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Abstract. Declines in species richness and abundance of insects over the last decades are often driven by an-
thropogenic land use and can have severe consequences for ecosystem functioning. Many studies investigated
the effects of land-use intensification on the distribution of phenotypic traits across species at the community
level, often with mixed results. However, biotic and abiotic environmental filters and potential selection act on
individuals within each species, i.e., at the species’ population level, and thus drive the extent of intraspecific
phenotypic variation. Here, we compare the morphological trait variation within selected species of dung bee-
tles, bees and grasshoppers and link this variation to land-use intensity in forests and grasslands. Selected traits
included absolute body size measures and relative leg, wing or eye size, or shape and are often interpreted as
“functional traits” in the context of specific ecological responses or effects. We predicted that trait variability
among individuals of arthropod species is reduced in intensively used ecosystems (with pronounced environ-
mental filtering) compared to low-intensity ones, particularly for arthropod species that were more abundant in
intensively used sites (“land-use winners” compared to “losers”). In general, only few effects of land-use inten-
sity on trait variation were found showing a decreasing variation with increasing land-use intensity in forests
but an increasing variation in grasslands. Although many studies confirmed strong land-use impacts on species
composition, diversity and trait distribution, including evidence from the same land-use gradients, we were not
able to confirm consistent effects at the intraspecific level. However, the choice of which traits are included in
analyses and the linkage between phenotypic variation and genetic variability can strongly influence the conclu-
sions drawn on ecological processes. Therefore, we suggest extending the use of intraspecific trait variation on
other, more specific response or effect traits and a broader range of species in future studies.

1 Introduction

Insect decline and the rapid extinction of species, as well
as consequences for species conservation, have become an
important research topic (Thebault et al., 2014). Arthropod
species extinction has been linked to both the change of cli-
matic conditions (global warming) and the spatial extent and
intensification of land use due to either direct mortality or in-
direct changes of biotopes (e.g., Loreau et al., 2001; Tilman
et al., 2001; Potts et al., 2010; Barragán et al., 2011; Habel et
al., 2019; Seibold et al., 2019). The loss of arthropod species
and the decline of biodiversity have a major effect on re-
taining ecosystem functionality and resilience when environ-
mental conditions change (e.g., Soliveres et al., 2016; Kühsel
and Blüthgen, 2015; Loreau et al., 2001). This is especially

true for arthropod species which are involved in many es-
sential ecosystem services due to their high abundances and
diversity (Samways, 1993; Kim, 1993). Some of these ser-
vices maintain the stability of ecosystems, while others are
beneficial for agricultural and forestry purposes, e.g., polli-
nation, degradation of organic matter and bioturbation (Kim,
1993; Loreau et al., 2001; Losey and Vaughan, 2006).

In ecological studies on the effects of land use on insect
communities, quantitative analyses of phenotypic traits have
become widely used tools (Vandewalle et al., 2010; Rader et
al., 2014; Simons et al., 2016; Mangels et al., 2017). Land-
use intensification not only causes a general decline in diver-
sity of arthropod communities but also influences the com-
position of so-called “functional traits” within communities
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(Loreau et al., 2001). These traits include specific physiolog-
ical reaction norms, life-history traits, and often morpholog-
ical structures that may be related to each species’ functional
performance or responses to their environment (deCastro-
Arrazola et al., 2022). Species body size or body appen-
dices are commonly used in correlation with land-use inten-
sity (Simons et al., 2016; Birkhofer et al., 2017; Neff et al.,
2019). Many studies found significant differences in func-
tional traits among land-use types either within and/or across
species; i.e., species with particular traits are replaced by
other species with different traits (Moczek, 1998; Loreau et
al., 2001; Barragán et al., 2011; Raine et al., 2018; Grass et
al., 2021).

