenic direct drivers are those that are the result of hu-
man decisions and actions”; and (6) good quality of life, “the
achievement of a fulfilled human life”. The complex interac-
tions among these six components are represented through 10
listed linkages (Appendix A, Fig. A1). This conceptual fram-
ing was specifically adapted to the study case of biocrusts to
generate a new biocrust-based conceptual framework that ac-
counted for natural, social, and institutional aspects involving
biocrust research.

3 Methodological approach

To examine biocrust research background generated in
Spain, we first conducted a literature review. We used Scopus
to identify all papers containing the terms “biocrust”, “bio-
logical soil crust”, and “microphytic crust” in the title, ab-
stract, or keywords. The literature search was conducted on
28 June 2019. We restricted the literature review to articles
in English and Spanish. We did not include review papers
to avoid duplicate evidence. For each retrieved article, we
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identified authors, year of publication, keywords, and study
site. Then, we selected those articles conducted in Spanish
regions. We reviewed the full text of the articles and estab-
lished associations between the generated knowledge in each
article and the different elements of the IPBES framework
(Appendix A, Fig. A1). Associations were established across
the six categorized IPBES components (nature, nature’s con-
tributions to people, anthropogenic assets, institutions and
governance systems and other indirect drivers of change, di-
rect drivers of change, and good quality of life) if generated
knowledge provided further information about them (e.g. a
study analysing direct effects of biocrusts in soil stability or
biodiversity implied one association with the nature com-
ponent). Associations with the interactions among the six
IPBES components (linkages from 1 to 10) were assigned to
those studies analysing the influence of any constituents of
an IPBES component in any other component. For instance,
a study focused on the implications of climate change (direct
driver of change component) in biocrust composition (nature
component) implied one association with “linkage number
3”. In doing so, we used a binary scale (0, not associated; 1,
associated) according to Mastrángelo et al. (2019). We estab-
lished as criteria that the scientific knowledge contained in a
single article should imply more than one association with
the IPBES elements. In addition, we identified whether pub-
lications highlight implications for conservation practice. A
simple binary option of ones and zeros was used to indicate
the existence (or not) of recommendations for guiding man-
agement strategies and actions for biocrust conservation.

4 Results and discussion

Biocrusts were described in Spain almost 50 years ago (Cre-
spo, 1973; Llimona, 1974; Crespo and Barreno, 1975). How-
ever, their ecological functions remained quite uninvesti-
gated until the 1990s (Maestre et al., 2011). It was dur-
ing the XXI century when biocrust science in Spain ex-
perienced an important upsurge, following the global trend
described by Bowker et al. (2018) and probably motivated
by the first publication of the biocrust book Biological Soil
Crusts: Structure, Function and Management (Belnap and
Lange, 2003). In this regard, it should be noted that the lit-
erature review did not capture the mentioned original studies
because the term biological soil crusts was not employed in
such studies (i.e. Alexander and Calvo, 1990; Calvo-Cases
et al., 1991; Guerra et al., 1995; Canton et al., 2001). From
2000 to 2019, more than 90 peer-reviewed articles analysing
biocrust communities within the Spanish regions have been
published (Fig. 1). This research represents about 10 % of
the total number of biocrust articles published on a global
scale during the same period. These numbers position Spain
as one of the hot spots of biocrust science, and their rele-
vance would probably increase if we considered that dur-
ing the last decade many Spanish researchers have been in-

volved in international projects and networks that focused
their research effort in other regions that were not consid-
ered in this review. During the analysis of the identified ar-
ticles, we established 239 associations between the scientific
knowledge generated in each study and the IPBES elements
(Appendix B, Table B1). These associations encompassed
four of the six main components (nature n= 150; nature’s
contributions to people n= 10; anthropogenic assets n= 18;
good quality of life n= 2) and 2 of the 10 linkages (linkage
between direct drivers of change and nature (linkage number
3), n= 49; linkage between nature and nature’s contributions
to people (linkage number 4), n= 10) (Fig. 1).

