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Abstract. Tools to predict pollinator activity at regional scales generally rely on land cover maps, combined
with human-inferred mechanistic rules and/or expert knowledge. Recently, Giménez-García et al. (2023) showed
that, using large pollinator datasets, different environmental variables, and machine learning models, those pre-
dictions can be enhanced but at the cost of losing model interpretability. Here, we complement this work by
exploring the potential of using advanced machine learning techniques to directly infer wild-bee visitation rates
across different biomes only from land cover maps and available pollinator data while maintaining a mechanistic
interpretation. In particular, we assess the ability of convolutional neural networks (CNNs), which are deep learn-
ing models, to infer mechanistic rules able to predict pollinator habitat use. At a global scale, our CNNs achieved
a rank correlation coefficient of 0.44 between predictions and observations of pollinator visitation rates, doubling
that of the previous human-inferred mechanistic models presented in Giménez-García et al. (2023) (0.17). Most
interestingly, we show that the predictions depend on both landscape composition and configuration variables,
with prediction rules being more complex than those of traditional mechanistic processes. We also demonstrate
how CNNs can improve the predictions of our previous data-driven models that did not use land cover maps by
creating a new model that combined the predictions of our CNN with those of our best regression model based
on environmental variables, a Bayesian ridge regressor. This new ensemble model improved the overall rank
correlation from 0.56 to 0.64.

1 Introduction

Spatial modeling of pollinator populations is an effective
way to describe the effects of future land-use changes on
pollinator availability, identify areas at risk of pollination
deficits, and convey this knowledge to stakeholders (Gard-
ner et al., 2020; Polce et al., 2013). Such knowledge trans-
mission is essential to effectively use managed pollinators
as well as to support populations of wild pollinators within

modern agricultural landscapes. Previous research assessing
the fit of different modeling techniques to rank sites by their
values of pollinator visitation rates to crop fields (Giménez-
García et al., 2023) showed that, overall, the mechanism-free
machine learning models tested were more accurate than a
widely used mechanistic model (Lonsdorf et al., 2009) and
its adaptations, at both biome and global scales. This dispar-
ity likely arises from the simplicity of the mechanistic mod-
els tested, which are based on assigning separate nesting and
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flowering quality scores to each habitat for different taxa in
land cover maps while accounting for flight distances. In-
deed, more sophisticated mechanistic models can yield bet-
ter results, at least at intermediate scales between individ-
ual biomes and global assessments (Gardner et al., 2020).
However, they require extensive ecological knowledge, mak-
ing calibration difficult with noisy, biased, and limited data
(Gardner et al., 2020).

In this technical note, we explore the use of deep learn-
ing to infer predictive mechanistic rules without explicitly
enforcing specific mechanisms, aiming to estimate polli-
nation services using land cover maps on a global scale.
This approach could enhance predictive power without los-
ing a mechanistic interpretation and hence help us under-
stand how habitat quality and landscape composition affect
wild-pollinator availability. These predictions would be par-
ticularly important within areas where expert knowledge is
limited and hence it is not possible to calibrate mechanistic
models (Giménez-García et al., 2023; Gardner et al., 2020).
Unlike classical machine learning, deep learning does not re-
quire the prior identification of important data features using
expert knowledge (Guyon et al., 2008), which is beneficial
when features are not obvious or are difficult to extract, as in
image-based maps (Borowiec et al., 2022). Our hypotheses
are (1) deep learning algorithms can use image-based maps
to extract novel mechanistic rules linking land cover com-
position and configuration to the pollination services of wild
bees, (2) a model based on land cover maps with more com-
plex rules will outperform the mechanistic models previously
tested in Giménez-García et al. (2023), and (3) combining
predictions from the land-cover-map-based model with other
machine learning models using a broader set of environmen-
tal variables from Giménez-García et al. (2023) will enhance
the overall predictive power.