Most of the studies above focus on interspecific varia-
tion, i.e., on changes among arthropod species with chang-
ing environmental conditions or on differences between the
trait distribution of arthropod communities in certain habi-
tats. However, the importance of intraspecific variation –
the trait distribution within a single species – is often ne-
glected (Schindler et al., 2015; Bolnick et al., 2011; Vio-
lle et al., 2012; Mimura et al., 2016; Des Roches et al.,
2018) even though selective pressures of biotic and abiotic
environmental factors act on the individual level (Bolnick et
al., 2011; de Bello et al., 2011; Violle et al., 2012; Grass
et al., 2021; Chacón-Labella et al., 2022). In addition, trait
changes through human activity (i.e., harvesting, pollution)
can drive phenotypic plasticity and contemporary evolution,
having effects at the population, community, and ecosystem
level (Palkovacs et al., 2011, 2018; Grass et al., 2021). While
environmental changes often harm poorly adapted popula-
tions, those with the lowest intraspecific variation (Mimura
et al., 2016), high intraspecific phenotypic (and genetic) plas-
ticity functions as a buffer and stabilizes ecosystem processes
(Prieto et al., 2015). Furthermore, phenotypically heteroge-
neous species use a wider range of resources, which increases
ecosystem productivity and nutrient cycling (Mimura et al.,
2016). Hence, focusing on variation among individuals of the
same species can help to identify mechanisms behind the ef-
fect of anthropogenic changes to ecosystem functions (if only
certain traits show a change in variability). Additionally, po-
tential threats to ecosystem resilience under changing con-
ditions (if traits show lower variability with higher environ-
mental change) can be visible.

In the present study, we examine functional morphological
traits in response to land-use intensity in forests and grass-
lands of three arthropod groups with different ecological im-
portance: dung beetles, bees, and grasshoppers. Dung bee-
tles play an important role in mammalian dung removal. Es-
pecially tunneling genera such as Geotrupes, Anoplotrupes,
and Onthophagus enhance soil quality due to dung decom-
position, recycle nutrients, and reduce possible habitats for
pest species due to their coprophagous feeding habit (Losey
and Vaughan, 2006; Nichols et al., 2008; Frank et al., 2017).
While measurements of eye and legs can be used to pre-
dict dung beetles’ nesting behavior (Raine et al., 2018), their

body size is frequently investigated in studies on the effects
of land-use management (e.g., Barragán et al., 2011; Frank et
al., 2017). Apart from morphometric measurements, numer-
ous other types of traits for dung beetles have been defined
(Buse et al., 2018; deCastro-Arrazola et al., 2022), and a re-
cent review identified 136 trait–response and 77 trait–effect
relationships across studies.

Pollinators such as wild bees have been widely studied and
are known to suffer from habitat loss, habitat fragmentation,
agrochemicals, pathogens, and alien species (e.g., Potts et al.,
2010; Goulson et al., 2011; Lentini et al., 2012; Weiner et al.,
2014; Kämper et al., 2017). The loss of pollination services
has negative ecological and economic impacts for crops and
wildflowers and affects the maintenance of wildflower diver-
sity, ecosystem stability, and food security for human welfare
(Potts et al., 2010; Gallai et al., 2009). Interspecific trait anal-
yses of morphological (e.g., body or wing size) and feeding
characters in pollinators indicate that environmental changes
impact different kind of traits on different levels (Kämper
et al., 2017; Kühsel, 2015; Gavini et al., 2019; Habel et al.,
2019; Grass et al., 2021); i.e., body size and its variation in-
creased with urbanization in generalist bees (Theodorou et
al., 2020), potentially leading to reduced flower visitations
(Gavini et al., 2019).

Grasshoppers are important herbivores in grasslands
(Blumer and Diemer, 1996). Due to their feeding behav-
ior they regulate plant communities (Zhang et al., 2011),
influence nutrient cycling by enhancing decomposing plant
biomass (Samways, 1993), and function as prey for other an-
imals (Ingrisch and Köhler, 1998). Many species have been
shown to be sensitive to environmental changes by land-
use management such as fertilization, mowing and grazing
(Chisté et al., 2016), and a within-site homogenization of trait
variation with increasing land-use intensity can be observed
(i.e., species were characterized by smaller body sizes and
higher dispersal abilities; Birkhofer et al., 2015). Body size
as morphological trait integrates ecological and physiologi-
cal compromises in response to local environments (Parsons
and Joern, 2014).

The present study focuses on forests and grasslands in Ger-
many, two habitat types which have a long history of human
use in central Europe. Hence, communities in those habitats
are adapted to some level of anthropogenic activity. Never-
theless, many of those species react to changes and espe-
cially intensification of land-use intensity with changes in
their abundance or frequency (Weiner et al., 2014; Chisté
et al., 2016; Frank et al., 2018). Traits that affect the per-
formance of individuals drive the variation of their fitness.
However, differences in abundances define the community
trait frequency distribution, thereby influencing ecological
processes (Chacón-Labella et al., 2022).