As observed in Fig. 1, the biocrust research community
has a strong focus on fundamental natural sciences with most
effort aimed at the nature component (150 associations). In
particular, biocrusts’ structure, composition, and functioning
(57 % of the total associations within the nature component),
their effects on water availability, biogeochemical fluxes and
other non-living natural resources (19 %), and their contri-
bution to ecosystem biodiversity (18 %) have fuelled most
research interests (Fig. 2). Regardless of taxonomic com-
position, all these studies identified biocrusts as a biodi-
verse (Concostrina-Zubiri et al., 2014a; Blanco-Sacristan et
al., 2019) and multifunctional component of Spanish dry-
lands (Maestre et al., 2011) that controls biogeochemical cy-
cles (i.e. Castillo-Monroy et al., 2010; Maestre et al., 2013;
Delgado-Baquerizo et al., 2010; Escolar et al., 2015; Miralles
et al., 2018), regulates water availability (i.e. Chamizo et al.,
2013a, 2016; Cantón et al., 2020), and protects soil from
water erosion (Lazaro et al., 2008; Chamizo et al., 2012c).
Some other studies have also evaluated the linkages and in-
teractions between all these positive effects of biocrusts and
the performance of other living natural resources (5 %) such
as vascular plants (i.e. Luzuriaga et al., 2012; Rodriguez-
Caballero et al., 2018b) or vertebrates (Eldridge et al., 2010;
Fig. 2).

The second IPBES element that most called the atten-
tion of biocrust researchers in Spain has been the response
of biocrusts to natural and anthropogenic direct drivers of
change, which is represented by the linkage between drivers
of change and nature or linkage number 3 (49 associations;
Fig. 1). Here, the effect of both natural and anthropogenic
drivers on biocrusts has been analysed in a similar propor-
tion (Fig. 2). Most of these studies concluded that, in a sim-
ilar way as observed in other regions of the world (Reed et
al., 2019), Spanish biocrusts are also endangered by ongoing
climate change and land-use intensification. Predicted tem-
perature increase and changes in precipitation pattern over
the Mediterranean basin (IPCC, 2013) will affect the cover-
age and spatial distribution of biocrust communities and may
lead to a community shift from well-developed lichen- and
moss-dominated biocrusts to early cyanobacteria (Maestre et
al., 2013). This, as well as physical alteration of biocrusts by
human activities (i.e. trampling), will reduce their coverage,
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Figure 1. Evolution of the number of articles published regarding biocrust topics in Spain. Bar charts represent the contribution of these
publications to the different IPBES components and linkages. Linkage numbers 3 and 4 refer, respectively, to linkage between direct drivers
of change and nature and linkage between nature and nature’s contributions to people.

biodiversity, and capacity to provide services and benefits to
society (Rodriguez-Caballero et al., 2018c).

The notion of ecosystem services has not been very pop-
ular within the biocrust community, even though such a no-
tion is hypothesized to represent a powerful communication
tool for raising awareness about benefits that society derives
from nature (Abson et al., 2014; Kadykalo et al., 2019). Only
10 studies have somehow adopted an ecosystem service per-
spective, represented by the linkage between nature and na-
ture’s contributions to people or linkage number 4 (10 as-
sociations; Fig. 1). All of them elucidate the potential bene-
fits of biocrust maintenance for regulating services through
processes such as atmospheric CO2 fixation (i.e. Maestre
et al., 2013; Miralles et al., 2018) and other biogeochem-
ical fluxes that affect soil fertility (García-Palacios et al.,
2011; Chamizo et al., 2013a), erosion control (Rodriguez-
Caballero et al., 2018c; Chamizo et al., 2012b), or water
regulation (i.e. Eldridge et al., 2010; Chamizo et al., 2016;
Rodriguez-Caballero et al., 2018c). The rest of the ecosys-
tem service categories (i.e. provisioning and cultural) is still
outside the research focus. Ecosystem service studies are
hypothesized to be helpful in facilitating understanding of
scientific discourse on the benefits of nature to the people
(Abson et al., 2014). Thus, the underrepresentation of stud-
ies dealing with this topic, in comparison with the num-
ber of studies focused on the natural component, may hin-
der the possibility for biocrusts and their benefits to be
known and understood by the policy community and gen-
eral public. This fact has been indeed confirmed by one re-
cent study that, by incorporating the social perspective in
biocrust research, demonstrated the lack of awareness of so-