To test these hypotheses, we used the same subset of vis-
itation rates and site records from CropPol (Allen-Perkins
et al., 2022), a global dataset featuring data on visitation rates
to different crops, as in Giménez-García et al. (2023) to cre-
ate the training and test partitions for our models. The same
split for cross-validation was also used to ensure coherence
with the results in Giménez-García et al. (2023). We fitted a
convolutional neural network (CNN) (LeCun et al., 2010; He
et al., 2016), a deep learning model that is particularly well
suited for processing image data (see Guyon et al., 2008, for
an introduction to the algorithm and Fig. 1 along with Ap-
pendix A for our model details). The algorithm was fed with
the nine “fraction maps” (19× 19 pixels, each a 100 m pixel)
extracted from the Copernicus Dynamic Land Cover prod-
uct (Buchhorn et al., 2020) for each location in the training
and test datasets (see Fig. A1 for an example). After fitting
the CNN algorithm, we adapted the Gradient-weighted Class
Activation Mapping (grad-CAM) technique (Selvaraju et al.,
2019) to our regressor CNN to identify which parts of the im-
age the CNN focuses on when predicting wild-bee visitation
rates. This provided pixel importance estimates for the test

Figure 1. Schematic representation of our CNN model. The al-
gorithm is fed with inputs (tensors) that contain nine layers, each
with 19× 19 pixels. Each layer corresponds to one of the nine frac-
tion maps, providing proportional estimates (i.e., the percentage of
a 100 m pixel covered by a specific class of land cover) for vege-
tation and ground cover types (see Fig. A1 for further details and
an example). These layers are extracted from the Dynamic Land
Cover product by Copernicus, which provides annual global land
cover maps and cover fraction layers for the reference years 2015 to
2019 (Buchhorn et al., 2020).

dataset maps (Appendix B). To have a glimpse of the rules or
mechanisms the CNN algorithm has learned, we used a gen-
eral linear mixed model (GLMM) to relate pixel importance
in the land cover maps to their composition and configuration
(Appendix C). Finally, we combined the predictions from the
CNN model with those from the best model identified by
Giménez-García et al. (2023), the Bayesian ridge regressor
(see Guyon et al., 2008, for an introduction to the algorithm
and model details in Fig. 2 and Appendix D), by fitting both
into a neural network, another deep learning model (Good-
fellow et al., 2016). To evaluate their performance, we used
the validation procedure outlined by Giménez-García et al.
(2023).

Regarding our first hypothesis, our analyses of the CNN
model revealed that the visitation rates of wild bees depend
on both landscape composition and configuration, with pre-
diction rules being more complex than those of the mech-
anistic processes considered in Lonsdorf et al. (2009) and
Giménez-García et al. (2023) (see Fig. 2). On average, we
found that only about one-third of the pixels in our maps are
“important” for predicting visitation rates. A preliminary ex-
ploration of which combinations of pixels are important for
making predictions shows that complex interactions among
the dominant land-use type, the size of the land-use type clus-
ters, and their distance to the geometric center (centroid) of
the landscape are significant (see Appendix B and C). Addi-
tionally, the features learned by the model indicate that the
number of edges and boundaries between habitats, a clas-
sic measure of habitat fragmentation, is significant (Fig. A2).
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Figure 2. Schematic representation of the relationships between input variables, models, predictions, and ensemble components for predict-
ing wild-bee visitation rates. Arrows indicate connections, with elements used to test the hypotheses highlighted in purple (Hypothesis 1),
pink (Hypothesis 2), and yellow (Hypothesis 3). The hypotheses propose (1) deep learning algorithms can extract novel mechanistic rules
linking land cover composition and configuration to pollination services of wild bees, (2) a model with more complex rules based on land
cover maps will outperform the previous mechanistic models in Giménez-García et al. (2023), and (3) combining predictions from this model
with others using broader environmental variables will improve predictive power. The ensemble model for testing Hypothesis 3 integrates
the outputs of the CNN (Fig. 1) and the best machine learning model identified by Giménez-García et al. (2023), a Bayesian ridge regressor,
to estimate visitation rates using a neural network (see details in Appendix D).