We assume that land-use intensification changes intraspe-
cific trait variation in dung beetles, bees, and grasshoppers
in the same way as interspecific trait variation by selecting
for specific traits or trait characteristics; hence intraspecific
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variation should be negatively affected by land-use intensity.
However, since not all arthropod species react similarly to
land-use intensity, we expect to see different patterns of in-
traspecific trait variation between species that occur mostly
on sites with high land-use intensity (termed “winners”),
species that were more abundant on sites with low land-use
intensity (“losers”), and species that show no change in oc-
currence with changing land-use intensity (“neutral”). We
predicted that intraspecific variability would be negatively af-
fected by land-use intensity since more intensively used land-
scapes are typically more homogenous in terms of structure,
environmental conditions, and resources which may be as-
sociated with more restricted phenotypic plasticity within a
population. For losers we predicted lower levels of trait vari-
ability than for winners and a stronger decrease of this vari-
ability with increasing land-use intensity.

2 Material and methods

2.1 Sampling site

All insect taxa were collected in three different regions of
Germany: the Swabian Alb (ALB), the Hainich-Dün (HAI),
and the Schorfheide (SCH). In these three regions, plots
in forests and grasslands have been set up for experiments
and observations within the framework of the Biodiversity
Exploratory Project (http://www.biodiversity-exploratories.
de, last access: 4 January 2023; Fischer et al., 2010). The
Swabian Alb is a low-mountain range in south-western Ger-
many (460–860 m a.s.l.; 09◦10′49′′–09◦35′54′′ E/48◦20′28′′–
48◦32′02′′ N). The Hainich-Dün is a hilly region lo-
cated in central Germany (285–550 m a.s.l.; 10◦10′24′′–
10◦46′45′′ E/50◦56′14′′–51◦22′43′′ N), and the Schorfheide-
Chorin is a glacially formed landscape in north-eastern Ger-
many (3–140 m a.s.l.; 13◦23′27′′–14◦08′53′′ E/52◦47′25′′–
53◦13′26′′ N). The Schorfheide is characterized by the low-
est annual precipitation (520–580 mm), with a mean annual
temperature of 6–7 ◦C. It is followed by the Hainich (630–
800 mm, 6.5–8 ◦C) and the Swabian Alb (800–930 mm, 8–
8.5 ◦C).

The plots within each region (50 m× 50 m in grasslands,
100 m× 100 m in forests) cover a gradient of management
practices and land-use intensity for the respective region.
Forest plots include intensively managed spruce or pine plan-
tation, mixed forests, and unmanaged beech stands. The
forest management index (Formi) is composed of three
subindices (Kahl and Bauhus, 2014): proportion of harvested
trees (Iharv), proportion of non-native trees (Inonat), and the
proportion of dead wood showing saw cuts (Idwcut). Iharv
describes the proportion of harvested tree volume within a
stand and is estimated by the presence of cut stumps and cal-
culated as the ratio of harvested volume to the sum of stand-
ing, harvested, and dead wood volume (Kahl and Bauhus,
2014). Inonat is estimated as the proportion of harvested, liv-
ing, and dead wood volume of non-natural tree species to the

sum volume of all tree species. Idwcut represents the pro-
portion of dead wood with saw cuts to the total amount of
dead wood (Kahl and Bauhus, 2014). Formi, Iharv, Inonat,
and Idwcut were obtained from the BExIS database for the
year 2016 (Table S1 in the Supplement).

Grassland plots include intensively mown and fertilized
plots, pastures of different grazing intensity, and species-
rich grasslands; their land-use components are described in
Blüthgen et al. (2012). The land-use index (LUI) for grass-
land sites is also composed of three subindices: fertiliza-
tion intensity (F ; kg nitrogen ha−1 yr−1), mowing frequency
per year (M), and livestock grazing (G; livestock units days
of grazing ha−1 yr−1). Data were obtained from the BExIS
database and averaged for the sampling years (Table S1).

2.2 Sampling method

Specimens used for morphological trait measurement were
obtained from a species collection at TU Darmstadt. They
were formerly collected during the Biodiversity Explorato-
ries for the study of Weiner et al. (2014; bees), Chisté et
al. (2016; grasshoppers) and Frank et al. (2018; dung bee-
tles).