ciety concerning the benefits/ecosystem services provided by
biocrusts (Rodriguez-Caballero et al., 2018c). Some reasons
that explain such a lack of consciousness concerning the role
of biocrusts as providers of ecosystem services to society
could be (1) the false perception of drylands as barren lands
due to low plant cover and existence of large open areas be-
tween plants which are commonly believed to be “devoid of
life” and (2) the predominant composition in many biocrust
communities of microscopic organisms, not visually evident,
which represents an additional obstacle to draw the attention
of the general public towards their high representativeness
and relevance in drylands. This reinforces the idea that new
studies are needed in the ecosystem service field to make ev-
ident the benefits provided by biocrusts to people. There is
also a demand for quantifying the importance of these key-
stone communities for the maintenance of human well-being
(good quality of life component) in dryland regions, which
is an important component of the IPBES framework that has
also been largely unaddressed by the researchers (two asso-
ciations; Fig. 1).

Our literature review also sheds light on an increasing
interest of the biocrust community in generating applied
knowledge, rather than focusing on empirical natural sci-
ences, as demonstrated by the 18 associations within the an-
thropogenic assets component (Fig. 1). Applied research ef-
forts have been mainly focused on the development of new
biotechnological tools to restore degraded drylands by re-
covering biocrusts and the services they provide (Balles-
teros et al., 2017; Román et al., 2018). Practical methodolo-
gies for biocrust mapping, monitoring, and modelling (i.e.
Rodriguez-Caballero et al., 2017; Blanco-Sacristan et al.,
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Figure 2. Distribution of biocrust research efforts across the IPBES conceptual framework. Percentage of associations between the knowl-
edge generated in each article and the different elements (six categorized components and 10 linkages among them). The main components
are represented by boxes whereas lines represent the linkages among them. The percentage of associations is represented by categories within
each element and indicated by the area of the pie chart. Crosses indicate knowledge gaps. Figure adapted from Díaz et al. (2015).

2019; Román et al., 2019) as well as basic knowledge on
biocrust ecosystem management that may help land man-
agers to incorporate biocrusts into land-use policies aimed
at ensuring drylands sustainability (i.e. Ochoa-Hueso et al.,
2011; Rodriguez-Caballero et al., 2015b; Blanco-Sacristan
et al., 2019) have also been developed. In addition, we have
identified an increasing number of scientists who have be-
gun to be concerned with making recommendations for guid-
ing management strategies and actions for biocrust conserva-
tion (11 % of total analysed studies) (Appendix B, Table B1).
For example, several researchers recommended considering
biocrust presence before disturbance activities, in order to
promote best action plans for further recuperation of the na-
tive community (Garcia-Palacios et al., 2011; Williams et
al., 2017). Others suggested considering biocrust effects on
water redistribution processes (Maestre and Cortina, 2002;
Rodriguez-Caballero et al., 2018b, 2019) or carbon fluxes
(Escolar et al., 2015; Rey et al., 2017).