This aligns well with previous studies showing that forest
edges and flower-rich meadows are suitable areas for wild
bees (Kells and Goulson, 2003; Svensson et al., 2000; West-
phal et al., 2003) and that an increasing degree of fragmen-
tation enhances pollination rates at the farm level (Rahimi
et al., 2021). In addition, our GLMM to understand CNN
pixel importance also showed that pollination in the center
of our maps, where the crops are placed, slightly decreases
with increasing distance from pixels covered by trees (left
subpanel in Fig. 3a and Table C1). This finding is consistent
with empirical evidence suggesting that the effects of land-
scape structure on pollination lead to a decrease in bee abun-
dance and visitation rates with distance from natural habi-
tats (Ricketts et al., 2008). Woodlands and forests provide
suitable nesting habitats and floral resources for pollinators,
particularly at the forest edge (Svensson et al., 2000). We
also found that waterbodies far from the crops can signif-
icantly and positively impact wild-bee visitation (left sub-
panel in Fig. 3a and Table C1). This is in agreement with
empirical evidence reporting that ponds are beneficial for in-
sects (Stewart et al., 2017) and show high bee abundance
due to the high heterogeneity around them (Vickruck et al.,
2019). Furthermore, we found that large clusters of “impor-
tant” pixels are generally more relevant than small ones when
predicting wild-bee visitation rates (right subpanel in Fig. 3a
and Table C1). This finding is in line with previous research
showing that larger patches host greater levels of biodiversity
(Tscharntke and Brandl, 2004), probably related to greater
heterogeneity and habitat diversity within these larger areas
(Fahrig, 2020), more resources (Martin et al., 2019), and sup-
port for larger populations (Taki et al., 2018). Nevertheless, it

is important to note that the GLMM relationships described
above serve only as a preliminary exploration of the mech-
anisms observed by CNNs. These mechanisms are likely to
be more complex and deserve further attention as these tools
are becoming more widely used. For example, we can iden-
tify particular configurations of complementary habitats that,
when combined, enhance pollinator visitation rates.

Regarding our second hypothesis, which posited that a
model based on land cover maps with more complex rules
would outperform the mechanistic models in Giménez-
García et al. (2023), the CNN model achieved a global rank
correlation coefficient of 0.44 for pollinator visitation rates,
roughly doubling the best mechanistic model (0.17, Table 1,
Figs. 2 and E1). Simple mechanistic rules like those in Lons-
dorf et al. (2009) could perform reasonably well in homo-
geneous (simple) landscapes but less effectively in heteroge-
neous (complex) landscapes (Kennedy et al., 2013), where
our approach can be better suited.

Additionally, our findings confirm our third hypothesis:
CNNs enhance the predictions of previous data-driven mod-
els without land cover maps. Our ensemble model improved
the rank correlation from 0.56 to 0.64 (Table 1, Figs. 2 and
3b). While we are still far from achieving a high predictive
power at global scales, as more data become available, these
modeling techniques hold promise not only to predict pol-
linator ecosystem services, but also to interpret which land-
scape characteristics are explaining these predictions.

Not only do we confirm that data-driven models can help
us identify important variables in ecological services such
as pollination (Civantos-Gómez et al., 2021; Gardner et al.,
2020), but also their ability to uncover non-obvious patterns
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Figure 3. (a) Marginal effects of the GLMM modeling CNN pixel
importance (R package ggeffects v1.3.1; Lüdecke, 2018) in Ap-
pendix C. The left subpanel shows the effect of pixel distance to the
map center by “dominant land cover” on CNN pixel importance for
the following land cover types: bare (brown), built-up (red), crops
(yellow), grass (light green), permanent water (dark blue), seasonal
water (cyan), shrub (olive), and tree (dark green). The right sub-
panel displays the effect of the cluster size (to which the pixel be-
longs) and the most frequent land cover type of that cluster on CNN
pixel importance for the same land cover types. Lines represent ex-
pected values of explanatory variables, and bands represent confi-
dence intervals. (b) The observed visitation rate (counts per minute)
versus the predicted visitation rate (counts per minute) using the en-
semble model for bumblebees and other wild bees combined. The
dashed line shows a linear fit. The Spearman rank correlation value
obtained is Sρ = 0.64.