Dung beetles were collected in forest and grassland sites
across all three regions in spring and summer in 2014 and
2015 as part of a study on global dung webs (Frank et al.,
2018). Individuals were captured using dung-baited pitfall
trap using dung of cow, horse, sheep, red deer, wild boar, and
fox. Six pitfall traps were placed in a transect along the site
margin of the plots for 48 h. After capture, specimens were
identified to species level and stored at−18 ◦C. For trait mea-
surements, beetles were transferred into ethanol (70 %).

Bees were collected in 2008 and 2012 from grassland sites
across all three regions (39 plots in the Swabian Alb, 39 in the
Hainich, and 41 in the Schorfheide) by Weiner et al. (2014).
Plots were surveyed over 6 h by walking along a transect of
200 m× 3 m along the edge of the plot; collected specimens
were identified with the help of experts (Weiner et al., 2014).

Grasshoppers were collected in 2014 from grassland sites
of the Swabian Alb and Hainich-Dün region using a bio-
cenometer (1 m× 1 m× 0.6 m), made from an aluminum
frame covered with gauze, which was quickly placed on an
area, preventing insects from fleeing (Chisté et al., 2016).
Samples were frozen at −18 ◦C; specimens were determined
to species level and prepared with insect needles.

2.3 Species selection

For morphological trait measurement, 13 different species
belonging to large and small dung beetles, bees, and
grasshoppers were chosen from the originally sampled
species collection (Table 1). The selection was based on sev-
eral criteria: (1) the species occurred in as many plots as pos-
sible, at least 10 in total; (2) selected morphological traits
were still measurable; and (3) the species’ status in their re-
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Table 1. Species overview and their “winner”/“loser” status to land-use intensity.

LUI Grazing Mowing Fertilization Formi Prop. of tree Prop. of dead Prop. of
harvesting wood with non-native

saw cuts trees

Large dung beetles

Large dung beetles

Anoplotrupes stercorosus – – – – neutral loser neutral winner
Trypocopris vernalis neutral winner loser loser winner loser neutral winner
Typhaeus typhoeus – – – – neutral neutral neutral neutral

Small dung beetles

Aphodius ater neutral winner neutral neutral loser loser loser neutral
Aphodius depressus neutral neutral winner neutral neutral loser loser neutral
Onthophagus fracticornis neutral neutral neutral neutral neutral neutral neutral neutral
Onthophagus similis – – – – neutral neutral neutral neutral

Bees

Bombus lapidarius loser neutral neutral loser – – – –
Bombus sylvarum loser neutral neutral neutral – – – –
Lasioglossum calceatum loser neutral loser loser – – – –

Grasshoppers

Chorthippus biguttulus loser neutral neutral neutral – – – –
Chorthippus parallelus winner loser winner neutral – – – –
Stenobothrus lineatus loser neutral loser loser – – – –

LUI – land-use index, Formi – forest management index.

sponse to certain land-use components (i.e., mowing, graz-
ing, and fertilization in grasslands; harvesting intensity, non-
native trees, and anthropogenic tree mortality in forests). For
the latter, each species’ land-use niche in relation to each
land-use component was calculated using the abundance-
weighted mean (AWM) of the respective land-use compo-
nent across all plots. This species-specific AWM was com-
pared to a null model assuming that species can occur on
every site with the same likelihood. Species with a smaller or
higher AWM than expected by the null model were declared
losers or winners, respectively (see Chisté et al., 2016, for
more detailed information). For the comparison of morpho-
logical trait variation, species being neutral to land-use com-
ponents were also included (Table 1). This method to study
species-level land-use responses and to distinguish winners
and losers has been widely applied in the context of the Bio-
diversity Exploratories (e.g., Chisté et al., 2016, 2018; Busch
et al., 2019; Mangels et al., 2017; Frank et al., 2017; Wehner
et al., 2021a, b).

2.4 Intraspecific morphological traits

Within each taxonomic group a specific set of morphologi-
cal traits was measured (Table 2). Traits were chosen which
describe overall body size and dimensions (e.g., pronotum
length, intersegmental width), mobility (e.g., femur length,

forewing length) or interaction with the environment (e.g.,
eye surface). Due to the large morphological differences be-
tween taxa, morphological traits which are typically used in
the literature were selected for each taxon and differ even
between large and small dung beetles.

