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Abstract. Widely recognized as a major threat to marine biodiversity, invasive species have become a funda-
mental global concern. With over 500 alien species identified in the Mediterranean alone, European seas are
particularly susceptible to the potential ecological and economic threats of invasives. The rate of marine species
introductions in the European Union (EU) continues to increase, with climate change facilitating their spread
and impact. Crabs and other crustaceans are among the most successful groups of marine invasives and can have
significant negative ecological and economic impacts where they become established. To assess the ecological
and economic threats posed by these species and to develop monitoring, early response, and mitigation plans, it is
important to be able to determine which areas are at highest risk of further range expansion, especially under ex-
pected climate scenarios. We studied the current and future distributions of four predatory brachyuran crabs that
were previously identified as species of concern for European seas, namely Hemigrapsus sanguineus, Charyb-
dis longicollis, Matuta victor, and Portunus segnis, under various climate change scenarios. Species distribution
models were built using an ensemble modelling approach. The results show that the potential distributions for
all species are much larger than the current known distributions. Under all predicted climate change scenarios,
the climatic conditions for P. segnis, C. longicollis, and M. victor, in particular, are expected to improve in most
of the Mediterranean Sea, resulting in an expansion of suitable habitat. The Adriatic and Aegean seas are of par-
ticular concern as results indicate that these seas are not only highly suitable under current climatic conditions
but also will become more suitable under all climate scenarios. It is, therefore, important to further investigate
potential impacts, to increase monitoring, and to explore possible management strategies for these seas in order
to manage the invasion of these species and avoid future biodiversity and economic losses.

1 Introduction

Marine ecosystems are increasingly under threat from inva-
sive species – those that have expanded into areas beyond
their natural geographical ranges (Vermeij, 1996). Widely
recognized as a key component of global environmental
change and as one of the leading causes of worldwide biodi-
versity loss (Butchart et al., 2010; Clavero et al., 2009; Gen-

tili et al., 2021; Jaureguiberry et al., 2022; Sala et al., 2000),
invasive species are often transported across natural bound-
aries by anthropogenic activities, including shipping, aqua-
culture, ornamental trade, and tourism (Ojaveer et al., 2018),
and can have significant detrimental ecological and economic
impacts (Diagne et al., 2021; Grosholz, 2002; Jaureguiberry
et al., 2022; Katsanevakis et al., 2016; Kouba et al., 2022;
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Otero et al., 2013; Tsiamis et al., 2020). Furthermore, the
dynamics and distributions of marine invasive species can
be significantly influenced by climate change, adding ex-
tra complexity to the challenges already posed by these or-
ganisms (Stachowicz et al., 2002). Notably, the alteration
of temperature regimes in marine environments, specifically
warmer waters, can enhance reproduction and growth rates of
some species, providing them with a competitive advantage
over native counterparts (Cockrell and Sorte, 2013; King et
al., 2021; McKnight et al., 2021; Sorte et al., 2010; Witte et
al., 2010). Moreover, due to changing temperature gradients,
previously unsuitable habitats can become more favourable
for these invasive organisms (Burrows et al., 2011; Witte
et al., 2010). Additionally, increasing temperatures lead to
ocean acidification, which can also affect invasion dynamics.
In some cases, for example, invasive species have demon-
strated a greater resilience to changing pH levels, further ex-
acerbating their competitive edge (Parker et al., 2011).

