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Abstract. In this work, populations of adult and immature honeybees and their honey production are studied
through mathematical and statistical modeling approaches. Those models are complementary and are presented
in disjunct form. They were used to show different modeling methods for honey bee population dynamics. The
statistical approach consisted of a generalized linear model using data from the Department of Agriculture of
the United States of America (USDA), which showed that the relationship between the number of colonies and
the rate of honey production is not constant in time but decrease over the years. These models showed that
when a bee population is subjected to a stress factor (i.e., habitat destruction, Varroa mite, climate variability,
season, neonicotinoids, among others), the abundance of individuals decreases over time as well as the honey
produced by the colonies. Finally, the mathematical approach consisted of two models: (1) a smooth model, in
which conditions of existence and stability of the equilibrium solutions are determined by an ecological threshold
value, and (2) a non-smooth model where the mortality rate of bees is included as a function of the number of
adult bees in the population.

1 Introduction

Bees are one of the most ecologically and commercially
important insects in the world (Brown and Paxton, 2009).
There are approximately 20 000 species of bees (Nates-Parra,
2011), from which Apis mellifera is the most common for
commercial purposes (Hardstone and Scott, 2010). Bees are
of great importance not only for humans, but also for all plant
species that they pollinate. The most important crops around
the world are visited and pollinated by bees and rely on them
for reproduction (Patel et al., 2021). In tropical crops, 70 % of
the 1330 cultivated species are favored by these pollinators,
while in European crops, 84 % of the 264 cultivated species
depend on the animal pollination process, and it is known
that the yields of some fruit, seed and nut crops decrease by
more than 90 % without these pollinators (García et al., 2016;
Klein et al., 2007; Garibaldi et al., 2012).

Bees also contribute to the maintenance of native ecosys-
tems, because pollination helps to regenerate trees, which
help to conserve forest biodiversity, as well as preserving
other ecosystem services (Nates-Parra, 2016). This makes
bees important regulators of food production, forest bal-
ance and micro-climate dynamics (Winfree, 2010). From all
species of bees, only a few are eusocial; Apis mellifera is an
example of eusocial behavior (Woodard et al., 2011). This
species forms colonies so that the survival, reproduction and
honey production depend on the structure and size of the
colonies (Mattila and Seeley, 2007).

Honey is a sweet natural substance produced by honey-
bees using mainly the nectar of flowers, which is transformed
by a group of enzymes present in the saliva of the worker
bees, which is also airy and evaporates by its fluttering, and
is finally stored inside the hives of the nest. Honey from
Apis mellifera is one of the most important zoo-agricultural
goods for commercial trade in the world (Campos and Leyva,
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2018; Ulloa et al., 2010; Farouk et al., 2014). The utility of
honey is diverse. For example, it works as an anti-flu agent
(Farouk et al., 2014). Honey also serves as a natural source
of antioxidants which are effective in reducing the risk of
heart and immune system diseases, cataracts and various
inflammatory symptoms (Vit, 2004). Regarding the honey
trade, the United States of America is the world leader in
imports. Honey imports increased at a rate of 6956 t yr−1,
making this country the main honey importer in the world
(García, 2018). However, regarding production, China is
the world leader (466.6 kt), followed by Turkey (94.7 kt),
Iran (74.6 kt), Ukraine (73.7 kt) and the Russian Federation
(68.4 kt) (Güngör, 2018).

Despite the great importance of bees in the world, an
alarming concern has been raised in the last 20 years be-
cause of the decrease in the number of honey bees world-
wide, which affects the quality of life of all human popula-
tions that depend (directly or indirectly) on them (Ratnieks
and Carreck, 2010; Cox-Foster and VanEngelsdorp, 2009;
Nates-Parra, 2016).

For these reasons, it is necessary to develop studies on
honey bee population dynamics aiming to conserve and sus-
tainably manage this species. Research in the area of math-
ematics and statistics has contributed to the development of
models that allow us to understand the population dynam-
ics of bee colonies (Belić et al., 1986; Schmickl and Crail-
sheim, 2008; Khoury et al., 2011; Russell et al., 2013; Jatulan
et al., 2015; Dennis and Kemp, 2016; Booton et al., 2017).
Schmickl and Crailsheim (2007) created a simple mathemat-
ical bee population model (HoPoMo) using differential equa-
tions to predict the population dynamics and resource fluc-
tuations of a bee colony. Their model emphasized the im-
portance of pollen supply (Bagheri and Mirzaie, 2019) and
presented a mathematical model considering pollen and nec-
tar as necessary foods for the colony. This model was devel-
oped based on the differential equations proposed by Khoury
et al. (2013). Schmickl and Crailsheim (2007) built one of
the most detailed population models of honey bee colony dy-
namics, consisting of 60 equations that track the life of a bee
from an egg to an adult bee every day. The model consid-
ered the effect of seasonal changes in egg-laying rate, nurse
bees on larval survival and pollen shortage on cannibaliza-
tion. Russell et al. (2013) developed a model that focused on
how internal demographic processes within a colony inter-
act with food availability and brood rearing to alter growth
in forager population size. The model was implemented as
a series of differential equations based on the rate equations
from the analytical models proposed by Khoury et al. (2013).