In large dung beetles, five traits were measured using a
caliper. The hindfemur length was measured thrice on each
side of the body. The overall length was calculated using the
sum of elytra and pronotum length. In total, 1931 individuals
of Anoplotrupes stercorosus, 285 individuals of Trypocopris
vernalis, and 23 individuals of Typhaeus typhoeus from 151
plots were measured (Table S2).

In small dung beetles, seven morphological traits were
measured on the left-hand side of the individual using a
Keyence VHX-500 digital microscope with a VH-Z20R/W/T
objective and a diffuser to reduce glare. The overall length
was calculated using the sum of abdomen and pronotum
length. In total, 39 individuals of Aphodius ater, 105 indi-
viduals of A. depressus, 82 individuals of Onthophagus frac-
ticornis, and 26 individuals of O. similis from 74 plots were
measured (Table S2).

In bees, nine traits were measured with a caliper on both
sides of the individual if applicable. Wing and eye surface
were calculated by multiplying wing length by wing width or
eye length by eye width, respectively. In total, 97 individuals
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Table 2. Morphological traits measured for four insect groups.

Dung beetles Bees Grasshopper

large small

pronotum length pronotum length intersegmental width pronotum length
body length abdomen length wing length pronotum width
elytra length body length wing width hindfemur length
elytra width body width wing surface forewing length
hindfemur length shape hindfemur length

femur + tibia length forefemur length
hindfemur width eye length
midfemur width eye width

eye surface

of Bombus lapidarius, 78 individuals of B. sylvarum, and 84
individuals of Lasioglossum calceatum from 73 plots were
measured (Table S2).

In grasshoppers, four traits were measured using a digi-
tal caliper by Pollin Electronic with an accuracy of 0.02 mm
for measurements below 100 mm. All traits were measured
twice per individual and on both sides of the body if appli-
cable. In total, 371 individuals of Chorthippus parallelus, 68
individuals of C. biguttulus, and 20 individuals of Stenoboth-
rus lineatus from 61 plots were measured (Table S2).

For statistical analyses, mean values of repeated trait mea-
surements and from the left- and right-hand side were cal-
culated. Furthermore, relative values from each trait were
standardized on different absolute morphological traits. For
big and small dung beetles, we standardized the overall body
length, for bees the intersegmental width, and for grasshop-
pers the length of the pronotum. For large dung beetles, the
trait “shape” was formed by dividing the overall length by
elytra width, and for small dung beetles shape was calculated
from the quotient of overall length (sum of pronotum and ab-
domen length) and the overall width (pronotum width).

Further, relative femur width of small dung beetles was not
scaled by the overall length, but on the leg length itself. This
was calculated using the quotient from the hind respectively
mid femur width and the summed femur and tibia length.
Additionally, two more relative leg traits, not scaled on the
overall length, were used: (i) the relative leg length between
the hind and mid leg of the left-hand body side, which was
the quotient from hind and mid femur and tibia length and
(ii) the relative femur width between hind and mid leg, which
represented the quotient from hind-femur and mid left-femur
width.

2.5 Statistical analysis

All statistical analyses were performed using the software
R version 3.6.0 (R Core Team, 2020) using the packages
“nlme” (Pinheiro et al., 2021), “lme4” (Bates et al., 2015),
and “lmerTest” (Kuznetsova et al., 2017).

Our analyses focused on the within-plot variation versus
the among-plot variation in correlation with the land-use in-
tensity of the respective plot. As response variable we used
(1) the coefficient of variation (CV) of the body size trait per
species per plot (see Fig. S1 for the correlation of CV per
plot and numbers of individuals per plot) and compare the
mean CV per species among plots. For all other morpholog-
ical traits, trait values were standardized using the respective
size traits per individual per plot. For those relative traits,
we calculated the PC scores of the first axis using a prin-
cipal component analysis (PCA; Fig. S2) and used (2) the
PC-score standard deviation (SD) per species per plot to ana-
lyze community variability within plots. We further used the
mean SD of PC scores per species to link intraspecific vari-
ation to the winner/loser/neutral status of the species. Com-
bining multiple traits in a multivariate trait matrix is com-
monly suggested (e.g., Mouillot et al., 2021; Chacón-Labella
et al., 2022). Since not all traits are equal in terms of their
influence on functionality, it is a useful tool to integrate col-
lections of traits into a few significant axes of phenotypic
variation (Chacón-Labella et al., 2022).