Within the European Union (EU), marine invasive species
have become a fundamental concern for policymakers, with
the identification and mitigation of potentially harmful or-
ganisms (those with the potential to pose significant threat
to local biodiversity, ecosystems, and economies) becom-
ing a high priority (Roy et al., 2019; Tsiamis et al., 2020).
Specifically, marine invasive species can outcompete natives,
disrupt food chains, alter habitats, and transport pathogens
and parasites (Innocenti et al., 2009; Schrimpf et al., 2014),
ultimately leading to population declines, local extinctions,
changes to ecosystem functioning (Blackburn et al., 2014;
Gallardo et al., 2016; Guy-Haim et al., 2018), and economic
losses for fisheries (Katsanevakis et al., 2018) and tourism
(Van Beukering et al., 2014). Consequently, Tsiamis et
al. (2020) identified a number of species that should be prior-
itized for risk assessment. This culminated in a list of 26 top-
priority species, including mostly those that are still not fully
established within the EU. Among these top-priority species,
four crabs (Brachyura) were identified, namely Hemigrapsus
sanguineus (De Haan, 1835), Charybdis longicollis (Leene,
1938), Matuta victor (Fabricius, 1781), and Portunus segnis
(Forskål, 1775).

Crustaceans are among the most commonly reported
coastal marine invaders, with an estimated 73 brachyuran and
crab-like anomuran decapods reported as being alien species
(Brockerhoff and McLay, 2011), and more recently, 56
species of predatory brachyurans were identified as spread-
ing outside of their natural ranges (Swart and Robinson,
2019). With high tolerances for abiotic stress, as well as ge-
netic and phenotypic adaptations that increase invasion po-
tential (Tepolt and Somero, 2014), predatory brachyurans
have emerged as one of the most successful invasive tax-
onomic groups (Rato et al., 2021). These conspicuous in-
vaders are considered particularly tolerant to global warming
(Giomi and Pörtner, 2013) and ocean acidification (Wittmann
and Pörtner, 2013). Furthermore, given reports of their eco-
logical impacts, including predation on commercially impor-

tant invertebrates (Brousseau et al., 2001; Tyrrell et al., 2006)
and their potential to cause shifts in community structure, in
other parts of the world (Le Roux et al., 1990), including
North America (Ens et al., 2022; Kimbro et al., 2009) and
southern Africa (Swart, 2017), this group should certainly be
considered high priority when assessing their potential im-
pacts in European waters.

One of the first Lessepsian immigrant crustaceans to be
identified in the Mediterranean, P. segnis, underwent a long
period of establishment, followed by rapid expansion, which
is thought to have begun in 2001 (Castriota et al., 2022). High
demand for this species led to the development of target fish-
eries, and they have high value in some markets (Mili et al.,
2020); thus, the presence of P. segnis represents a valuable
fishery resource within parts of its invasive range (Hamida
et al., 2019; Liquete et al., 2013). However, as is also ex-
pected for the later-established C. longicollis (Innocenti et
al., 2017; Stasolla et al., 2015), predation on fishing catches
and damage to fishing nets have a negative impact on fishery
economies (Özgül and Akyol, 2019; Tsirintanis et al., 2022).
Furthermore, P. segnis is known to provide strong competi-
tion with at least two species of edible crabs, Eriphia verru-
cosa and Carcinus aestuarii (Ariani and Serra, 1969; Tsirin-
tanis et al., 2022), and is a prolific bivalve predator (Giraldes
et al., 2016), potentially offsetting their economic potential
by reducing availability of native fishery species. Both P. seg-
nis and C. longicollis are littoral and sub-littoral species are
are expected to have major negative impacts on local biodi-
versity where, as generalist predators, they may impact mol-
lusc, fish, and crustacean populations (Hamida et al., 2019;
Stasolla et al., 2015).

