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Abstract. The results of a recent paper on the modeling of a honey bee colony have been supplemented and
strengthened by showing that the domain of biological validity of a mathematical model with unstable singularity
removed is contained in the domain of attraction of positive stable equilibrium. The results go beyond these of
the commented paper.

1 Introduction

Due to ecological role of honey bees, it is important to more
accurately assess the stability of honey bee colonies. Re-
cently, Romero-Leiton et al. (2022) (Sect. 3) proposed a
mathematical model of honey bee colony dynamics in the
form of a 3-dimensional nonlinear autonomous system. The
asymptotic stability analysis has been local and examined by
the linearization.

Observe that their model can be decomposed into the pop-
ulation part:

Ḃ = βf (T )− bB, Ṫ = ωB − aT (1)

and the equation of honey production M is as follows:

Ṁ = ρ
T

T + u
−αM − δTM, (2)

which significantly facilitates an analysis. Equation (1) is
classified as the age/structure model (Chen et al., 2021).
B and T are populations of immature and adult honey

bees, respectively; β stands for immature bee reproduction
rate; ω is adult bee maturation rate; a := σ +µT , where σ is
adult bee death rate from a stressful factor; µT is adult bee
natural death rate; b := µB +ω, and µB denotes immature
bee natural death rate. The eclosion function f has the form
of Hille’s sigmoidal function of the first order f (y)= y

y+ν
,

where ν stands for an average saturate rate (number of adult

bees needed for immature bees to reach half of its maximum
number). Notice that f is strictly increasing.
M is honey production; ρ is honey production rate; α de-

notes rate of honey loss due to natural causes; δ stands for
honey bee consumption rate in adult state, and u is an aver-
age saturate rate.

Positive quadrant R2+ (octant R3+) is the domain of bio-
logical validity of Eq. (1) (Eqs. 1 and 2).

The system Eq. (1) has always an equilibrium at the origin
and a desired positive equilibrium (B0,T0), and clearly

0= βf (T0)− bB0, 0= ωB0− aT0. (3)

The equilibrium point of Eq. (1) at zero ought to be an unsta-
ble saddle point, which is the case if and only if

1
ν
>
ab

ωβ
:= k, (4)

where k−1 is called ecological threshold. Then the one-
dimensional stable eigenspace of the linearized version of
Eq. (1) at (0,0) is the supporting line of R2+. By transla-
tion of coordinates x1 := B−B0 and x2 := T −T0, we reduce
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Eq. (1) to

ẋ1 = βg(x2)− bx1, ẋ2 = ωx1− ax2,

g(y) := f (y+ T0)− f (T0)= νy
(T0+ν+y)(T0+ν) ,

(5)

g(0)= 0, g(−T0)=−
T0

T0+ ν

(Eq. 1.3)︷︸︸︷
= −

bB0

β
=−kT0. (6)

The translation maps R2+, the domain of biological validity
of the model (Eq. 1), onto S0 := [−B0,∞)×[−T0,∞).

2 Preliminary analysis

Combining Eq. (5) we establish that x2 satisfies the Liénard
equation (LaSalle and Lefschetz, 1961, p. 59):

ẍ2 =−(a+ b)ẋ2−ωβ
[
kx2− g(x2)

]
.

Whence the energetic Lyapunov functional (weakly decreas-
ing along solutions)

V =
ẋ2

2
2ωβ
+

x2∫
0

[
ky − g(y)

]
dy, V̇ =−

a+ b

ωβ
ẋ2

2 ≤ 0

is readily available (LaSalle and Lefschetz, 1961, p. 60).
A set is invariant if solutions map this set into it-

self and strongly invariant if they map this set onto itself.

Lemma 2.1. The sector S0 is an invariant subset for solutions
of Eq. (5).

