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Abstract. Spatial epidemiology tools play a critical role in effectively allocating resources to curb the spread
of animal diseases. This study focuses on classical scrapie (CS), an animal prion disease identified in Portugal,
which infects small ruminant flocks and has been shown to be experimentally transmissible to wild cervids.
Utilising remote sensing technologies and semi-automatic classification models, we aimed to evaluate the risk
of interspecies prion transmission from domestic small ruminants to wild cervids (hosts). To achieve this, we
gathered data related to hosts and infected small ruminant flocks. Furthermore, we collected and processed
freely available, medium-resolution satellite imagery to derive vegetative and biophysical spectral indices ca-
pable of representing the primary habitat features. By employing a pixel-based species distribution model, we
integrated the compiled geographical distribution data and spectral data with five supervised classification al-
gorithms (random forest, classification tree analysis, artificial neural network, generalised linear model, and
generalised additive model). The consensus map allowed accurate predictions of spatialised regions exhibiting
spectral characteristics similar to where CS and its hosts were initially identified. By overlapping suitable terri-
tories for disease and host occurrence, we created a spatially explicit tool that assesses the risk of prion spill-over
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from domestic small ruminants to wild cervids. The described methodology is highly replicable and freely acces-
sible, thus emphasising its practical utility. This study underscores the substantial contribution of model-based
spatial analysis to disease monitoring and lays the groundwork for defining populations at risk and implementing
targeted control and prevention strategies, thus safeguarding both animal and public health.

1 Introduction

Classical scrapie (CS) is a transmissible spongiform en-
cephalopathy with the longest documented history among
known animal prion diseases (Greenlee, 2014). Known as a
fatal infectious neurodegenerative disease that naturally af-
fects sheep and goats worldwide, CS can result in relevant
economic losses due to decreased production rates, exports,
and carcass disposal costs (Keough et al., 2019). Within
the European Union, CS falls under surveillance, control,
and eradication programmes based on regulation (EC) no.
999/2001 and subsequent amendments (Commission regula-
tion, 2006). These programmes encompass passive surveil-
lance of animals displaying neurological symptoms and ac-
tive surveillance involving the collection of samples from
slaughtered domestic small ruminants intended for human
consumption as well as from fallen stock. Portugal, in align-
ment with this approach, maintains an ongoing CS surveil-
lance programme which from 2008 to 2020 identified a total
of 39 sheep CS cases distributed across 16 flocks (Ricci et
al., 2018; Union, T. E., 2022).

Under natural conditions, the transmission of CS occurs
prenatally from ewe to lamb and during the periparturient
period predominantly via oral consumption of colostrum and
milk, but also from the placenta and fetal fluids infected and
from contaminated biological material that could also infect
other animals occurring in sympatry (Cassmann and Green-
lee, 2020). Interspecies prion transmission was demonstrated
by several authors (Hamir et al., 2004; Greenlee et al., 2011;
Dagleish et al., 2008; Cassmann et al., 2021), where CS and
bovine spongiform encephalopathy (BSE) prions were ex-
perimentally transmitted to cervids. This is followed by a
long asymptomatic incubation period, usually between 2 to
7 years, during which infected animals are a source of further
contamination (Beringue and Andreoletti, 2014).

The European Food Safety Authority recommended that
prion disease surveys should target wild cervids likely to
have been exposed to BSE and/or CS. The probability of wild
cervids species in Portugal being exposed to prion disease is
non-negligible as Portugal had a high BSE prevalence (Orge
et al., 2015), and an emergence of CS in a background of en-
zootic atypical scrapie was also reported in sheep and goats
(Orge et al., 2010; Marín-Moreno et al., 2021).

In Portugal, in recent decades, the distribution range and
population size of wild cervids (red deer Cervus elaphus and
roe deer Capreolus capreolus) have experienced remarkable
expansion and growth (Carvalho et al., 2018; Valente et al.,

2020), leading to potential contact with CS prions due to
shared extensive grazing areas with domestic small ruminant
flocks. Furthermore, wild cervids are subject to hunting, ex-
posing them to direct and indirect human contact. Given their
broad distribution and habitat transitions between natural and
human-altered areas, wild cervids have emerged as impor-
tant sentinels for tracking the spread of diverse zoonotic dis-
eases (Figueiredo et al., 2023). In the event of disease out-
breaks, the ability to prioritise intervention areas and imple-
ment cost-effective control strategies is of paramount signif-
icance for risk managers, including veterinary competent au-
thorities and policymakers.