While there is an increasing concern between scientists
for aligning their research with the policy domain, progress
in using the scientific knowledge generated for supporting
policies and strategies to manage, conserve, and regener-
ate biocrusts still remains insufficient. There are reason-
able grounds to assume the above since legal and institu-
tional frameworks that claim the protection and conservation
of biocrusts are absent in Spain, an issue that was already
pointed out by Maestre et al. (2011), who brought out the
absence of a Spanish red list of endangered biocrusts as ev-
idence of their non-protection. In fact, our review revealed
that there are no studies associated with the institutions and
governance systems and other indirect drivers component
(Fig. 2). This means that we did not find studies specifi-
cally focused on facilitating changes in institutional prac-
tices and encouraging individual behaviours aimed at pro-
tecting biocrusts. Unfortunately, the lack of legal frameworks
that protect the conservation of biocrusts appears to go fur-
ther than Spain and applies also to other countries around
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the world. In an attempt to address this policy-relevant gap,
we found that recent initiatives have been launched by the
biocrust community in different regions. For example, we
can mention the Soil Crust International Project (SCIN, http:
//www.biodiversa.org/120, last access: 19 September 2020),
whose objective was “to achieve both better appreciation of
the functioning and importance of biocrusts in Europe and
to add value by contributing to the development of better
and simpler soil protection practices and policies”. However,
we still must push harder in this direction in order to catal-
yse institutional and social changes for promoting effective
biocrust conservation in the short-term.

5 Conclusions

This study reveals that scientific knowledge generated on
biocrust from an ecological perspective during more than 2
decades of intensive research in Spain has significantly con-
tributed to a fundamental understanding of biocrust structure
and functions and the ecological relevance of the ecosystems
where they live. In this period, we also found that there was
an increasing concern among scientists for aligning their re-
search with conservation strategies to manage and restore
biocrusts as well as for emphasizing the benefits that society
obtains from them. However, studies focusing on strengthen-
ing the connection of biocrust research with policy domain
and institutional practices still remain insufficient. This un-
derpins the need to tackle the social dimension of the biocrust
role. Therefore, it is timely to reflect on the biocrust research
background and on the development of future directions of
this burgeoning field of science to promote policy actions and
management strategies with a special focus on biocrust con-
servation. On this basis, we call for a transition from an “eco-
logical research perspective” to a “social–ecological research
perspective” into the biocrust area, if advancing towards the
implementation of biocrusts’ conservation strategies is the
goal. The adoption of the “social–ecological research per-
spective” is needed to (1) produce research that better in-
forms policy and society about the role of these keystone
communities and (2) promote the best available evidence on
the biocrusts role which can be used to support conservation
actions. To deal with this novel research approach, it is neces-
sary for biocrust science to adopt inter- and transdisciplinary
work schemes that facilitate collaborative work between sci-
entists from a range of disciplines (e.g. ecology, sociology,
and economic sciences) and non-scientist actors related to
representative biocrust areas (e.g. practitioners, environmen-
tal advocates). These work schemes will allow us to create
communities of practice representing science, policy, and so-
ciety which will work together to promote evidence-based
conservation practices on biocrusts and build new road maps
that contribute to the preservation of these dryland repre-
sentative communities from regional to global scales around
the world. To move forward in this subject, further studies

are needed across countries and regions to build a ranking
scheme based on both failures and achievements related to
the incorporation of biocrust evidence into conservation poli-
cies.
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Appendix A: IPBES framework

Figure A1. The IPBES framework guiding this research (reproduced from Díaz et al., 2015). Boxes denote six components (nature, nature’s
contributions to people, anthropogenic assets, institutions and governance systems and other indirect drivers of change, direct drivers of
change and good quality of life) and categories within each one. Arrows from 1 to 10 represent the linkages among the six components
across different temporal and spatial scales.
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Appendix B: Associations of biocrust knowledge
across the IPBES framework and identified
implications for conservation practice

Table B1. List of references on biocrust research analysed in the study and identified associations in four of the six IPBES components
(nature, nature’s contributions to people, anthropogenic assets, and good quality of life) and 2 of the 10 linkages (“linkage number 3” (linkage
between direct drivers of change and nature) and “linkage number 4” (linkage between nature and nature’s contributions to people)). Those
IPBES elements for which no associations were identified are not included in the table. Identified implications for conservation practice in
references are also shown. Full references can be found at the end of the paper.