In this work, we describe from mathematical and statistical
perspectives the relationship between the population size of
honey bees (Apis mellifera) and honey production when the
bee colony is subjected to some stress factor (habitat destruc-
tion, climatic variability, neonicotinoids, etc.) that externally
causes the death of individuals and consequently the possi-
ble decrease in honey production. We present three different

approaches. Two of them are purely mathematical and con-
sider the interaction between immature and adult bees and
the amount of honey produced using ordinary differential
equations (ODEs).

First, we consider a smooth model in which a stability
analysis of the equilibrium solutions is performed. The sta-
bility results are validated with numerical experiments using
data obtained from the literature. Next, we consider a non-
smooth model which is analyzed using Filippov’s systems
theory (Dieci and Lopez, 2009). Finally, a statistical model
is developed considering honey production as the response
variable, the number of colonies as a the main effect predic-
tor, and year, latitude and area as covariates, using a general-
ized linear model (GLM).

2 The statistical model approach

For this section, we used the historical data of bee farm-
ing in the United States of America (USA) from 1985
to 2019, from the US Department of Agriculture (USDA),
which are publicly available on USDA web page (https:
//usda.library.cornell.edu/concern/publications/hd76s004z?
locale=en&page=3#release-items, last access: August 2022).
Additionally, for a detailed revision, the R codes and the
cleaned data set are available at the following GitHub
link: https://github.com/jpatirom3/Honey-bees-modeling-
(last access: March 2022). These data sets summarize the
statistics of honey production and number of bee colonies by
state and year in the USA. We used these data sets because
they offer the most complete, comprehensive and publicly
available data on honey production in the world. After
checking the data sets for missing data, we decided to use
the data from 39 states, which had complete values for all
years.

A first exploration of these data sets revealed a signif-
icant decreasing trend in honey production over the years
(Fig. 1), which is an expected pattern due to the worldwide
decrease of working honeybees during the last 20 years (Bre-
tagnolle and Gaba, 2015). Since this kind of temporal trend
can inflate the relationship between responses and predictors
in statistical models (Wooldridge, 2015), we fitted a model
for each of seven 5-year sub-series (1985–1989, 1990–1994,
1995–1999, 2000–2004, 2005–2009, 2010–2014 and 2015–
2019), in such a way that the temporal trend within each
sub-series was significantly reduced in comparison to the full
1986–2019 series. Thus, every model was able to be built on
n= 194 data points, which is a reliable sample size for pa-
rameter estimation. This approach also allowed us to evalu-
ate the temporal change of the parameters over time, which
is important due to the already mentioned decline of bees.

Thus, our modeling approach considered honey produc-
tion (HP) (pounds) as the response variable for each of the
seven 5-year sub-series; number of colonies (NC) as the main
effect predictor; and year (Y ), latitude (LAT) and area (AR)
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Figure 1. Evolution of total honey production in the USA
from 1985 to 2019. Units in the y axis are shown as thousand
pounds. The solid line represents a temporal trend fitted by a lo-
cally weighted polynomial regression.

(hectares) of each state as covariates. Since NC and HP ex-
hibited highly skewed distributions, we used an additive
GLM log–log with a logged response and predictor in order
to achieve normal and homoscedastic residuals (Quinn and
Keough, 2002). Equation (1) shows the specification of this
model, where e is an error term with Gaussian distribution
and Id is an identity link function.

Id(logHP)7
i=1 = β1+β2(logNC)+β3Y +β4LAT+β5AR+ e (1)

Estimation of β parameters was performed trough the it-
erative reweighted least squares method (IWLS) (Stirling,
1984). Different combinations of covariates were fitted in a
top-down stepwise modeling approach, which started by fit-
ting a saturated model with all covariates and ended up with
a reduced final model with a minimum number of covariates
that captured most of the variance in the response variable
(Table 1). The Akaike information criterion (AIC) and the
root mean square error (RMSE) were used as metrics of per-
formance and prediction accuracy to compare among models
and define the final models for each year’s sub-series. β2, of
main interest for this section, was interpreted as a percentage
unit change in HP caused by a percentage unit change in NC,
while keeping the other covariates parameters constant. All
these procedures were done in R studio (R Team, 2019).