Advancements in remote sensing and data analysis mod-
elling techniques have paved the way for innovative method-
ologies to appear, aiming to create spatially explicit risk as-
sessments for potential interspecies prion transmission (Li
et al., 2023). The application of species distribution mod-
els (SDMs) is usual in scenarios of uncertainty (He et al.,
2019; Domisch et al., 2019) and provides a useful baseline
for risk assessment (Wilson et al., 2013; Kopsco et al., 2022;
Simons et al., 2019). To predict the potential distribution of
a given species, SDMs rely on how species distribution (oc-
currence in known locations) is influenced by a set of eco-
logically relevant environmental variables that may restrict
or favour the distribution of the species in space (e.g. tem-
perature, topography, precipitation) (Li et al., 2023; Naimi
and Araújo, 2016).

The application of SDM techniques allows the combina-
tion of different supervised classification algorithms to ob-
tain a final consensus (an ensemble) of areas suitable for
species occurrence (Hao et al., 2019). However, these en-
vironmental variables (e.g. climatic) are usually associated
with a low spatial resolution (1 km) that creates coarse re-
sults that may not compatible with the needs and capacities
of authorities to implement spatial defined local actions.

Satellite remote sensing approaches are valuable for mon-
itoring the earth’s reflectance across several regions of the
electromagnetic spectrum with a medium spatial resolution
(30 m in the case of Landsat spectral imagery). These prod-
ucts are increasingly used by the scientific community for
multiple purposes due to being freely accessible on web plat-
forms (i.e. Google Earth Engine, Copernicus Browser, Earth-
Explorer) and offer standardised information across time and
space (Wilson et al., 2013).

Satellite-based vegetative indexes are often used to dis-
criminate levels of vegetation covers, green biomass, and
plant grow velocity, allowing the study of various ecological
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processes within a territory (Knott et al., 2023; Lastovicka et
al., 2020; Forkuor et al., 2020). Also, the surface tempera-
ture can be used as a proxy to understand the landscape com-
position, since the surface temperature is influenced by the
surrounding physical environment and anthropogenic land
uses (Janani et al., 2023). Satellite information enables the
discrimination of different niches in the landscape, allowing
SDMs to deeply explore relations between species’ presence
and the territory. By incorporating vegetative and biophysi-
cal indexes into pixel-based SDMs (Mouta et al., 2021), it is
possible to detect (in a semi-automatic way) spaces with sim-
ilar characteristics at a medium resolution meeting the needs
of decision-makers and providing up-to-date information.

Here, we explore a methodological approach capable of
being replicated in other disease transmission processes
through the application of satellite indices and georeferenced
presence points of disease and potential hosts. This informa-
tion was processed through statistical and artificial intelli-
gence models to define spatial habitats’ suitability for each
species. The overlap of the territorial suitability between the
presence of host and CS occurrence areas allowed the defini-
tion of levels of spatial risk of prion transmission, adding a
new level of understanding about the potential role of domes-
tic small ruminants’ positive flocks influencing the emergent
risk patterns of CS transmission to wild cervids.

2 Materials and methods

2.1 Study area

Our study was conducted in the central-north Portugal re-
gions of Guarda and Castelo Branco districts, where most
cases of infection in domestic small ruminants were reported
(Fig. 1). This region encompasses several protected natural
reserves, including the Douro International Natural Park, the
Tagus International Natural Park, the Special Protection Area
of Côa Valley, the Serra da Estrela Natural Park, and the
Serra da Malcata Nature Reserve. The study area is charac-
terised by rough and heterogeneous landscapes, experiencing
a Mediterranean climate with dry summers and cold winters,
with continental influences (Monteiro et al., 2017).