in data, such as maps, may also enhance our mechanistic un-
derstanding of these services in environments that are data-
rich but lack expert biome-specific knowledge (Borowiec
et al., 2022). The challenge lies in developing strategies to
increase the interpretability of deep learning algorithms so
that experts can assess data-inferred prediction rules, pro-
viding the best opportunity to obtain realistic representa-
tions of complex ecological processes like pollination. Deep
learning, serving as both an alternative and a complement
to mechanistic modeling in solving complex inference prob-
lems, is poised to become a crucial tool for efficiently using
managed pollinators and supporting wild pollinator popula-
tions in agricultural landscapes.

Table 1. Metrics obtained by comparing predictions and observa-
tions from different models on a global scale: Spearman’s coeffi-
cient (Sρ ), mean absolute error (MAE), and root-mean-square error
(RMSE). The mechanistic models (denoted by MM) are tested for
the taxonomical group of other wild bees globally under two con-
figurations: the baseline by Lonsdorf et al. (2009) and the configu-
ration that considers pollinator activity (see Giménez-García et al.,
2023, for further details). The data-driven models (denoted by ML
for “machine learning”) are applied to the combined data from two
taxonomical groups: bumblebees and other wild bees (BayRid de-
notes Bayesian ridge regressor). Bold characters indicate variables
with a p value < 0.05.

Model configuration Sρ MAE RMSE

MM (baseline) 0.13 3.17 3.47
MM (pollinator activity) 0.17 3.06 3.37
ML (CNNs) 0.44 1.19 1.45
ML (BayRid) 0.56 1.06 1.32
ML (ensemble) 0.64 0.95 1.17

Appendix A: Description of the convolutional neural
network model

We developed a CNN model to predict wild-bee visitation
rates, a continuous output value, based on annual global land
cover maps. The model’s structure, sketched in Fig. 1, is as
follows:

– Input layers. Each input consists of a tensor with nine
layers and 19× 19 pixels. Each layer represents one of
the nine fraction maps, which provide proportional es-
timates (i.e., the percentage of a 100 m pixel covered
by a specific land cover class, namely bare cover, built-
up, crops, grass, moss/lichen, permanent water, seasonal
water, shrubs, and trees). These maps are derived from
the Dynamic Land Cover product, which offers annual
global land cover maps and cover fraction layers for the
reference years 2015 to 2019 (Buchhorn et al., 2020)
(see Fig. A1 for an example of the inputs).

– Convolutional layers. The model has six convolutional
layers.

The first layer processes the nine input layers using 16
filters, each with a kernel size of 3× 3, a stride of 1,
and padding of 1. This setup means each filter looks at a
3× 3 area of the input, moving 1 pixel at a time (stride),
and padding ensures the output size is the same as the
input size. This results in 16 feature maps. Each feature
map represents the response of the filters to the input,
indicating the activation level of specific neurons within
the network. For example, Fig. A2 shows the feature
maps extracted from the first layer of our CNN model
for the input displayed in Fig. A1. These feature maps
capture basic elements such as edges, boundaries, and
corners. The second layer takes the previous 16 feature
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Figure A1. Example of the inputs per site fed into the convolutional neural network. Each input is a tensor with nine layers and 19× 19
pixels. Each layer, represented as a panel in the figure, corresponds to one of the nine fraction maps, providing proportional estimates (i.e.,
the percentage of a 100 m pixel covered by a specific class of land cover) for vegetation and ground cover types: bare (a), built-up (b), crops
(c), grass (d), moss/lichen (e), permanent water (f), seasonal water (g), shrub (h), and tree (i). The color bars show the proportional estimate
of each land cover type. The data are extracted from the Dynamic Land Cover product, which provides annual global land cover maps and
cover fraction layers for the reference years 2015 to 2019 (Buchhorn et al., 2020).

maps and applies 32 filters (kernel size: 3× 3; stride:
1; padding: 1) to create 32 new feature maps, detecting
more complex patterns. The third, fourth, fifth, and sixth
layers apply 64, 128, 256, and 512 filters (kernel size:
3× 3; stride: 1; padding: 1), respectively.