Table 1 shows the results of the statistical modeling pro-
cesses in terms of analysis of deviance. Covariates in the final
reduced models were Y and LAT. AR was dropped because
AIC values did not decrease in any of the models that in-
cluded it. Figure 2 shows the predicted values of the mod-
els as a function of NC and HP. In general, the performance
and prediction accuracy of all models were satisfactory, since
R2 ranged between 60 % and 93 %. Parameter estimation
showed that β2, of main interest for our study, reduced over
the years from 1.14± (0.06) in 1985–1989 to 1.05± (0.02)
in 2014–2019 (Fig. 3) (values in brackets represent 95 % con-

Table 1. Results of analysis of deviance for the statistical models
fitted to the data for every 5-year sub-series. Residual deviance rep-
resents the degree in which the response variable can be predicted
by model predictors. The higher the value, the better the model is
able to make predictions. The F value is the rate of model variance;
it provides a way to compare the fitted model against a model with
only intercept and no predictors. Higher F values represent better
fits of the data to the model. F values provide the significance of
the effect of each predictor in the models. Values equal to or lower
than 0.05 represent a significant effect. R2 is the coefficient of de-
termination; it represents the percentage of variance in the response
variable that is explained by the fitted model.

Sub-series Source of Residual F value p value R2

variation deviance

1985–1989
Log(NC) 25.85 866.09 < 0.001

60 %Y 23.49 0.02 0.88
LAT 21.59 5.06 0.02

1990–1994
Log(NC) 25.82 2677.3 < 0.001

81 %Y 23.49 20.54 < 0.001
LAT 21.59 16.84 < 0.001

1995–1999
Log(NC) 22.03 3353.08 < 0.001

83 %Y 22.01 0.176 0.67
LAT 19.98 19.427 < 0.001

2000–2004
Log(NC) 21.91 2936.38 < 0.001

82 %Y 21.90 0.138 0.71
LAT 20.94 8.72 0.003

2005–2009
Log(NC) 319.93 4287.30 < 0.001

93 %Y 0.53 7.13 0.008
LAT 2.12 28.41 < 0.001

2010–2014
Log(NC) 16.53 4570.48 < 0.001

91 %Y 16.53 0.01 0.89
LAT 15.15 17.39 < 0.001

2015–2019
Log(NC) 18.36 3792.62 < 0.001

88 %Y 18.21 1.69 0.19
LAT 17.16 11.67 < 0.001

fidence intervals). This is a reduction of 8 % in the effect
of NC on HP. These values can be interpreted in such a way
that during 1985–1989, a 1 % increase in NC caused an in-
crease of 1.1 % to 1.14 % in HP, whilst in 2014–2019, a 1 %
increase in NC caused an increase of 1.03 % to 1.07 % in HP.

3 The smooth mathematical model approach

In this section we formulate a smooth mathematical model
that describes the interaction among immature bees at
time t(B(t)), adult bees at time t(T (t)) and the amount of
honey produced at time t(M(t)). We assumed that immature
bees grow at a rate β, proportionally to the number of adult
bees. This is represented by term T/(T + ν), where ν is the
average saturation rate (number of adult bees needed for im-
mature bees to reach the half of its maximum number). The
number of bees reaching the adult stage affects the number of
immature bees. This is modeled by term ωB, where ω rep-
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Figure 2. Real HP (honey production) values (black solid dots) and predicted HP values (red open circles) from GLMs plotted against real
NC values in logarithmic scale for the seven sub-series of years.

Figure 3. Decay of β2 over the years. Vertical bars represent 95 %
confidence intervals estimated from GLMs.

resents the maturation rate to the adult stage, and 1/ω rep-
resents the time spent before reaching the adult state. Addi-
tionally, the number of immature bees is reduced by natural
mortality. This is modeled by term µBB, where µB repre-
sents the natural death rate of the immature stage. In this way,
the following ODE is proposed to model the variation in the
number of immature bees at time t :

dB
dt
= β

T

T + ν
−ωB −µBB. (2)

Similarly, we assumed that the number of adult bees de-
creases naturally. This is represented by term µTT , where
µT is the natural death rate of the adult stage. Additionally,
the bees can also die due to a stress factor. This was modeled
by the term σT , where σ is the death rate due to a stress fac-
tor (loss of habitat, pesticides, climate change, mismanage-
ment by the beekeeper, among others) on bees at the adult
stage. Thus, the number of adult bees at time t can be repre-
sented by the following ODE:

dT
dt
= ωB −µTT − σT . (3)

Finally, the production of honey in the hives increases at a
rate ρ, which depends on the number of adult bees. This is
represented by the term T/(T + u), where u is the average
saturation rate. The amount of produced honey decreases due
to different factors; one of them is the loss of honey due to
natural causes such as support for the hive and feeding of
immature bees, which is represented by the term αM , where
α is the rate of honey loss. Another cause is the consump-
tion by adult bees, which is modeled by term δTM , where
δ is the rate of honey consumption by adult bees. Therefore,
the following ODE models the variation in the proportion of
existing honey at time t :

dM
dt
= ρ

T

T + u
−αM − δTM. (4)
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Figure 4. Honey bee and food dynamics represented in the model (Eq. 5). Dashed lines represent food consumption and mortality.