Proof. With Eq. (6), on a semi–straight line (x1 =−B0, x2 ≥

−T0), it holds that

ẋ1 = βg(x2)−bx1 ≥ βg(−T0)+bB0 =−
abT0

ω
+b

aT0

ω
= 0,

and trajectories weakly enter S0. Similarly on a semi-straight
line (x1 ≥−B0, x2 =−T0), one has

ẋ2 = ωx1− ax2 ≥−ωB0+ aT0 = 0,

so therein trajectories weakly enter S0.

3 Main results

Theorem 3.1. Assume that Eq. (4) holds. Every solu-
tion of Eq. (5) starting from S0 r {(B0,−T0)} tends to zero.

Proof. Thanks to Lemma 2.1 and since V is a Lya-
punov functional, for every l ≥ 0, the set � := {x ∈

S0 : V (x)≤ l} is invariant and compact (closed and
bounded). The strongly invariant limit set contained in{
x ∈� : V̇ = ẋ2 = ωx1− ax2 = 0

}
consists of two equilib-

rium points. Indeed ẋ2 ≡ 0 implies ẍ2 ≡ 0, which with the

Liénard equation leads to kx2 ≡ g(x2). Now, with Eq. (6), ei-
ther x2 ≡ 0 or x2 ≡−T0. In the first case x1 ≡ 0, and in the
second one x1 =−B0. The second case is eliminated by ex-
cluding the unstable equilibrium point. Modifying the result
slightly (LaSalle and Lefschetz, 1961, Theorem VI, p. 58)
or applying directly the result of Grabowski (2020, Theo-
rem 1.4), we get the claim.

Importing T = T (t) from Eq. (1), we can regard Eq. (2) as
a linear nonautonomous equation.

Ṁ(t)=− [α+ δT (t)]M + ρ
T (t)

T (t)+ u
, t ≥ 0

with the solution M(t)=M1(t)+M2(t), where

M1(t) := exp
(
−
∫ t

0 [α+ δT (τ )]dτ
)
M(0),

M2(t) :=

∫ t
0
ρT (τ )
T (τ )+u exp

(∫ τ
0 [α+δT (s)]ds

)
dτ

exp
(∫ t

0 [α+δT (s)]ds
) .

M1(t) exponentially decays to 0. With Theorem 3.1, for
(B(0),T (0)) ∈ R2+r {0}, it holds that T (t)−→ T0 as t→
∞. Then, applying L’Hôspital’s rule, we get

lim
t→∞

M(t)=
ρT0

(T0+ u)(α+ δT0)
:=M0,

so M(t)−→M0 as t→∞ and M(t)> 0, provided that
M(0)> 0. It is easy to see that M0 is an equilibrium of
Eq. (2). Thus, from Theorem 3.1 we obtain the following
corollary.

Theorem 3.2. Assume that Eq. (4) holds. The domain of bi-
ological validity R3+ of the full model (Eqs. 1 and 2) with
unstable equilibrium at 0 removed is the domain of attraction
of the positive equilibrium.

4 Conclusions

Theorem 3.2 describes the global behavior of the full system
and goes beyond the results of Romero-Leiton et al. (2022,
Sect. 3), which were local ones, in a neighborhood of posi-
tive equilibrium points. Basic facts are the following: (i) the
original model admits a decomposition, and (ii) Eq. (1) is re-
lated to the Liénard equation for which (iii) some construc-
tion of Lyapunov functionals are known (LaSalle and Lef-
schetz, 1961, p. 60, p. 115 and Grabowski, 2020, Sect. 2).

Let us indicate ecological aspects of our results:

i. The colony stability is much more robust than it would
be following the linearization; i.e., larger deviations of
initial conditions from the steady state are allowed (de-
viations of initial conditions can be interpreted as the
Dirac-type impulses additively disturbing the system).

ii. The colony reaches this via the internal stabilizing feed-
back realized by the eclosion.
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iii. The eclosion function may have a different form than
Eq. (5), provided that g(y)

y
< k for y > 0 and the line ky

is not an asymptote for g (this is needed to have level
sets of V bounded as required in the proof of Theo-
rem 3.2).
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