The land cover and habitat structure are influenced by lo-
cal conditions and human activities that contribute to a land-
scape mosaic with profound variations (Meneses et al., 2018;
Tonini et al., 2018). In the northern part of the study area
(Guarda), the topography promoted a landscape dominated
by dense shrubs interspersed with fields of olives, almonds,
and cereals. The landscape gradually evolves, going south to
industrial forest plantations and scattered woodlands of oaks.
In the valleys of the southern areas, farmlands and agro-silvo-
pastoral systems dominate the landscape due to a lower ter-
rain roughness.

In the last decades, the socioeconomic dynamics across
the region promoted changes in land use and occupation, due
to the increasing land abandonment and rural exodus, result-

Figure 1. Geographical description of the study area in terms of the
national and cross-border framework and digital elevation model.

ing in a human population scattered across small rural vil-
lages, where domestic flocks are held at different densities
and management regimes.

2.2 Wild cervids and classical scrapie data

Data collected by the Portuguese CS surveillance programme
(from 2008 to 2020) allowed the geo-localisation of the in-
fected flocks. Of the 16 national flocks infected, 12 were in
our study area, resulting in 11 different geographical pres-
ence points.

The geographical distribution of wild cervids was com-
piled using different sources for Portuguese free-ranging
cervids (red deer and roe deer). The baseline information was
gathered from the Atlas of Mammals in Portugal (Mathias et
al., 2023), which combines information collected from 2000
to 2018 over a grid cell size of 10×10 km. Several field cam-
paigns based on camera trapping carried out during 2021 to
update and detail the distribution of target host species (Grilo
et al., 2022) were also considered. Both sets of geographical
data (centroid of the grid cells and the camera points) were
combined using a GIS environment to merge the presence
points relative to red deer and roe deer.

To extract spectral information about the habitat, the
species’ home range was considered through the creation of
a circular buffer aimed at capturing the surrounding environ-
ment characteristics that enable the respective species’ pres-
ence. For each cervid presence point collected, we consid-
ered a surrounding area of 1000 ha for red deer and 480 ha for
roe deer. In situations where the same area has been multiple
times encompassed in several home ranges, only one point
was considered, resulting in the reduction of the number of
presences considered and information bias. Additionally, for
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Figure 2. Territorial adequacy matrix illustrating the presence of
classical scrapie (x axis) and hosts (y axis) to define categories of
risk transmission where grey cells denote areas with no suitability
for either species or only one, while coloured cells represent areas
where both species can coexist.

the 11 flocks infected with CS, an average distribution area
of 380 ha was considered (Carvalho et al., 2008; Fontana et
al., 2022; Jarnemo et al., 2023).

2.3 Remote sensing data

The Operational Land Imager (OLI) and Thermal Infrared
Sensor (TIRS) are instruments on board the Landsat 8 satel-
lite that record multispectral imagery and land surface tem-
perature at a moderate spatial resolution (30 and 100 m re-
spectively) of the earth’s surface. This information is avail-
able on the Google Earth Engine (GEE), a cloud-based
geospatial analysis platform that enables users to visualise
and download raw and processed satellite data (Velastegui-
Montoya et al., 2023).

Spectral indices were used due to their ability to spatialise
the main structural and temporal components of the territory
(Wilson et al., 2013; Khamdamov et al., 2021; Long et al.,
2019) acting as a proxy to factors affecting host occurrence
(Torres et al., 2011). The normalised difference vegetation
index (NDVI) indicates types of vegetation cover since it
is sensitive to chlorophyll content; the enhanced vegetation
index (EVI) distinguishes differences in the canopy struc-
ture, architecture, and physiognomy; and the normalised dif-
ference moisture index (NDMI) provides insights into veg-
etation moisture variations and humidity levels through the
landscape. Additionally, we used the land surface temper-
ature (LST), which measures the emission of thermal radi-
ance from the land surface serving as a thermal proxy, delin-
eating microclimates that influence species composition, and
the soil-adjusted vegetation index (SAVI), which takes into
account the influence of soil brightness in areas where veg-
etative cover is low, unveiling information about vegetation
cover types in arid spaces. Together, these indices allowed us
to aggregate several layers of information of the landscape

composition, aiding in identifying areas that are likely to sup-
port target species and, consequently, areas where the risk of
CS spill-over may be heightened.