From Eqs. (2)–(4) we obtain the following system of ODEs:
dB
dt = β T

T+ν
−ωB −µBB

dT
dt = ωB −µTT − σT
dM
dt = ρ T

T+u
−αM − δTM

. (5)

Model (Eq. 5) can be represented in Fig. 4.
The specifications of parameters involved in the model

(Eq. 5) are shown in Table 2.
Let us define ε =min{µB,µT}. Then, the set of biological

interest of the model (Eq. 5) is given by

�=

{
(B,T ,M) ∈ R3

+ : 0≤ B + T ≤
β

ε
, 0≤M ≤

ρ

α

}
. (6)

The following lemma ensures that set� has biological sense;
that is, all solutions starting in � remain there for all t ≥ 0.
Lema 3.1. The set� defined in Eq. (6) is positively invariant
for the solutions of the system (Eq. 5).

The proof of the above lema can be seen in Appendix A.

3.1 Equilibrium points

For calculating the equilibrium points and stability of the
model (Eq. 5), it should be clarified that all parameters given
in Table 2 are strictly greater than zero. The equilibrium
points of the system (Eq. 5) are given for the solution of the
following system of algebraic equations

0= β T
T+ν
−ωB −µBB

0= ωB −µTT − σT

0= ρ T
T+u
−αM − δTM

. (7)

Details about the solution of the previous system can be
found in Appendix A. We get the following proposition.
Proposition 3.2. Model (Eq. 5) always has a trivial equilib-
rium E0 = (0,0,0). Besides, if λ∗ > ν there is a non-trivial
equilibrium E1 = (b∗,λ∗− ν,m∗), where b∗ and m∗ are de-
fined in Eqs. (A4) and (A5), respectively.

3.2 Local stability analysis

Here, we determine the conditions for the local stability of
the equilibrium solutions given in Proposition 3.2. We use

the linearization of the vector field given by the right-hand
side of the system (Eq. 5), which is given by the following
Jacobian matrix:

J(E)=

 − (ω+µB) βν

(T+ν)2 0
ω − (µT+ σ ) 0
0 ρu

(T+u)2 − δM −(α+ δT )

 . (8)

The stability of each equilibrium point given on Proposi-
tion 3.2 can be found by evaluating the above matrix in each
equilibrium point. To see the mathematical details see Ap-
pendix A. We obtain the following proposition.
Proposition 3.3. If λ∗ < ν, the trivial equilibrium E0 =

(0,0,0) is locally and asymptotically stable, whereas if λ∗ >
ν, it is unstable. If λ∗ = ν, E0 is a non-hyperbolic equilib-
rium point. Similarly, If λ∗ > ν, the coexistence equilibrium
E1 = (b∗,λ∗− ν,m∗) is locally and asymptotically stable,
whereas if λ∗ < ν, it is unstable. If λ∗ = ν, E1 is a non-
hyperbolic equilibrium point.

A summary of the results from Proposition 3.3 is given in
Table 3.
Remark 3.4. The existence and stability conditions of the
equilibrium points of the system (Eq. 5) are given in terms of
an ecological threshold λ∗ defined in Eq. (A3), which can be
rewritten as

λ∗ =
ω

µT+ σ
∗

β

ω+µB
.

Since µT+ σ represents the total death rate of adult bees
and ω+µB the total death rate of immature bees, the ex-
pression ω/µT+ σ can be interpreted as the proportion of
immature bees that equals the number of adult bees when
these remain constant. Similarly, β/ω+µB is the proportion
of adult bees that equals the number of immature bees when
these remain constant. Thus, λ∗ is the total net number of
bees produced by the colony during the lifetime of the hive.
If the total death rate of adult bees is large enough, it would
lead to the collapse of the hive because the term λ∗ would ap-
proach to zero. This is because the existence condition of the
coexistence equilibrium states that λ∗ > ν, where the con-
stant ν is the number of adult bees required for the growth
rate of immature bees to reach half its maximum value.
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Table 2. Parameters involved in the model (Eq. 5): description and dimension.

Parameter Description Dimension

β Immature bee reproduction rate population/time
ω Adult bee maturation rate 1/time
ρ Honey production rate population/time
µB Immature bee natural death rate 1/time
µT Adult bee natural death rate 1/time
σ Adult bee death rate from a stressful factor (mite, fungicide, etc.) 1/time
α Rate of honey loss due to natural causes 1/time
ν Average saturation rate population
δ Bee honey consumption rate in an adult state 1/(population)(time)
u Average saturation rate population

Table 3. Condition of the existence and stability of the equilibrium
points of the model (Eq. 5).

Equilibrium Existence Stability

E0 Always λ∗ < ν

E1 λ∗ > ν λ∗ > ν

Table 4. Parameter values included in the model (Eq. 5).