As explanatory factors, land-use components such as the
proportion of tree harvesting; the proportion of non-native
trees; and the proportion of dead wood with saw cuts in
forests and grazing, mowing, and fertilization in grasslands
were used. Region and plot or region were implemented
as a (nested) random factor. Since large dung beetles and
grasshoppers have been sexed (male and female), the fac-
tor “sex” was also implemented as a random factor for these
groups.

Before performing statistical analyses, data were tested
for normal distribution and variance homogeneity using a
Shapiro–Wilk test and a Levene test, respectively. If required,
data were log10 transformed to ensure normality and/or vari-
ance homogeneity. Statistical analyses were performed using
linear mixed effect models (lmer) with the respective random
factor(s). For species with < 50 individuals, i.e., Typhaeus ty-
phoeus, Aphodius ater, Onthophagus similis, and Stenoboth-
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Table 3. Effects of land-use components in forests and grasslands on the within-plot variation expressed as coefficient of variation of total
body length in large and small dung beetles, bees, and grasshoppers.

Forest Proportion of Proportion Proportion of Land-use index Grazing Mowing Fertilization
management non-native of tree dead wood (LUI)

index trees harvesting with saw cuts

F p F p F p F p F p F p F p F p

Large dung beetles

Anoplotrupes stercorosus 0.01 ns 1.04 ns 0.68 ns 1.67 ns NA NA NA NA NA NA NA NA
Trypocopris vernalis 3.34 ns 9.76 0.004∗∗ ↑ 2.32 ns 0.36 ns 0.01 ns 1.47 ns 1.86 ns 0.60 ns
Typhaeus typhoeus 0.04 ns 0.08 ns 0.08 ns 0.01 ns NA NA NA NA NA NA NA NA

Small dung beetles

Aphodius ater 0.02 ns 1.05 ns 0.65 ns 2.20 ns 0.01 ns 3.98 ns 0.24 ns 0.27 ns
Aphodius depressus 2.91 ns 2.26 ns 1.15 ns 1.99 ns 13.30 ns 1.23 ns 1.07 ns 0.04 ns
Onthophagus fracticornis NA NA NA NA NA NA NA NA 23.75 0.017∗∗ ↓ 0.58 ns 0.09 ns 1.79 ns
Onthophagus similis NA NA NA NA NA NA NA NA 42.54 0.007∗∗ ↓ 0.28 ns 0.02 ns 1.97 ns

Bees

Bombus lapidarius NA NA NA NA NA NA NA NA 2.43 ns 0.08 ns 2.96 ns 1.25 ns
Bombus sylvarum NA NA NA NA NA NA NA NA 0.71 ns 0.25 ns 0.02 ns 1.39 ns
Lasioglossum calceatum NA NA NA NA NA NA NA NA 1.66 ns 0.65 ns 1.53 ns 0.03 ns

Grasshoppers

Chorthippus biguttulus NA NA NA NA NA NA NA NA 0.37 ns 0.51 ns 1.00 ns 0.22 ns
Chorthippus parallelus NA NA NA NA NA NA NA NA 0.56 ns 0.02 ns 0.74 ns 0.02 ns
Stenobothrus lineatus NA NA NA NA NA NA NA NA 0.07 ns 0.01 ns 0.01 ns 0.01 ns

Abbreviations: ns – not significant (p > 0.05), NA – not available, ∗∗ =p≤ 0.01, ↑ – increasing.

rus lineatus, we used a weight function in the linear models
for weighting plots according to species abundance.

3 Results

The intraspecific within-plot variation (CV) of body size
ranged from 0 to 0.15 in large and small dung beetles, from
0 to 0.25 in grasshoppers, and was the highest in bees (< 1,
Fig. 1). Among large dung beetles, the intraspecific within-
plot size variation was significantly lower in Anoplotrupes
stercorosus and Trypocopris vernalis than in Typhaeus ty-
phoeus (Fig. 1a). In small dung beetles, bees, and grasshop-
pers, no differences of within-plot variation of body size
among species was observed (Fig. 1b–d). The among-plot
variation was generally lower than within-plot variation,
ranging from 0.016 in Typhaeus typhoeus (large dung bee-
tles) to 0.069 in Chorthippus biguttulus (grasshoppers).