First recorded along the French coast in the early 1990s
(Dauvin and Dufossé, 2011) and later in the Mediterranean in
2001 (Schubart, 2003), H. sanguineus was in the earlier liter-
ature considered to be more herbivorous (McDermott, 1992),
though more recently was characterized as a broad omnivore
(Ledesma and O’Connor, 2001). Feeding on at least three
commercially important bivalve species (Brousseau et al.,
2001) within its invasive North American range, this species
is also thought to be responsible for declining barnacle, mus-
sel, polychaete, and macroalgae populations, indicating its
potential impact on recruitment in these taxa (Tyrrell et al.,
2006). It is also expected that H. sanguineus has the potential
to cause substantive negative effects on sympatric popula-
tions of molluscs and crustaceans; however, its broad ecolog-
ical and economic impacts are unclear (Epifanio, 2013), par-
ticularly in European waters. Lastly, Matuta victor, report-
edly feeding predominantly on mysids, bivalves, fish, and
crustaceans within its European invasive range (Innocenti et
al., 2017), has recently been highlighted as a species of con-
cern due to its expanding population in Turkish waters (Uysal
et al., 2024). Despite few reports of its ecological and eco-
nomic impacts, it is thought to be a threat to local ecosys-
tems, particularly sandy beaches and coastal habitats (Uysal
et al., 2024).
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To better understand the potential impact of these four
species, we aimed to predict the current and potential fu-
ture distribution of each, under various climate scenarios in
European waters, using ensemble species distribution mod-
els (SDMs). Species distribution modelling has become a
cornerstone in predicting the suitable environmental niche
of invasive species, which can be indicative of their po-
tential spread. These models use climatic data and occur-
rence records to model the environmental niche in which
species occur and project this to areas based on known or
predicted environmental conditions (De Kort et al., 2020).
These models provide insight into the potential range (expan-
sion) of a species based on a region’s environmental suitabil-
ity (Zhang et al., 2019). The integration of ensemble mod-
elling techniques can increase the reliability of these predic-
tions (Ramirez-Reyes et al., 2021; Srivastava et al., 2019).
Ensemble modelling involves combining outputs from di-
verse statistical and machine learning algorithms (such as
artificial neural network, MaxEnt, and general linear mod-
els), thereby reducing the uncertainties inherent in single-
model approaches (Araújo and New, 2007; Grenouillet et
al., 2011). However, some studies show that ensemble mod-
elling does not always improve predictions over single mod-
els but still provides a robust approach (Araújo and New,
2007; Parker, 2013). This synergistic approach leverages the
strengths of various models while accounting for their weak-
nesses, thereby offering a more comprehensive depiction of
a region’s environmental suitability (Harris et al., 2024; Seni
and Elder, 2010). This is particularly relevant when address-
ing invasive species’ responses to changing climate patterns,
making ensemble modelling an important tool for robust
decision-making. These ensemble models have previously
been applied to other invasive crab species in Europe, such
as the Chinese mitten crab, Eriocheir sinensis (Zhang et al.,
2019), but also in other regions such as the Bohai Sea in
China, where the potential range expansion was modelled
for the invasive two-spot swimming crab, Charybdis bimac-
ulata (Zhang et al., 2024). By adopting this approach here,
we aimed to provide robust predictions that facilitate scien-
tists and policymakers in anticipating and responding to the
potential impacts of each species, ultimately contributing to
the preservation of native ecosystems and biodiversity.

2 Methods

2.1 Focal species

All four focal crab species (Brachyura) identified by Tsiamis
et al. (2020) were used for our distribution modelling. The
Asian shore crab, Hemigrapsus sanguineus, has already be-
come established across the coasts of North America and Eu-
rope. It was first observed in Europe in 1999 in Le Havre,
France, and has since spread along the Atlantic coast, all
the way to the Baltic Sea (Karlsson et al., 2019). Charyb-
dis longicollis is known for its agile swimming abilities, en-

abling it to traverse a variety of habitats. The species can
reach very high densities within its non-native range, some-
times comprising up to 70 % of the benthic biomass in trawl
catches, which is thanks to its adaptability and competitive
nature (Deval, 2020; Galil, 1986). It was first observed in
Europe near Türkiye in 1959 (Holthuis et al., 1961) and
since then has expanded its range from Egypt to Cyprus
(Galil, 2000). The moon crab, Matuta victor, originates from
the Indo-Pacific region. Its preferred habitats include man-
groves, intertidal zones, and sandy shores (Bom et al., 2020;
Mohanty et al., 2019). Its adaptable nature and ability to
tolerate a range of salinities have facilitated its spread be-
yond its original geographical boundaries. It was first ob-
served in the Mediterranean Sea in 1902 in Port Said, Egypt
(Global Biodiversity Information Facility (GBIF) Matuta
victor occurrence). From there, it has spread to other ar-
eas in the Mediterranean Sea, including coastal areas of Is-
rael, Lebanon, Türkiye, and Greece. The African blue swim-
ming crab, Portunus segnis, predominantly inhabits shallow
coastal habitats, including rocky shores, sandy bottoms, and
seagrass beds (Spanier and Galil, 1991). This species was
first recorded in the Mediterranean Sea in 1886, near Egypt,
and plays a significant ecological role as both a predator and
scavenger, influencing local food webs and ecosystem dy-
namics (Castriota et al., 2022). The three latter species are all
thought to have arrived in European waters from the Red Sea
through the development of the Suez Canal, often referred to
as the Lessepsian migration.