For this study, four Landsat 8 cloud-free images were col-
lected throughout the year 2021, covering the beginning of
spring (15 March), the beginning and end of summer (6 Au-
gust and 21 September), and the middle of autumn (25 Octo-
ber).

For each image, a set of vegetative and biophysical in-
dices was calculated through GEE (Ermida et al., 2020;
Aghababaei et al., 2021; Velastegui-Montoya et al., 2023)
following the described equations:

NDVI=
NIR− red
NIR+ red

, (1)

EVI= 2.5
NIR− red

(NIR+ 6red− 7.5blue)+ 1
, (2)

NDMI=
NIR−SWIR
NIR+SWIR

, (3)

SAVI= 1,5 ·
(NIR− red)

(NIR+ red+ 0,5)
, (4)

LST=
BT

1+
(

0,00115·BT
1,4388

)
·Ln(ε)

, (5)

where blue represents band 2, red represents band 4, NIR rep-
resents band 5, and SWIR represents band 6 of the Landsat 8
satellite, and BT (brightness temperature) and ε (emissivity)
are extrapolated from the same platform.

The calculated indices were downloaded and, in a GIS en-
vironment, underwent a resampling process to homogenise
the resolution of all data at 300 m by applying a resample
bilinear interpolation. This resampling process is necessary
since SDMs need environmental variables with same spatial
extent and number of pixels to predict species distributions
across space. This technique also allows a better computa-
tional performance by reducing the total number of analysed
pixels, which can be helpful for covering large areas. The
resampled spectral data were delimited by a buffer zone of
10 km around the districts of Guarda and Castelo Branco, to-
talling an area of over 1.8× 106 ha.

2.4 Multi-algorithm supervised classification and
transmission risk

Despite the widespread use of distribution models, predic-
tions based on the limited occurrence records for individ-
ual species should be considered preliminary and approached
with particular caution, especially when derived from small
sample sizes (Wisz et al., 2008; van Proosdij et al., 2016).
Nevertheless, they are helpful, adding a spatial knowledge
that promotes valuable insights into habitat suitability and
potential distributions serving as a foundation for guide field
actions and further refinement as more data become avail-
able.
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Figure 3. Registered presence areas of wild cervids and classical scrapie with associated home range.

The SDM biomod2 (version 3.4.6) (Thuiller et al., 2009),
available as an R package, can be applied to perform pixel-
based supervised classification through an ensemble ap-
proach using standard defaults (consult Supplement). The
analyses were supported by several supervised classification
algorithms: random forest (RF), classification tree analysis
(CTA), artificial neural network (ANN), generalised linear
model (GLM), and generalised additive models (GAM). For
the input dataset, three sets of random pseudo-absences equal
to the number of presences and 10 model repetitions were
performed (Barbet-Massin et al., 2012). Due to the red deer
home range encompassing a much larger area (in compari-
son to the other case study species), in this case, only 10 % of
the pixels (randomly selected) were considered as presence
points, reducing processing time and computational needs.

To evaluate the performance of the classifiers, holdout
cross-validation was used by setting 80 % of the dataset for
training and 20 % for evaluation purposes. Additionally, we
ensured a prevalence of 0.5, which means that the presences
and the pseudo-absences have the same weight in the model
calibration process.

To assess the models’ performance, both partial and en-
semble, we calculated the true skill statistic (TSS), Cohen’s
kappa (KAPPA), and the area under the receiver operating
characteristic curve (ROC). The first two measures range
from [−1, 1], while the latter varies between [0, 1]. Val-
ues closer to 1 indicate better-performing classifiers and
a higher discrimination ability. To complement these mea-
sures, we also calculated sensitivity and specificity. Sensitiv-
ity is the proportion of observed presences accurately pre-

dicted, whereas specificity is the proportion of observed ab-
sences that are correctly predicted.