The impact of land-use intensity on within-plot body size
variation within each species was generally weak (Table 3).
In forests, within-plot variation of body size increased with
an increasing proportion of non-native trees in T. vernalis
(large dung beetles). Contrarily, it decreased with increasing
land-use intensity in Onthophagus fracticornis and O. similis
(small dung beetles) in grasslands. Variability of body size in
bees and grasshoppers was not affected by any land-use com-
ponent.

Absolute values of morphological traits were standardized
as relative values to the respective body size before they were

summarized as principal components (PCs) in analyses. In
the three large dung beetle species, the relative length of
the elytra mainly described the first axis, which explained
47.3 %, 72.8 %, and 58.4 % of the variation, respectively. In
small dung beetle species, the first axis (explaining 58.5 %,
51.6 %, 60.9 %, and 58.6 % of the variation, respectively)
was mainly described by relative traits of the hind leg (length
and femur width; Fig. S2). Traits of the relative eye and wing
surface described the first PC axis in bee species, explain-
ing 52.3 %, 51.9 %, and 47.7 % of the variation, respectively.
In grasshoppers, the first axis was mainly described by the
relative forewing and pronotum length, explaining between
49.1 % and 61.9 % of the variation (Fig. S2).

In large dung beetles, the intraspecific within-plot varia-
tion, expressed by the SD of PC scores, was significantly
lower in A. stercorosus than in T. vernalis and T. typhoeus,
which was also true for the among-plot variation (Fig. 2a).
Species of small dung beetles, bees, and grasshoppers did
not differ in their within-plot trait variation (Fig. 2b–d).
Species of bees differed neither in their within-plot nor in
their among-plot variation of relative trait values (Fig. 2c).
Although not significant, C. biguttulus showed the highest
within- and among-plot variability in grasshoppers (Fig. 2d).

The effect of land-use intensity on the intraspecific within-
plot variation of relative morphological traits was generally
weak and differed among habitats (Table 4). In forests, only
species of large dung beetles have been significantly affected.
Intraspecific trait variation decreased with increasing pro-
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Figure 1. Differences in within-plot variation of body-size traits in (a) large dung beetles, (b) small dung beetles, (c) bees, and (d) grasshop-
pers. Among-plot variation is shown above the plots, the species’ status to the respective land-use component underneath. Note the different
scales. Abbreviations: CV – coefficient of variation, ns – not significant (p > 0.05), ∗=p≤ 0.05, ∗∗∗=p≤ 0.001.
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Figure 2. Differences in within-plot variation of relative morphological traits by the principal component (PC1) scores in (a) large dung
beetles, (b) small dung beetles, (c) bees, and (d) grasshoppers. Among-plot variation is shown above the plots, the species’ status to the
respective land-use component underneath. Abbreviations: SD – standard deviation, ns – not significant (p > 0.05), ∗∗∗=p≤ 0.001.
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Figure 3. Within-plot variation of relative morphological PC scores in (a–b) Anoplotrupes stercorosus, (c) Trypocopris vernalis, and (d) Ty-
phaeus typhoeus in relation to the proportion of tree harvesting, dead wood with saw cuts, and non-native trees. Note the different scales.
Abbreviations: ∗=p≤ 0.05.

portion of tree harvesting in A. stercorosus and T. vernalis
(Fig. 3a, c), with increasing proportion of dead wood with
saw cuts in A. stercorosus (Fig. 3b) and with increasing pro-
portion of non-native trees in Typhaeus typhoeus (Fig. 3c, Ta-
ble 4). In grasslands, effects were only present in grasshop-
pers (Table 4); the increase in intensity of land-use factors
(except grazing) always caused an increasing within-plot
variability of relative traits (Fig. 4a–d, Table 4).

Contrary to our prediction, the degree of within-plot vari-
ation of relative morphological traits was independent of the
winner or loser status for all land-use components except the
proportion of non-native trees in forests: here, winner species
showed a significantly lower variability than those classified
as neutral (Fig. 5).

4 Discussion

We compared the extent of intraspecific trait variation and
the potential impact of increasing land-use intensity among
arthropod groups representing different ecological functions.
Our results confirmed species-specific differences in mor-
phometric variation in body size and relative size of traits.
However, land-use intensity provided little or no explanation
for intraspecific trait variation in body size related traits for

the arthropod taxa selected in our study. Furthermore, the di-
rection of effects differed in forests and grassland habitats.