Parameter Rank Reference

β 0.1–1 Russell et al. (2013)
ω 0.91–1 Torres et al. (2015)
ρ 12.1 %–22.9 % Martínez et al. (2018)
µB 0.1–1 Russell et al. (2013)
µT 0.29–1 Russell et al. (2013)
σ 0.07–0.82 Winfree et al. (2009)
α 0.018 g d−1 Khoury et al. (2013)
u 1 Assumed
δ 0.571 g d−1 Brodschneider and Crailsheim (2010)
ν 1 Assumed

3.3 Numerical simulations

In this section we present some numerical experiments that
illustrate the behavior of the hive and honey subjected to dif-
ferent parameter values. Some values were taken from the
literature and others were assumed. In Table 4 we show the
rank of the parameter values included in the model and their
respective references.

In Fig. 5 we present the stability of the equilibrium E0,
which is obtained with a higher value for the reproduc-
tion rate of immature bees. Here, σ = 0.8 (considered a
high value), ρ = 0.13, µB = 0.11, µT = 0.29, ω = 0.95, α =
0.95, δ = 0.571, u= 1, ν = 1 and β = 0.92. With these val-
ues the number of bees and their honey will constantly de-
crease until a collapse.

Figure 6 numerically represents the stability of the equilib-
rium E1. Here, the mortality rate due to a stress factor was re-
duced to an average value of σ = 0.4, and the honey produc-
tion rate was increased to ρ = 0.23. The loss of honey due to

Figure 5. Numerical representation of the equilibrium E0. Here,
λ∗ = 0.7564 and ν = 1.

natural causes has also increased to α = 0.1. By including the
above changes in parameter values, the amounts of immature
adults and honey production remain constant in B = 0.14,
T = 0.2 andM = 0.289. However, this is less likely to occur
because, due to multiple factors, the hives tend to collapse
after a certain time.

4 The non-smooth mathematical model approach

Some mathematical models whose arguments are described
by piecewise smooth functions have numerous dynamics and
applications, as well as an extensive mathematical structure,
even though their behavior is not simply described in terms
of modern qualitative theory of dynamical systems. How-
ever, this classical theory of dynamic systems does not in-
clude a significant number of phenomena that occur in prac-
tice. These phenomena are defined with functions that are
non-smooth in their arguments, such as electrical circuits in
which there are commutations (switches), control systems,
models in different sciences and population models in biol-
ogy, where some continuous changes can generate discrete
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Figure 6. Numerical representation of the equilibrium E1. Here,
λ∗ = 1.195 and ν = 1.

actions. Such is the case of bee populations, in which differ-
ent stress factors can cause some thresholds of mortality and
affect both the number of bees in the immature state, as well
as in the adult state, and therefore honey production.

Thus, in this section we use the Filippov systems (Dieci
and Lopez, 2009) to study the system (Eq. 5), where R1 and
R2 are considered as death thresholds. If the number T of
adult bees is big enough from a R2, the death of bees due to
a stress factor (σ ) will be maximum (σmax). Similarly, from
a R1, if the number of adult bees is small enough, the death
rate due to a stress factor will be minimal (σmin). Finally, if
we consider that the number of adult bees is in equilibrium,
that is betweenR1 andR2, the death rate due to a stress factor
will be stable (σ1). The previous consideration can be math-
ematically written as follows:

σ =

 σmax if T > R2,

σ1 if R1 ≤ T ≤ R2,

σmin if T < R1.

(9)

The main characteristic of the Filippov systems is the sub-
division of the state space into disjoint subregions, and a
smooth vector field is defined within each one of them
(Amador et al., 2021). The limits between the different re-
gions are called discontinuity surfaces, which are usually de-
noted as 6i (Hogan et al., 2016).

Mathematical details about this approach can be seen in
Appendix B. However, this presents only a mathematical un-
derstanding of Filippov’s systems; a biological sense of this
will be determined in future work, as well as the study of the
presence of pseudo-equilibrium points.

4.1 Numerical simulations

The numerical simulations of this section were performed us-
ing the MATLAB interface, and the codes can be consulted
at the following GitHub link: https://github.com/jpatirom3/

Honey-bees-modeling- (last access: March 2022). Numeri-
cal simulations for the described systems are presented be-
low. Figure 7 shows the trajectory of the solutions of the
states B(t), T (t) and M(t). In this figure, we take B(0)= 1,
T (0)= 1 andM(0)= 1 as initial conditions. Table 5 summa-
rizes the values used for each parameter.