Although each statistical model offers a distinct perspec-
tive, TSS and Kappa are threshold-dependent measures that
consider the number of correctly classified presences and ab-
sences relative to a threshold. In contrast, ROC is a threshold-
independent measure that evaluates the final result as a con-
tinuous value being more susceptible to overestimating the
classifier’s performance.

Both TSS and Kappa measures can be employed to de-
rive a binary outcome through the application of a numeri-
cal threshold. However, Kappa is also sensitive to class im-
balance as it assesses both true positives and true negatives
separately, rather than measuring an overall agreement be-
tween observed and predicted classifications. This renders
TSS a more reliable metric in scenarios where high sensitiv-
ity (the proportion of observed presences correctly predicted)
is more crucial than high specificity (the proportion of ob-
served absences that are correct).

To convert the ensemble classifier model’s binary outcome
into probability or suitability values, a numerical thresh-
old (cutoff) was applied (TSS > 0.8). Pixels below the TSS
threshold value indicate no similarity to presence areas, pix-
els closely above the threshold indicate a very low spectral
similarity to presence areas, and gradually output values near
the maximum rescaled probabilistic value of 1000 indicate a
very high spectral similarity.

All the ensemble forecasts (for the distributions of the two
wild cervids and CS) were stratified in a GIS software us-
ing natural breaks (NB). The NB classification (Jenks) was
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Table 1. Results of the accuracy scores by classification algorithm for the distribution of wild cervids and the location of classical scrapie
occurrence areas. Values show the average for each performance measure: TSS – true skill statistic; ROC – area under the receiver operating
curve; KAPPA – Cohen’s kappa.

Classification Red deer Roe deer Classical scrapie

Algorithm TSS KAPPA ROC TSS KAPPA ROC TSS KAPPA ROC

RF 0.39 0.44 0.74 0.53 0.56 0.85 0.73 0.72 0.92
CTA 0.28 0.28 0.63 0.40 0.41 0.74 0.60 0.61 0.83
ANN 0.43 0.44 0.72 0.52 0.51 0.87 0.79 0.77 0.93
GLM 0.39 0.39 0.70 0.42 0.41 0.78 0.66 0.62 0.88
GAM 0.41 0.41 0.71 0.43 0.44 0.78 0.66 0.64 0.87

employed to stratify the data within the ensemble into cate-
gories, aiming to maximise homogeneity within each group
and heterogeneity between categories. Values below the
threshold were not mapped and considered unsuited, and val-
ues above threshold were reclassified into three classes: low
suitability [threshold:NB1], average suitability ]NB1:NB2],
and high suitability ]NB2-1000].

The associated risk of spatial superposition between the
predicted distribution of each wild cervid species with the
CS presence was assessed through a risk matrix. From the
combination of the suitability classes from each of the wild
cervids and CS, a risk transmission ranking was obtained
ranging from low risk (low–low; low–average; average–low),
average risk (high–low; low–high; average–average), and
high risk (average–high; high–average; high–high) (Fig. 2).

3 Results

3.1 Georeferenced presence areas

The collection of data points allowed to spatialise the geo-
graphical distribution of host and CS home ranges are shown
in Fig. 3. The affected flocks presented a semi-extensive pro-
duction system with different flock sizes: two flocks (20–89
sheep), five flocks (90–335 sheep), and four flocks (more
than 335 sheep). In general, the collected data indicate that
red deer (n= 90) was distributed across the south of the
study area, while roe deer (n= 68) and CS (n= 11) had a
higher dispersion on the northern territories. In the CS case,
presence points that showed occasional overlapping ranges
(less than 10 %) were retained due the small number of pres-
ences.

3.2 Models performance and habitat suitability mapping

The partial classification of the individual models’ perfor-
mance, as shown in Table 1, ranged from poor (< 0.5) to
moderate (0.6 < 0.7) average scores. The best results, with
high accuracy (> 0.9), were observed under the ROC for CS,
particularly with RF and ANN models. The final consensus
result, derived from the ensemble model, demonstrated very
good performance values in terms of sensitivity and speci-

Table 2. Accuracy scores of the final ensemble classifier combining
biomod2 algorithms for the distribution of wild cervids and classical
scrapie occurrence areas using TSS – true skill statistic.