2.2 Occurrence records

We developed distribution models for the four focal species
using global occurrence records, including both the native
and invasive ranges of each to ensure environmental require-
ments were fully characterized for all species (Broennimann
and Guisan, 2008; Capinha et al., 2011; Zhang et al., 2020).
However, our predictions of current and future environmen-
tal suitability focused on EU waters only, encompassing the
region between 30 to 75° N and 30° W to 40° E. This area
includes the Norwegian Sea, North Sea, Baltic Sea, Mediter-
ranean Sea, Black Sea, and the eastern part of the Northern
Atlantic Ocean. Species occurrence data were obtained from
the online repository GBIF (GBIF, 2023a, b, c, d, GBIF Hem-
igrapsus sanguineus occurrence; GBIF Matuta victor oc-
currence; GBIF Portunus segnis occurrence; GBIF Charyb-
dis longicollis occurrence) and with additional records from
the published literature for Charybdis longicollis (Çiğşar et
al., 2021; Doğdu et al., 2021; Firat et al., 2008; Galil and
Kevrekidis, 2002; Innocenti and Galil, 2011; Lewinsohn and
Holthuis, 1964; Özcan and Katağan, 2016; Yokes et al.,
2007). Occurrence records that contained coordinates (in the
coordinate system WGS 1984) that had three or fewer deci-
mal places were excluded from the dataset to ensure that each
record fell within the correct raster cell. Occurrence records
were filtered using a 5× 5 arcmin grid (corresponding to the
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grid size of the environmental data), keeping only a single oc-
currence record for each grid cell. Any points that were con-
spicuously distant from other points underwent further in-
vestigation and were removed from the dataset if there were
indications of inaccuracies, in order to enhance data qual-
ity. Since true absence data were unavailable, we generated
10 000 randomly dispersed pseudo-absence points (Elith and
Leathwick, 2009).

2.3 Environmental data

In addition to species occurrence data, species distribution
models also require environmental data presented as spatial
grids. Numerous environmental factors can impact species
distribution, but using a limited number is often sufficient
to predict the distribution of marine species (Belanger et
al., 2012; Bosch et al., 2018; Goldsmit et al., 2017). Tak-
ing into account biological relevance and data availability
for both the present and future scenarios, we selected eight
variables. Specifically, we included six benthic variables at
mean depth from Bio-ORACLE v2.2 which encompassed
mean, minimum, and maximum temperature; the range and
mean salinity; and mean current velocity (Assis et al., 2018).
Mean, minimum, and maximum temperatures were selected
because elevated temperatures are known to enhance growth
and reproduction, but excessive temperature increases may
result in reduced survival. By contrast, reduced tempera-
tures may also result in decreased growth and reproduction
(Thirukanthan et al., 2023). Mean salinity and its range were
selected based on tolerance of many invasive crab species to-
wards wide salinity ranges (Rato et al., 2021). Current ve-
locity was included because this may relate to swimming
behaviour for species, such as Portunus segnis (Luckenbach
and Orth, 1992). Furthermore, we incorporated bathymetric
data and distance-to-shore from the Global Marine Environ-
ment Datasets (Basher et al., 2018). Bathymetric data were
included because they reflect the depth tolerance of benthic
crab species (Bertini and Fransozo, 2004) and distance to
shore as a proxy for land-based processes such as nutrient
input and anthropogenic disturbances. All of these environ-
mental data were at a spatial resolution of 5× 5 arcmin. To
reduce the effect of multicollinearity in predictors, we cal-
culated a variance inflation factor for these variables but only
for the locations of the presence and absence points. All vari-
ance inflation factors scored below 3, indicating no signifi-
cant multicollinearity issues. Consequently, we retained all
eight variables in our analysis.