Figure 8 shows the switching surfaces 61 (left side) and
62 (right side), which divide the first octant into the fol-
lowing regions: S1 (left side of 61), S2 (region between 61
and 62), and S3 (right side of 62), as well as the phase por-
trait. The trajectories show that regardless of the initial con-
ditions or the region of start, there is always a crossover in the
switching planes, which is proven analytically with the Filip-
pov analysis as shown above. After some time, the trajecto-
ries remain in regions S2 and S3, which means that the num-
ber of adult bees is switching within these regions limited by
the switching surface 62. Finally, the number of adult bees
seeks stability at the break-even point, as shown by Fig. 7.

5 Discussion

In this work, we attempted to contrast three different model-
ing approaches to understand the population dynamics of im-
mature bees, adult bees and the honey produced in the hive.
We first formulated a smooth mathematical model in which
conditions of existence and stability of equilibrium solutions
were found. Afterwards, we adapted the previous model to a
non-smooth model which was studied using Filippov’s sys-
tems theory. Finally, we analyzed a honey bee data set ob-
tained from USDA, using a GLM.

From the smooth model, we obtained two equilibrium
points: (1) a coexistence between the number of bees and
honey production and (2) a collapse in both the number of
bees and honey production. An important aspect to highlight
here is that the existence and stability of these equilibrium
points are in terms of the ecological threshold λ∗, given in
Remark 3.4, which represents the net number of bees pro-
duced within the colony over the lifetime of the hive. Addi-
tionally, the numerical experiments of these two points sug-
gested that a high death rate due to a stress factor (σ = 0.8),
which was used in Fig. 5, leads to a collapse of the hive in
50 weeks.

Subsequently, a smooth model was proposed in which
two death thresholds R1 and R2 were considered for the
stress factor. The Filippov analysis for the non-smooth model
showed that there is always a crossover in the switching sur-
faces. After 100 weeks, the trajectories switched between re-
gions S2 and S3, which defined a normal and high stress rate
respectively, as it was shown in Fig. 8. Finally, the orbits sta-
bilized at the equilibrium point located in region S2. We have
taken into account the fact that the equilibrium point E1 is
stable, and, therefore, the equilibrium value is reached when
t→∞.
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Table 5. Parameter values used for numerical simulations in Figs. 7 and 8.

Parameter β ω ρ µB µT α u ν δ R1 R2 σ

Value 0.92 0.95 0.23 0.1 0.29 0.018 1 1 0.5 0.26 0.5 0.4

Figure 7. Trajectories forB, T andM . Here the initial condition is (B(0),T (0),M(0))= (1,1,1) and β = 0.9, ω = 0.95, ρ = 0.23,µB = 0.1,
µT = 0.29, α = 0.018, u= 1, ν = 1 and δ = 0.5. The ecological threshold is λ∗ = 1.2063.

Figure 8. Numerical simulation of the model (Eq. 9) with initial conditions – number of immature bees: 1; number of adult bees: 0.15, 0.35
and 0.7; and amount of honey: 1. The trajectories are represented by the red, blue and green curves, respectively. The parameter values are
given in Table 5.

For the statistical approach, generalized linear models
were built to study seven 5-year sub-series of colony abun-
dance and honey production data (1985 to 2019) from the
USDA. We observed that the number of colonies required to
produce a same amount of honey is not constant but reduced

over the years as shown by Fig. 3. This points to the influ-
ence of a stress factor, such as the change of natural habitats
to mono-cultures (Belsky and Joshi, 2019) or the infestation
by the ectoparasitic Varroa mite destructor (Guzmán-Novoa
et al., 2010; Martin et al., 2012).

Web Ecol., 22, 7–19, 2022 https://doi.org/10.5194/we-22-7-2022



J. P. Romero-Leiton et al.: An approach to the modeling of honey bee colonies 15

From these three modeling approaches, we conclude that
honey production is reduced due to the decrease in the to-
tal number of bees within the colony and due to an external
stress factor, which could be climate variability, pesticides,
parasites such as the Varroa mite, or habitat loss, among
other things. This can be observed in Fig. 6, in the simula-
tions of the non-smooth model (Eqs. 7 and 8), and mainly in
the statistical results in Fig. 3. From numerical experiments
it was observed that the amount of honey produced is con-
siderably reduced in time; however, it does not fully collapse
but stay constant.

Appendix A

Proof of Lema 3.1.
Proof. It is clear that T

T+ν
≤ 1. Adding the first two equations

of the system (Eq. 5) we obtain

d(B + T )
dt

= β
T

T + ν
−µBB −µTT − σT

≤ β −µBB −µTT

≤ β − ε(B + T ).

Thus, B + T ≤ β/ε. Similarly, for M we get that

dM
dt
= ρ

T

T + u
−αM − δTM.

≤ ρ−αM − δTM

≤ ρ−αM.

Therefore, M ≤ ρ/α, which concludes the proof.

A1 Equilibrium points

To solve the algebraic system given on Eq. (7), we proceed
as follows.

From the second equation in Eq. (7),

B =

(
µT+ σ

ω

)
T . (A1)

Replacing B defined in Eq. (A1) in the first equation of the
system (Eq. 7) we obtain

T

(
β

T + ν
− (µT+ σ )

(
1+

µB

ω

))
= 0.