After each convolutional layer, a SELU (scaled expo-
nential linear unit) function is applied (Klambauer et al.,
2017). This function introduces non-linearity, helping
the network learn more complex patterns.

– Output layer. After the final convolutional layer, the
output is flattened, converting the 2D feature maps into
a 1D vector. This vector is then fed into the final part of
the network, which processes the combined information
to produce the final output, the predicted visitation rate.

We used PyTorch (Paszke et al., 2019) for fitting the
convolutional neural network. In this training process, the

model uses the mean-squared-error loss function to mea-
sure the difference between predicted and actual values. We
trained the model for 1000 epochs using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learning rate of
0.001 and a weight decay of 0.0001 to prevent overfitting.
Additionally, L2 regularization is applied with a factor of
0.01, manually computed, and added to the loss to further
penalize large weights and reduce overfitting.
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Figure A2. Feature maps extracted from the first layer of our CNN model for the input shown in Fig. A1.

Appendix B: Results on pixel importance for the
CNN model

To create visual explanations for our predictions, we adapted
the Gradient-weighted Class Activation Mapping (grad-
CAM) technique by (Selvaraju et al., 2019) to our regres-
sor CNN. This technique helps us understand which parts of
the image the CNN focuses on when predicting the visita-
tion rates of wild bees, highlighting the most important ar-
eas. Specifically, grad-CAM generates an activation map by
taking a weighted sum of the feature maps from the final con-
volutional layer of the CNN. These weights are determined
by the regressor, indicating which features are most influen-
tial in predicting the visitation rates. The importance (grad-
CAM) values are normalized between 0 and 1, with higher
values indicating greater importance. For instance, the im-
portance values for the land cover types in Fig. A1 are shown
in Fig. B1. When analyzing the 19× 19 pixel input maps
from the test dataset, we found that 68.6% of the pixels are
not considered important (grad-CAM= 0; see histogram in
Fig. B2).

To facilitate the interpretation of the importance that grad-
CAM assigns to each pixel, we first created a map represent-
ing the dominant land cover for each pixel. Then we used
the grad-CAM values to define the transparency of the map’s
pixels: less important pixels appear faded, while highly im-
portant pixels retain almost their original color. For example,
Fig. B3a shows the dominant land cover map for the area in
Fig. A1, and Fig. B3b displays the result of applying grad-
CAM transparency to the same image. This approach allows
us to gain visual insights into the specific regions and their
dominant land cover that are critical for identifying the vis-
itation rate of wild bees. Additionally, we identified the Eu-
clidean distance of each pixel to the center of the map, the
size of clusters of pixels considered important (grad-CAM
value> 0), and the most frequent dominant land cover within
each cluster (MF-LC). As an example, Fig. B3c shows the
different clusters that appear in Fig. B3b.

Our dataset contained 61 370 pixels from 19× 19 pixel in-
put maps (n= 170 sites). The dominant land cover type for
most pixels was crops (41.7 %), followed by trees (28.7 %),
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Figure B1. Activation map generated in the sixth convolutional
layer of the convolutional neural network model for the input shown
in Fig. A1. The heatmap visualizes the pixels that are most im-
portant for the model’s decision, highlighting the regions that con-
tribute the most to the prediction of a specific visitation rate. The
importance values are normalized between 0 and 1, where higher
importance is represented by brighter colors and lower importance
(closer to zero) is represented by darker colors.

Figure B2. Histogram of the pixel importance (grad-CAM value)
for the 19× 19 pixel input maps (n= 170 sites).

grass (16.6 %), and built-up areas (9.9 %). There were no pix-
els where moss/lichen cover was dominant.