Bio-ORACLE also provides spatial data for future pro-
jections based on four representative concentration path-
way (RCP) emission scenarios. These RCPs represent dis-
tinct scenarios predicated on varying assumptions concern-
ing societal, economic, and physical factors that could in-
fluence climate change. RCP2.6 is an overly optimistic sce-
nario that postulates swift and sufficient societal action in
response to climate change, with emissions peaking be-

tween 2010 and 2020. RCP4.5 anticipates emissions declin-
ing by 2045, RCP6.0 assumes that global emissions peak
by 2080, and RCP8.5 projects a continuous rise in emis-
sions throughout the 21st century. Presently, RCP4.5 stands
as the most probable scenario. The Bio-ORACLE future pro-
jections draw from three atmosphere–ocean general circula-
tion models (AOGCMs: CCSM4, HadGEM2-ES, MIROC5)
from the Coupled Model Intercomparison Project (Assis et
al., 2018). Employing various models mitigates model uncer-
tainties and enhances the accuracy of these predictions. We
incorporated all four RCP scenarios to forecast the future dis-
tribution of the four crab species of which predictions based
on RCP4.5 and RCP8.5 will be presented in this paper and
RCP2.6 and RCP6.0 in the Supplement (Sects. S2 and S5).
For these future projections, we assumed that bathymetry and
distance to the shore would remain unchanged throughout the
projected period.

2.4 Presence – background modelling

Species occurrence data, from both the native and non-native
range of the four species, were used to fit the ensemble mod-
els. The data were divided into two groups: 80 % of the data
points were allocated for model calibration and the remain-
ing 20 % for model validation. To construct the ensemble
models, we used the biomod2 package (Thuiller et al., 2024)
for R, utilizing a range of algorithms including maximum
entropy (MaxEnt), generalized linear model (GLM), gen-
eral additive model (GAM), general boosting model (GBM),
classification tree analysis (CTA), artificial neural network
(ANN), surface range envelope (SRE), flexible discrimi-
nant analysis (FDA), and multiple additive regression splines
(MARS). We ran five repetitions for each algorithm. Models
were evaluated using the true skill statistic (TSS) and area
under the curve (AUC), with relatively conservative cutoff
values of 0.85 and 0.90, respectively (Liu et al., 2016). The
final ensemble models comprised only those models that met
both of these cutoff criteria. To calculate a weighted mean
ensemble model, we considered the TSS values, assigning
higher importance to models with higher scores compared
to those with lower TSS values. We calculated averaged re-
sponse curves for all modelled variables. In these response
curves, a predicted response was plotted against a single en-
vironmental variable which was allowed to vary along its
environmental gradient where all other modelled variables
were kept constant. These plots are indicative of the effect of
environmental variables in the ensemble model. The relative
importance of environmental variables was determined us-
ing Pearson’s correlation coefficient on the model’s predicted
values versus environmental variables. This metric helps as-
sess the relation between a variable and the predicted habitat
suitability. Values range from 0 to 1, where 0 signifies no
correlation of the variable on a species distribution, and 1
indicates a very strong influence. Both response curves and
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Figure 1. True skill statistic (TSS) and area under the curve (AUC) for the four modelled crab species. Each bar represents the mean of five
repetitions for a specific modelling algorithm. Error bars represent the standard error of the mean. The dashed line displays the cutoff values.
Models that scored below these cutoff values were not included in the ensemble model.
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Figure 2. Averaged response curves based on all repetitions of all algorithms for Hemigrapsus sanguineus. On the x axis, the environmental
variables’ depth (a), distance to shore (b), current velocity (c), salinity range (d), mean salinity (e), minimum temperature (f), mean tem-
perature (g), and maximum temperature (h) are given. Along the y axis, the modelled response (partial probability of occurrence) to these
environmental variables is given.

variable importance were calculated using the biomod2 li-
brary.