From the previous equation we have T = 0 or T 6= 0. First,
let us suppose that T 6= 0, thus

T = λ∗− ν, (A2)

where

λ∗ =
ωβ

(µT+ σ ) (ω+µB)
. (A3)

Replacing T defined on Eq. (A2) into the third equation of
the system, Eq. (7), we have that

ρ
λ∗− ν

λ∗− ν+ u
−αM −

(
λ∗− ν

)
δM = 0,

from where

M =
ρ (λ∗− ν)

(α+ (λ∗− ν)δ) (λ∗− ν− u)
=:m∗. (A4)

Now, replacing T defined on Eq. (A2) into the Eq. (A1), we
obtain that

B =
(µT+ σ ) (λ∗− ν)

ω
=: b∗. (A5)

Note that a sufficient condition for T defined in Eq. (A2),
M defined in Eq. (A4) and B defined in Eq. (A5) to be posi-
tive is that λ∗ > ν.

Now, if T = 0 in Eq. (A2), we obtain the trivial equilib-
rium solution E0 = (0,0,0).

A2 Local stability analysis

The stability of E0 can be found by evaluating the above ma-
trix in E0. Thus,

J (E0)=

 − (ω+µB) β
ν

0
ω − (µT+ σ ) 0
0 ρ

u
−α

 .
An eigenvalue of the previous matrix is ξ =−α, whereas the
other two eigenvalues are given by the roots of the following
characteristic polynomial:

p(ξ )= ξ2
+ (ω+µB+µT+ δ)ξ

+

[
(ω+µB) (µT+ δ)−

ωβ

ν

]
= ξ2
+ (ω+µB+µT+ δ)ξ

+
(ω+µB) (µT+ δ)

ν

(
ν− λ∗

)
= ξ2
+ a1ξ + a0.

From the Routh–Hurwitz criterion (DeJesus and Kaufman,
1987), we have that the roots of the above polynomial have
negative real parts, if and only if the following conditions are
met:

11 = (ω+µB+µT+ δ)> 0

12 =

∣∣∣∣ω+µB+µT+ δ 1
0 (ω+µB)(µT+δ)

ν
(ν− λ∗)

∣∣∣∣> 0.

It is clear that 31 > 0 and 32 > 0, if and only if λ∗ < ν.

https://doi.org/10.5194/we-22-7-2022 Web Ecol., 22, 7–19, 2022



16 J. P. Romero-Leiton et al.: An approach to the modeling of honey bee colonies

Now, we will determine the stability conditions for the
equilibrium E1. Evaluating matrix (Eq. 8) in E1 we obtain

J (E1)= − (ω+µB) βν

(λ∗)2 0
ω − (µT+ σ ) 0
0 ρu

(λ∗−ν+u)2 − δm
∗
− (α+ δ (λ∗− ν))

 .
An eigenvalue of the previous matrix is η =−α− δ(λ∗− ν),
which is negative if λ∗ ≥ ν, while the other two eigenvalues
are given by the roots of the following characteristic polyno-
mial:

p(η)=η2
+ (ω+µB+µT+ σ )η

+

[
(ω+µB) (µT+ σ )−

βνω

(λ∗)2

]
= η2
+ (ω+µB+µT+ δ)η

+
(ω+µB) (µT+ σ )

ν

[
ν−

ν2

λ∗

]
= η2
+ (ω+µB+µT+ δ)η

+ (ω+µB) (µT+ σ )
[
1−

ν

λ∗

]
= η2
+ b1η+ b0.

Similarly, from the Routh–Hurwitz criterion (DeJesus and
Kaufman, 1987) the roots of the above polynomial have neg-
ative real parts, if and only if the following conditions are
met:

21 = (ω+µB+µT+ δ)> 0

22 =

∣∣∣∣ω+µB+µT+ δ 1
0 (ω+µB) (µT+ σ )

(
1− ν

λ∗

) ∣∣∣∣> 0.

It is clear that 21 > 0 while 22 > 0, if and only if λ∗ > ν.

Appendix B

We assume that the state space consists of the three re-
gions S1, S2 and S3 ⊂ R3, which are separated by two dis-
continuity surfaces 6i with i = 1,2, defined as the null set
of a smooth scalar function H (x) : R3

→ R, in such a way
that the equations (Eq. 5) under the conditions (Eq. 9) are
the following smooth functions: F1(B,T ,M), F2(B,T ,M)
and F3(B,T ,M) determined by the value of T according to
Eq. (9). If T < R1, we have

F1(B,T ,M)=


β T
T+ν
−ωB −µBB

ωB −µTT − σminT

ρ T
T+u
−αM − δTM

.