Identified associations Identified
Identified associations with IPBES components (n) IPBES linkages (n) implications

ID References on Nature’s Good for
biocrust research contributions Anthropogenic quality conservation
analysed in the study Nature to people assets of life Linkage 3 Linkage 4 practice

1 Maestre and Cortina (2002) 1 0 0 0 0 0 1
2 Maestre and Cortina (2003) 1 0 0 0 1 0 0
3 Maestre (2003a) 1 0 0 0 0 0 0
4 Maestre (2003b) 1 0 0 0 0 0 0
5 Cantón et al. (2004) 1 0 0 0 1 0 0
6 Souza-Egipsy et al. (2004) 1 0 0 0 0 0 0
7 Maestre et al. (2005) 2 0 0 0 0 0 0
8 Pintado et al. (2005) 1 0 0 0 1 0 0
9 Martínez et al. (2006) 2 0 0 0 1 0 0
10 Escudero et al. (2007) 2 0 1 0 0 0 0
11 Lázaro et al. (2008) 2 0 0 0 1 0 0
12 Maestre et al. (2008) 2 0 0 0 0 0 0
14 Maestre et al. (2009) 2 0 0 0 1 0 0
15 Bowker et al. (2010b) 2 0 0 0 1 0 0
16 Castillo-Monroy et al. (2010) 2 0 0 0 1 0 0
17 Chamizo et al. (2010) 2 0 0 0 0 0 0
18 Cortina et al. (2010) 1 0 0 0 1 0 0
13 Delgado-Baquerizo et al.

(2010)
2 0 0 0 0 0 0

19 Eldridge et al. (2010) 2 1 0 0 0 1 0
20 Maestre et al. (2010) 2 0 0 0 1 0 0
21 Bowker et al. (2011) 3 0 0 0 0 0 0
22 Castillo-Monroy et al.

(2011a)
2 0 0 0 0 0 0

23 Castillo-Monroy et al.
(2011b)

1 1 0 0 0 1 0

24 García-Palacios et al. (2011) 2 1 0 0 1 1 1
25 Gotelli et al. (2011) 2 0 1 0 0 0 0
26 Miralles-Mellado et al.

(2011)
2 0 0 0 0 0 0

27 Ochoa-Hueso and Manrique
(2011)

1 0 1 0 1 0 0

28 Ochoa-Hueso et al. (2011) 1 0 1 0 1 0 0
29 Bowker and Maestre (2012) 1 0 0 0 1 0 0
30 Chamizo et al. (2012a) 2 0 0 0 1 0 0
31 Chamizo et al. (2012b) 1 0 1 0 0 0 0
32 Chamizo et al. (2012c) 2 0 0 0 1 0 0
33 Chamizo et al. (2012d) 2 1 0 0 0 1 0
34 Escolar et al. (2012) 2 0 0 0 1 0 0
35 Luzuriaga et al. (2012) 3 0 0 0 1 0 0
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Table B1. Continued.

Identified associations Identified
Identified associations with IPBES components (n) IPBES linkages (n) implications

ID References on Nature’s Good for
biocrust research contributions Anthropogenic quality conservation
analysed in the study Nature to people assets of life Linkage 3 Linkage 4 practice

36 Miralles et al.
(2012a)

2 0 0 0 0 0 0

37 Miralles et al.
(2012b)

1 0 0 0 0 0 0

38 Miralles et al.
(2012c)

1 0 0 0 0 0 0

39 Rodriguez-Caballero et al.
(2012)

2 0 0 0 1 0 0

40 Bowker et al. (2013) 2 0 0 0 1 0 0
41 Chamizo et al. (2013a) 2 0 0 0 1 0 0
42 Chamizo et al. (2013b) 2 1 0 0 1 1 0
43 Delgado-Baquerizo et al.