3 Results

3.1 Hemigrapsus sanguineus

For H. sanguineus, all models except SRE performed above
the thresholds for TSS and AUC (Fig. 1a and b). The
response curves show an increase in environmental suit-
ability for H. sanguineus after a maximum temperature of
12 °C (Fig. 2h), with values below that value strongly lim-
iting H. sanguineus. The species also occurs close to shore
with environmental suitability declining rapidly at greater
distances from shore (Fig. 2b). Furthermore, environmen-
tal suitability increases with mean temperatures over 7 °C
(Fig. 2g). All other environmental variables relate strongly
to the known species distribution (Fig. 2a, c, d, e, f). Variable
importance was highest for maximum temperature, distance
to shore, and mean temperature, respectively (Table 1).

According to occurrence records, the species is mostly
found along the North Sea coast, the English Channel, and
the Kattegat (Fig. 3d). Incidentally, the species was recorded
in the western basin of the Mediterranean Sea, the northern
part of the Adriatic Sea, and the Bay of Biscay. Under current
climatic conditions, the species’ potential suitable habitat in
Europe is mostly concentrated along the Belgian, Danish,
Dutch, and English coastal areas with some additional ar-

eas in the northern part of the Adriatic Sea, the northwestern
coast of the Black Sea, and the Sea of Azov (Figs. 3a and 4).
Under RCP4.5, the suitable habitat of the species could see a
potential increase in the White Sea, Celtic Sea, and Irish At-
lantic coast (Fig. 3b and c). The northern part of the Adriatic
Sea will become less suitable for the species. Under RCP8.5,
all areas that are currently suitable (except for the Adriatic
Sea) will become more suitable (Fig. 3e and f). In addition,
the Baltic Sea may become more suitable as well.

3.2 Charybdis longicollis

For C. longicollis the MaxEnt and SRE models did perform
below the AUC threshold, whereas the threshold for TSS
was met by the ANN, CTA, FDA GLM, and some of the
MARS models (Fig. 1c and d). From a minimum temper-
ature of 8 °C the environmental suitability increases rapidly
(Fig. 5f), while habitat is less suitable with minimum temper-
atures below 4 °C. The species also seems tolerant to fluctu-
ations in salinity. They are often found in areas with salin-
ity ranges of 5 PSS (Practical Salinity Scale) or more, being
able to tolerate increased salinity (Fig. 5d and e). In addition,
the species prefers high temperatures with suitability contin-
uously increasing with maximum temperatures from 7 °C up
to 32 °C (Fig. 5h). Other variables did not result in a strong
response (Fig. 5a, b, c, g, h). Variable importance was high-
est for minimum temperature, salinity range, and maximum
temperature, respectively (Table 1).
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Table 1. The mean variable importance (± standard error) for the four modelled crab species based on all models that were included in the
final ensemble model; n is the number of occurrence records that were used for each model.

Variable H. sanguineus (n= 360) C. longicollis (n= 57) M. victor (n= 240) P. segnis (n= 72)

Depth 0.18± 0.05 0.27± 0.06 0.24± 0.05 0.24± 0.05
Distance to shore 0.34± 0.05 0.46± 0.07 0.54± 0.06 0.56± 0.06
Current velocity 0.02± 0.01 0.10± 0.02 0.04± 0.01 0.07± 0.02
Salinity range 0.10± 0.04 0.13± 0.05 0.08± 0.04 0.15± 0.04
Salinity mean 0.02± 0.00 0.54± 0.05 0.03± 0.01 0.64± 0.05
Temp. min 0.21± 0.02 0.73± 0.06 0.26± 0.05 0.40± 0.08
Temp. mean 0.31± 0.07 0.39± 0.07 0.34± 0.06 0.38± 0.08
Temp. max 0.49± 0.07 0.50± 0.08 0.34± 0.06 0.38± 0.08