When R1 ≤ T ≤ R2, we have that

F2(B,T ,M)=


β T
T+ν
−ωB −µBB

ωB −µTT − σ1T

ρ T
T+u
−αM − δTM

.

Finally, at T > R2

F3(B,T ,M)=


β T
T+ν
−ωB −µBB

ωB −µTT − σmaxT

ρ T
T+u
−αM − δTM

.

These three functions are also assumed to be defined through
the state space, even though they are only used in their re-
spective regions (Amador et al., 2013). Thus, the regions S1,
S2 and S3 can be defined by the following sets:

S1 =
{

(B,T ,M) ∈ R3
: T < R1

}
S2 =

{
(B,T ,M) ∈ R3

: R1 ≤ T ≤ R2

}
S3 =

{
(B,T ,M) ∈ R3

: T > R2

}
.

The regions are separated by a switching surface: limit of dis-
continuity represented by the scalar function H (i)

: R3
−→

R; H (i)(x)= T −Ri with i = 1,2, so that

6i =
{
x ∈ R3

: T = Ri, i = 1,2
}
.

As x = (B,T ,M) ∈ R3, the gradient of H (i)(x) can be de-
fined as follows:

H (i)
x (x)= (0,1,0), i = 1,2.

Thus, taking the regions 6i in which the gradient does not
null in the set 0i = {x ∈ R3

:H (i)(x)= 0, i = 1,2}, for x ∈
01, we define

ϕ(1)(x)=
〈
H (1)
x (x),F1(x)

〉 〈
H (1)
x (x),F2(x)

〉
= (ωB − (µT+ σmin)T ) (ωB − (µT+ σ1)T ) ,

and, for x ∈ 02,

ϕ(2)(x)=
〈
H (2)
x (x),F2(x)

〉 〈
H (2)
x (x),F3(x)

〉
= (ωB − (µT + σ1)T ) (ωB − (µT+ σmax)T ) .

Filippov’s systems theory (Amador et al., 2017) states that at
points x, where

ϕ(i)(x)> 0, i = 1,2, there is a crossing point,
ϕ(i)(x)= 0, i = 1,2, there are tangential points,
ϕ(i)(x)< 0, i = 1,2, there is a sliding point,

with the equation ẋ = gi(x), x ∈6i .

With the vector field

gi(x)= λiFi(x)+ (1− λi)Fi+1(x) with

λi =

〈
H

(i)
x (x),Fi+1(x)

〉
〈
H

(i)
x (x),Fi+1(x)−Fi(x)

〉 , i = 1,2.

For x ∈ 01, we have the following cases.
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– Crossing point, when ϕ(1)(x)> 0, i.e.,

ωB − (µT+ σmin)T > 0 and ωB − (µT+ σ1)T > 0,

or

ωB − (µT+ σmin)T < 0 and ωB − (µT+ σ1)T < 0,

as σmin < σ1, we have

B <
(µT+ σmin)T

ω
, or B >

(µT+ σ1)T
ω

.

– Tangential point when

B =
(µT+ σmin)T

ω
or B =

(µT+ σ1)T
ω

.

– Sliding point at

(µT+ σmin)T
ω

< B <
(µT+ σ1)T

ω

with the equation ẋ = g1(x), where the vector field is
given by

g1(x)= λ1F1(x)+ (1− λ1)F1(x),

with

λ1 =
ω

σmin− σ1

(
B

T

)
−
µT+ σ1

σmin− σ1
,

i.e.,

g1(x)=


β T
T+ν
−ωB −µBB[

ω
σmin−σ1

(
B
T

)
−

µT+σ1
σmin−σ1

]
(σ1− σmin)T

+ωB − (µT+ σ1)T
ρ T
T+u
−αM − δTM

.

For x ∈ 02, we have the following cases.

– Crossing point, when ϕ(2)(x)> 0, i.e.,

ωB − (µT+ σ1)T > 0 and ωB − (µT+ σmax)T > 0,

or

ωB − (µT+ σ1)T < 0 and ωB − (µT+ σmax)T < 0,

as σ1 < σmax, we have

B <
(µT+ σ1)T

ω
, or B >

(µT+ σmax)T
ω

.

– Tangential point when

B =
(µT+ σ1)T

ω
or B =

(µT+ σmax)T
ω

.

– Sliding point at

(µT+ σ1)T
ω

< B <
(µT+ σmax)T

ω
,

with the equation ẋ = g2(x), where the vector field is
given by

g2(x)= λ2F2(x)+ (1− λ2)F3(x),

with

λ2 =
ω

σ1− σmax

(
B

T

)
−
µT+ σmax

σ1− σ1
,

i.e.,

g2(x)=


β T
T+ν
−ωB −µBB[

ω
σ1−σmax

(
B
T

)
−
µT+σmax
σ1−σmax

]
(σmax− σ1)T

+ωB − (µT+ σmax)T

ρ
T

T + u
−αM − δTM

.
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