(2013a)
2 0 0 0 0 0 0

44 Delgado-Baquerizo et al.
(2013b)

2 0 0 0 1 0 0

45 Delgado-Baquerizo et al.
(2013c)

2 0 0 0 0 0 0

46 Maestre et al. (2013) 2 1 0 0 1 1 0
47 Miralles et al.

(2013)
2 0 0 0 0 0 0

48 Rodriguez-Caballero et al.
(2013)

2 1 1 0 1 1 0

49 Bastida et al. (2014) 3 0 0 0 0 0 0
50 Berdugo et al. (2014) 2 0 0 0 0 0 0
51 Büdel et al. (2014) 3 0 0 0 1 0 1
52 Concostrina-Zubiri et al.

(2014a)
2 0 0 0 1 0 0

53 Concostrina-Zubiri et al.
(2014b)

1 0 0 0 1 0 0

55 Ladrón de Guevara et al.
(2014)

1 0 0 0 1 0 0

56 Maier et al. (2014) 2 0 0 0 0 0 0
57 Mendoza-Aguilar et al.

(2014)
1 0 0 0 0 0 0

58 Miralles et al.
(2014)

1 0 0 0 1 0 0

59 Raggio et al. (2014) 1 0 0 0 1 0 0
60 Rodriguez-Caballero et al.

(2014a)
2 0 0 0 0 0 0

61 Rodriguez-Caballero et al.
(2014b)

1 0 0 0 0 0 1

54 Escolar et al. (2015) 1 0 0 0 1 0 0
63 Ladrón de Guevara et al.

(2015)
1 0 1 0 0 0 0
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Table B1. Continued.

Identified associations Identified
Identified associations with IPBES components (n) IPBES linkages (n) implications

ID References on Nature’s Good for
biocrust research contributions Anthropogenic quality conservation
analysed in the study Nature to people assets of life Linkage 3 Linkage 4 practice

64 Rodriguez-Caballero et al.
(2015a)

1 0 0 0 0 0 0

65 Rodriguez-Caballero et al.
(2015b)

2 0 1 0 0 0 1

66 Chamizo et al. (2016) 2 0 0 0 0 0 0
62 Delgado-Baquerizo et al.

(2016)
2 0 0 0 1 0 0

68 Ochoa-Hueso et al. (2016) 3 0 0 0 1 0 0
70 Uclés et al. (2016) 2 0 0 0 0 0 0
71 Williams et al. (2016) 2 0 0 0 1 0 0
72 Ballesteros et al. (2017) 1 0 2 0 1 0 1
67 Chamizo et al. (2017) 2 1 0 0 1 1 0
74 Ochoa-Hueso et al. (2017) 1 0 0 0 1 0 0
75 Raggio et al. (2017) 1 0 0 0 1 0 1
69 Rey et al. (2017) 2 1 0 0 1 1 0
76 Rodriguez-Caballero et al.

(2017)
1 0 1 0 0 0 0

77 Williams et al. (2017) 2 0 0 0 1 0 0
78 Cano-Díaz et al. (2018) 2 0 0 0 0 0 0
79 Concostrina-Zubiri et al.

(2018)
2 0 0 0 1 0 0

73 Lafuente et al. (2018) 2 0 0 0 1 0 0
80 Miralles et al. (2018) 1 0 0 0 1 0 0
81 Rodriguez-Caballero et al.

(2018b)
2 0 0 0 0 0 0

82 Rodriguez-Caballero et al.
(2018c)

1 1 0 2 0 1 1

83 Williams et al. (2018) 2 0 1 0 1 0 1
84 Blanco-Sacristán et al.

(2019)
1 0 2 0 0 0 0

85 Concostrina-Zubiri et al.
(2019)

2 0 0 0 1 0 0

86 Lorite et al. (2019) 2 0 0 0 1 0 1
87 Rodriguez-Caballero et al.

(2019)
1 0 0 0 1 0 0

88 Roman et al. (2019) 0 0 2 0 0 0 0
89 Roncero-Ramos et al.

(2019a)
0 0 2 0 1 0 0

90 Roncero-Ramos et al.
(2019b)

3 0 0 0 0 0 0

Total 150 10 18 2 49 10 10
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