Overall, the pixels were at a medium distance from the
center of the maps (726.09± 269.78 m on average) and be-
longed to clusters with highly variable sizes (206.11±97.75
pixels per cluster on average). Most of these clusters were
dominated by the aforementioned land cover types: crops
(47.8 %), trees (29.8 %), grass (15.7 %), and built-up areas
(6.6 %).

We show the pixel importance for each pixel of the 170 test
sites at different levels of the following variables: (i) the dom-
inant land cover within the pixel (Fig. B4), (ii) the Euclidean
distance of each pixel to the center of the map (Fig. B5),
(iii) the most frequent land cover within the cluster where
the pixel belongs (Fig. B6), and (iv) cluster size (Fig. B7).

https://doi.org/10.5194/we-24-81-2024 Web Ecol., 24, 81–96, 2024



88 A. Allen-Perkins et al.: Comment on “Pollination supply models from a local to global scale”

Figure B3. (a) Example of the “dominant land cover map” where each pixel is assigned the land cover type with the highest proportional
estimate, as illustrated in Fig. A1. (b) Result of applying grad-CAM transparency in Fig. B1 to the map in panel (a). Less important pixels
appear faded, while highly important pixels retain almost their original color. (c) Clusters of important pixels (grad-CAM value > 0) that
appeared when processing the map in Fig. A1 (n= 7 clusters).
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Figure B4. Box plots displaying pixel importance (grad-CAM
value) for each dominant land cover type within the 19× 19 pixel
input maps from the test dataset (n= 170 sites): bare, built-up,
crops, grass, moss/lichen, permanent water, seasonal water, shrub,
and tree.

Figure B5. Box plots displaying pixel importance (grad-CAM
value) in relation to the Euclidean distance of each pixel to the cen-
ter of the map, for the 19× 19 pixel input maps from the test dataset
(n= 170 sites). The distance categories are small (up to 500 m),
medium (between 500 and 1000 m), and large (more than 1000 m).

Figure B6. Box plots displaying pixel importance (grad-CAM
value) for the most frequent land cover types within clusters of the
19× 19 pixel input maps from the test dataset (n= 170 sites): bare,
built-up, crops, grass, moss/lichen, permanent water, seasonal wa-
ter, shrub, and tree.

Figure B7. Box plots displaying pixel importance (grad-CAM
value) for the cluster sizes of the 19× 19 pixel input maps from
the test dataset (n= 170 sites). The size categories are small (up to
5 pixels), small–medium (6 to 100 pixels), medium–large (101 to
200 pixels), and large (more than 200 pixels).
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Figure B8. Box plots displaying pixel importance (grad-CAM
value) in relation to the Euclidean distance of each pixel to the cen-
ter of the map, categorized by the dominant land cover within each
pixel. The distance categories are those displayed in Fig. B5.

Figure B9. Box plots displaying pixel importance (grad-CAM
value) for the cluster sizes of input maps based on the most fre-
quent land cover (MF-LC) within each cluster. The size categories
are those displayed in Fig. B7.
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Appendix C: Modeling pixel importance

Table C1. Results for the following zero-inflated beta GLMM (n= 61 370 pixels): pixel importance ∼ (interaction between pixel’s distance
to the map’s center (distance) and its dominant land cover (D-LC)) + (interaction between the cluster size (size) and most frequent land
cover within the cluster (MF-LC)) + (1|site). The hurdle model depends on distance and cluster size. Bold characters indicate variables with
p value < 0.05. “P. water” and “S. water” denote “permanent water” and “seasonal water”, respectively.