Testing Cutoff Sensitivity Specificity

Red deer 0.95 730 95.7 98.8
Roe deer 0.94 634 98.4 96.2
Classical 0.87 493 96.8 89.8
scrapie

ficity, as shown in Table 2. This evaluation was higher than
what was achieved by the individual models, as expected
(Hao et al., 2020).

Regarding the importance of the selected indexes for the
elaboration of the ensemble model, LST was the variable
with higher importance for the prediction followed by the
normalised difference water index (NDWI) for all the target
species. In contrast, SAVI had the poorest contributions for
the target cervids and NDVI in the case of CS. The individ-
ual variable with higher importance was the LST at the be-
ginning of spring, closely followed by the LST at the end of
summer for all study cases.

The results were able to identify areas spectrally identical
to those occupied by the host species and CS, suggesting the
suitability of these territories for a possible presence (Fig. 4).
Overall, the collected data revealed that the areas with spec-
tral behaviour suitable for the occurrence of species encom-
passed 18 % of our study area for red deer, 14 % for roe deer,
and 11 % for CS.

3.3 Risk of classical scrapie spill-over from domestic
small ruminants to wild cervids

Among the considered hosts, roe deer presented the high-
est risk of CS transmission. This is not only because they
cohabited common territories but also because these territo-
ries were considered highly suitable for CS presence. Red
deer had a smaller transmission risk area concentrated in the
south of the territory (Fig. 5). The results highlight, with spe-
cial relevance in the north of the territory, areas with a higher
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Figure 4. Distribution of the habitat suitability for the presence of the host species and classical scrapie based on respective threshold
calculated on biomod2 and natural breaks for each individual ensemble model.

Table 3. Habitat adequacy to classical scrapie and wild cervids co-
habiting across the study area expressed in number of pixels and
hectares (ha) by host contagion risk.

Host Pixel Area (ha) Pixel Area (ha)

contagion risk Red deer Roe deer

Low 290 2610 469 4221
Medium 120 1080 635 5715
High 30 270 308 2772

probability of promoting CS dissemination or from where CS
transmission emergence can occur. Overall, the suitable area
for red deer spanned over 3960 ha, although more than half
of this area was classified as low risk, 270 ha was identified
as high risk. In the north, the roe deer transmission risk area
covered 12 708 ha, of which 2772 ha was classified as high
risk (Table 3). In total 6 % of the study area was classified
with some level of spill-over risk for the roe deer and only
2 % for red deer.

4 Discussion

While exploratory spatial analyses of CS infection risk are
not novel (Li et al., 2023; Simons et al., 2019) they often fail
to yield a spatially explicit final output aligned with the re-
quirements of local policymakers and stakeholders. The ap-
proach developed in this article aims to bridge the gap be-
tween scientific knowledge and territorial needs by gener-
ating a consensus map of the risk of prion spill-over from

domestic small ruminants to wild cervids hosts compatible
with territorial strategies (at a 300 m resolution) in a straight-
forward manner.

Previous works primarily focused on CS environmental
suitability at a global scale indicated that factors such as the
minimum temperature of the coldest month (−10 to 10 °C)
(Li et al., 2023) and the precipitation of the driest quarter
(0 to 87.8 mm) (Maddison et al., 2012) were positively cor-
related with the probability of prion infection – conditions
that prevail in our study area. Prions, akin to many other
pathogens, retain infectivity in the soil for extended periods
(Somerville et al., 2019) and easily disseminate within inter-
connected systems. Also the flock density (associated with
road density) and soil drainage capacity (Georgsson et al.,
2006) positively influence prion dissemination. These find-
ings align with our results, as northern territories charac-
terised by higher flock density and sloping landscapes with
elevated sand content (Atterberg scale) favour drainage and
potential prion propagation.