However, examples from literature show effects of envi-
ronmental parameters (e.g., land use, predation pressure, and
latitude) on size traits in various species. In generalized pol-
linators, body size is a key trait linked to metabolism and
dispersal. At the community level, body size and its varia-
tion increased with urbanization (Theodorou et al., 2021), but
overall size diversity decreased with landscape simplification
(Grass et al., 2021). In dung beetles, larger bodied species
were more vulnerable to effects of habitat disturbance (Raine
et al., 2018) and functional diversity decreased with increas-
ing land use intensity (Barragán et al., 2011).

The variation of combined relative morphological traits
was also only weakly affected by land use and again the di-
rection of effects differed among habitats; i.e., variation de-
creased in forests but increased in grasslands. Almost all ef-
fects were independent of the winner or loser status of the
species; only on plots with a high proportion of non-native
trees were winner species less variable than those that were
neutral. Therefore, we could not finally confirm our predic-
tion that the intraspecific variation is negatively affected by
increasing land-use intensity due to a narrow adaptation of
winner species to harsh environmental conditions.
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Figure 4. Within-plot variation of relative morphological PC scores in (a) Chorthippus biguttulus and (b–d) Chorthippus parallelus in
relation to mowing, fertilization, and land-use index (LUI). Note the different scales. Abbreviations: ∗=p≤ 0.05.

Anthropogenic disturbances are assumed to cause evolu-
tionary changes in phenotypic plasticity (Loreau et al., 2001;
Palkovacs et al., 2011; Violle et al., 2012; Mimura et al.,
2016; Crispo et al., 2010). The direction of these changes,
however, depends on the interaction between taxon and trait,
but an increase in plasticity following anthropogenic distur-
bances seems more common (Loreau et al., 2001; Crispo
et al., 2010). However, in invertebrates plasticity in life-
history traits increased while those for morphological traits
decreased (Crispo et al., 2010). Additionally, phenotypic
variation arises not necessarily from environmental filters,
but from genotypic differences, or is indirectly affected by
ecological factors such as a nutritionally imbalanced diet
(Brückner et al., 2018).

We expected trait variation to decrease following constrict-
ing selection since high land-use intensity acts as a selec-
tive filter by homogenizing resources (Chistè et al., 2018).
Thereby, the focus on intraspecific instead of interspecific
variation aimed to include natural phenotypical trait varia-

tion within populations of a species that would otherwise
be neglected (Albert et al., 2010; Bolnick et al., 2011). In-
traspecific variation is important since ecological interaction
depends on species’ traits and its variation alters the inter-
action strength and can simultaneously protect populations
from extreme temporal density fluctuations (Bolnick et al.,
2011). However, the choice of which traits are included in
analyses can drastically change the conclusions of ecological
processes (Wong and Carmona, 2020; Chacón-Labella et al.,
2022; Keller et al., 2022). Furthermore, management prac-
tices of long-term experiments on biodiversity–ecosystem
functioning may influence the mechanistic linkage between
environment and traits since community-weighted values of
a given responsive trait shift with changes of relative abun-
dances of the species and management practices do not al-
low community assembly processes to operate (Lepš et al.,
2011; Chacón-Labella et al., 2022). Generally, shifts in trait
distributions at the community levels, typically depicted by
community-weighted means, may generally be more dy-
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Figure 5. Differences in within-plot variation of relative morpho-
logical traits by the principal component (PC1) scores of “neutral”
and “winner” species respective to the proportion of non-native
trees. Abbreviations: ∗=p≤ 0.05.

namic and responsive to environmental gradients since they
mirror a shift in relative abundances of mobile animal species
rather than changes in morphological traits themselves. In-
stead intraspecific trait variation is likely to be more conser-
vative and less dynamic in response to small-scale environ-
mental gradients reflected by land-use intensity.

5 Conclusion

Overall, we were not able to confirm that environmental fil-
ters, represented by anthropogenic land use for which strong
effects on communities are known, had a similarly strong im-
pact on an intraspecific phenotypic variation. However, we
did not link phenotypic variation to genetic variability, nor
to specific processes during juvenile development. Further-
more, some traits may evolve more rapidly than others, and
also heritability of plasticity differs (Crispo et al., 2010). We
thus suggest to expand the focus of intraspecific trait varia-
tion on different traits and a broader range of species in future
studies.
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