Conditional model

Pixel importance (grad-CAM value) Estimate z value Pr(> |z|)

(Intercept) −0.320684 −6.475 9.47× 10−11

Scale (distance): bare (D-LC) −1.045299 −0.837 0.40245
Scale (distance): built-up (D-LC) 0.041530 1.459 0.14467
Scale (distance): crops (D-LC) 0.079235 8.032 9.60× 10−16

Scale (distance): grass (D-LC) 0.064743 2.854 0.00432
Scale (distance): P. water (D-LC) 0.218136 2.469 0.01355
Scale (distance): S. water (D-LC) −0.560308 −0.820 0.41237
Scale (distance): shrub (D-LC) 0.067188 0.828 0.40739
Scale (distance): tree (D-LC) −0.052518 −3.146 0.00165
Scale (cluster size): bare (MF-LC) 0.451509 1.476 0.13981
Scale (cluster size): built-up (MF-LC) 0.353376 9.904 < 2× 10−16

Scale (cluster size): crops (MF-LC) 0.385168 12.631 < 2× 10−16

Scale (cluster size): grass (MF-LC) 0.329110 9.496 < 2× 10−16

Scale (cluster size): P. water (MF-LC) 0.747008 9.411 < 2× 10−16

Scale (cluster size): S. water (MF-LC) 0.399688 1.182 0.23723
Scale (cluster size): shrub (MF-LC) 0.384105 5.349 8.85× 10−8

Scale (cluster size): tree (MF-LC) 0.372446 10.978 < 2× 10−16

Zero-inflation model

Pixel importance (grad-CAM value) Estimate z value Pr(> |z|)

(Intercept) 1.37344 83.68 < 2× 10−16

Scale (distance) 0.21540 13.72 < 2× 10−16

Scale (cluster size) 3.34406 118.75 < 2× 10−16

C1 Model for pixel importance

To explore how land cover composition and configuration af-
fect the importance of a given pixel, we fitted a general lin-
ear mixed model (GLMM) to each pixel of the 19× 19 land
cover maps of the test dataset. We used the pixel’s grad-CAM
value as our response variable, and, given that we are consid-
ering zero-inflated data at the unit interval (Fig. B2), we used
a zero-inflated beta regression model. The model included
the following as explanatory variables: (i) the interaction be-
tween a pixel’s dominant land cover (D-LC) and its distance
to the center of the map and (ii) the interaction between the
cluster size where the pixel belongs and the most frequent
land cover within that cluster (MF-LC). The size of the clus-
ter and the most frequent land cover within that cluster can-
not be included simultaneously as explanatory variables due
to high collinearity. We used “site” (i.e., the map ID) as a ran-
dom intercept to account for multiple pixels within the map
of each site. To fit the zero-inflation model we considered the
distance to the center of the map and the size of the cluster
as explanatory variables.

To keep the regression variables on similar scales and to
use the fitted parameters of the models as (within-study) ef-
fect sizes, i.e., measures of variable importance (Schielzeth,
2010), all numeric explanatory variables were centered and
scaled during the analysis.

Our analyses were conducted in R v4.3.0 (R Core Team,
2021), with the glmmTMB v1.1.9 package (Brooks et al.,
2017). We found no high collinearity among explanatory
variables when we checked their variance inflation factors
with the R package performance v0.8.0 (Lüdecke et al.,
2020). We also checked model assumptions with the R pack-
age DHARMa v0.4.6 (Hartig, 2020).

C2 Model results

The model results are shown in Table C1. According to
the zero-inflation model, the probability of a pixel having
zero importance and not being part of the original uninflated
beta distribution significantly increases for pixels that are far
away from the center of the map (distance' 726 m) and for
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Figure C1. DHARMa diagnostics for the zero-inflated beta GLMM, when the full dataset is considered (sample n= 61 370 pixels; “KS test”
denotes “Kolmogorov–Smirnov test”) (Hartig, 2020).

Figure C2. DHARMa diagnostics for the zero-inflated beta GLMM, considering only a randomly selected subset of the full dataset (sample
n= 6000 pixels; n.s. denotes “not significant”) (Hartig, 2020).

those pixels that belong to very large clusters (cluster size
' 206 pixels).

Regarding the conditional model, after controlling for
variation at the site level, our findings show that important
pixels (grad-CAM> 0) dominated by trees tend to be sig-
nificantly more important when they are closer to the center
of the map (where the visitation rate is measured). In con-
trast, important pixels mainly covered by crops, grass, or per-
manent water (grad-CAM> 0) increase in importance when
they are located farther from the center of the map.