The fact that the production of small ruminants in the re-
gion is associated with long periods of grazing in open areas,
without natural barriers to other animals, also contributes to a
higher risk. In these grazing areas, sick animals can contami-
nate food and water resources through their excretions, secre-
tions, and tissues resulting from births, which can be shared
with cohabiting cervids, facilitating the transmission of this
disease to this wild population. Furthermore, rural abandon-
ment is associated with the decline in landscape heterogene-
ity with the replacement of the traditional agroforestry sys-
tems by homogeneous shrublands, which potentially leads to
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Figure 5. Distribution and classification map of CS risk transmis-
sion (areas common to the presence of classical scrapie in domestic
small ruminants and suitability for wild cervids) according to the
territorial adequacy matrix.

an expansion of the range of wild cervids and increased over-
lap with the remaining area of pastures for domestic small
ruminants.

Advancements in integrating remote sensing technologies
with ecological modelling have empowered researchers to
utilise an array of remotely sensed variables with substantial
potential for elucidating ecological patterns (Alcaraz-Segura
et al., 2017). The use of satellite indexes at medium reso-
lution proved to be an integrative tool for exploring causal
relationships between habitat structure, landscape biophysi-
cal attributes, and comprehensive indicators of transmission
risk.

The spatial delineation of areas potentially fostering the
risk of transmission from domestic small ruminants to wild
cervids reveals that roe deer pose the highest risk of facilitat-
ing disease transmission, particularly in the northern region.
Even though no natural prion diseases have been identified
in roe deer, serial protein misfolding cyclic amplification re-
vealed that CS prions were amplified with roe deer brain
(Morales et al., 2012), showing that this species putatively
represents an important vector for CS prion transmission.
Conversely, red deer exhibit a smaller transmission risk area,
primarily concentrated in the south. The heightened risk of
prion transmission in the northern Guarda District (attributed
to greater territory suitability for CS occurrence) implies a
significant land cover homogeneity in the region. The spec-
tral resemblance of large swaths of the territory to CS home
ranges (comprising mainly farmlands, shrubs, and low veg-
etation) suggests that this landscape homogeneity expands
the potential range of prion occurrence and consequently el-
evates the risk of infecting wild cervids.

However, the assessment of prion transmission risk is only
partially achieved by superimposing potential distribution

patterns of these factors; this proposal serves as an invalu-
able starting point, facilitating the precise development of
complementary multi-scale approaches (Rouan et al., 2010).
These approaches can be enriched by combining holistic dis-
tribution patterns with geographical barriers to wild cervid
distribution (e.g. rivers, motorways, topography) or by fur-
ther exploring individual data on the number, sex, age, and
reproductive numbers of small domestic ruminant flocks.
Additional enhancements to this study can also be realised
through more extensive and detailed time series analyses by
incorporating data on the presence of CS (not only from do-
mestic small ruminants but also from wild cervids) and by
adopting a resolution matching the species’ home range. The
implementation of the suggested changes will likely produce
more robust predictions, leading to deeper insights.

The future integration of empirical, mechanistic, and cor-
relative modelling techniques within a unified framework
(Bastos et al., 2018) holds the potential to enhance our un-
derstanding of the principal drivers behind host species dis-
tributions at regional scales, while also predicting responses
of significance for ecological and disease risk management
at local scales.

This study stands as the first investigation conducted in
Portugal to evaluate spatial risk levels of spill-over from clas-
sical scrapie in domestic small ruminants to wild cervids,
particularly in a region where this disease has been recorded
within domestic flocks. Our approach is of particular im-
portance since the ongoing rural abandonment observed in
this region, with the consequent decline in the landscape het-
erogeneity historically promoted by the agricultural mosaic,
seems to hold an increased risk of CS transmission in the fu-
ture. In fact, the replacement of the traditional agroforestry
systems by homogeneous shrublands, associated with the so-
called “renaturalisation” and the effects of the fire regime,
will potentially lead to an expansion of the range of wild
cervids, increasing the potential overlap with the remaining
area of pastures for domestic small ruminants.

Overall, our methodology offers a spatially explicit frame-
work that represents a promising modelling approach, read-
ily applicable to different wild communities and species im-
pacted by zoonoses under the influence of emergent habi-
tat patterns induced by structural and functional landscape
changes.
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