Additionally, important pixels that belong to clusters most
frequently covered by built-up areas, crops, grass, perma-
nent water, shrubs, and trees tend to be more important in
larger clusters. However, it should be noted that, according
to Fig. B9, clusters dominated by built-up areas, permanent
water, and shrubs tend to be smaller than average.

Finally, upon examining the model’s residuals and as-
sumptions, we found that their distribution cannot be per-
fectly described by a beta distribution (Fig. C1). This is pri-
marily due to the large sample size (n= 61 370 pixels). An
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analysis of the same zero-inflated beta GLMM fitted to a ran-
dom 10 % subsample of the dataset shows better agreement
with the modeling assumptions (Fig. C2), and the trends of
the coefficients are similar to those of the model fitted with
the complete data (table not shown). Nevertheless, since the
model is used only to interpret pixel importance and not for
making predictions, the results of the full model are consid-
ered valid.

Appendix D: Ensemble (stacking) model

We developed a fully connected neural network (FCNN)
model to predict wild-bee visitation rates, a continuous out-
put value, based on the predictions from the best machine
learning model in Giménez-García et al. (2023), the Bayesian
ridge regressor. The model’s structure (model 3 in Fig. D1)
is as follows:

– Input layer. The input to the network is a tensor rep-
resenting the predictions obtained from the CNN model
(Appendix A) and those from the best machine learning
model in Giménez-García et al. (2023).

– Hidden layers with batch normalization and
dropout. The model consists of two hidden layers with
batch normalization and dropout, designed to improve
training stability and prevent overfitting.

– First hidden layer. The first hidden layer is a
fully connected (dense) layer with 32 neurons. Af-
ter the linear transformation, batch normalization
is applied to normalize the output of the linear
layer. This is followed by a ReLU (rectified linear
unit) activation function to introduce non-linearity.
Dropout with a rate of 0.685 is then applied, ran-
domly setting one-third of the activations to zero
during training to prevent overfitting.

– Second hidden layer. The second hidden layer is
also a fully connected layer with 32 neurons. Simi-
larly to the process for the first hidden layer, batch
normalization is applied, followed by the ReLU ac-
tivation function and dropout with a rate of 0.685.

– Output layer. The final layer is a fully connected layer
with a single neuron, which produces the predicted vis-
itation rate. Since the task is regression, no activation
function is applied at this stage, allowing the output to
be any real number.

The model was implemented using PyTorch
(Paszke et al., 2019) and trained using the model
NeuralNetRegressor from the skorch library.
The training process involved the following settings:

– Loss function. Mean-squared-error (MSE) loss was
used to measure the difference between predicted and
actual values.

Figure D1. Schematic representation of our ensemble model to pre-
dict visitation rates of wild bees. The algorithm is fed with the in-
puts required to run the CNN model shown in Fig. 1 and the best
machine learning model identified by Giménez-García et al. (2023),
the Bayesian ridge regressor. The ensemble model employs a neu-
ral network to estimate the visitation rates of wild bees using the
predictions from these models.

– Optimizer. The Adam optimizer (Loshchilov and Hut-
ter, 2019) was employed with a learning rate of 0.1.

– Training duration. The model was trained for 50
epochs.

– Data shuffling. Training data were shuffled at the be-
ginning of each epoch to ensure the model did not learn
the order of the training examples.

Appendix E: Results at a global scale for the CNN
model

Figure E1. The observed visitation rate (counts per minute) ver-
sus the predicted visitation rate (counts per minute) using the CNN
model for bumblebees and other wild bees combined. The dashed
lines show a linear fit. The Spearman rank correlation value ob-
tained is Sρ = 0.44.
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Code and data availability. The models’ source code and the
prepared input datasets are accessible at the following open repos-
itory: https://doi.org/10.5281/zenodo.14176334 (Allen-Perkins and
Giménez-García, 2023).
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