Figure 3. Modelled distribution maps and European occurrence records for H. sanguineus. These maps include the current potential distri-
bution (a), the occurrence records in European marine waters (b), the predicted distribution under RCP4.5 for the year 2050 (c), the change in
probability of occurrence from the current situation to 2050 under RCP4.5 (d), the predicted distribution under RCP8.5 for the year 2050 (e),
and the change in probability of occurrence from the current situation to 2050 under RCP8.5 (f).

The species has been recorded in the Persian Gulf, coastal
Madagascar, the Red Sea, and in the eastern basin of the
Mediterranean Sea along the coast of Türkiye, Israel, and
Lebanon (Fig. 6d). Its current potential suitable habitat cov-
ers all coastal areas within the eastern basin and to a lesser
degree the western basin and Atlantic coast of Portugal and
Spain (Figs. 6a and 4). Under RCP4.5, this potential suit-
able habitat increases throughout the Mediterranean Sea but
decreases slightly along the Atlantic coast of Portugal and
Spain (Fig. 6b and c). Under RCP8.5, this increase is further

exacerbated, making all coastal areas in the Mediterranean
Sea highly suitable (Fig. 6e and f).

3.3 Matuta victor

All M. victor models, except SRE, performed well above
the thresholds for both the AUC and TSS (Fig. 1e and f).
The response curves show that with mean temperatures be-
low 5 °C the species is mostly absent and increasing strongly
with higher temperatures (Fig. 7g). Distance to shore shows
a rapid decline in probability of occurrence with increasing
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Figure 4. Percent of the total area per region in which the habitat suitability ranged between 60 % and 100 %. Regions that had no habitat
suitability within this range are not included in the figure. Blue bars represent the area under current climatic conditions, orange under
RCP4.5, and red under RCP8.5. A table with more details on habitat suitability is provided in the Supplement.

distances (Fig. 7b). The species also tolerates high maximum
temperatures of up to 30 °C (Fig. 7h). Other variables did not
result in a strong response (Fig. 7a, c, d, e, f). Variable impor-
tance was highest for mean temperature, distance to shore,
and maximum temperature, respectively (Table 1).

The occurrence records showed that the species has so far
been recorded in the eastern basin of the Mediterranean Sea
along the coast of Cyprus, Türkiye, Greece, Lebanon, and Is-
rael (Fig. 8d). The current potential suitable habitat encom-
passes most of the Mediterranean coastal areas where the
eastern basin is more suitable than the western basin (Figs. 8a
and 4). Under RCP4.5, most Mediterranean coastal areas be-
come more suitable than they already are, especially the cen-
tral parts surrounding Italy, Malta, and Corsica (Fig. 8b and
c). Under RCP8.5, this increase in suitability is even further
exacerbated (Fig. 8e and f).

3.4 Portunus segnis

The MaxEnt and SRE models performed all below the AUC
and TSS thresholds for P. segnis (Fig. 1g and h). All the
GAM models also performed below the TSS threshold, as
well as one MARS model. The response curves show that

P. segnis tolerates increased salinity levels ranging from 35
to 40 PSS (Fig. 9e). Minimum and maximum temperature
(Fig. 9f, h) also display a strong response in the species with
minimum temperature above 15 °C and maximum tempera-
tures above 20 °C, resulting in a strong response. In addition,
the species is found at much closer distances to shore in com-
parison to the other species (Fig. 9b). Other variables did not
result in a strong response (Fig. 9a, c, d, g). Mean salinity,
distance to shore, and mean temperature had the highest vari-
able importance.

Existing occurrence records from P. segnis show that
the species is currently found in the eastern basin of the
Mediterranean Sea along the coasts of Sicily, Malta, southern
Greece (Crete and Rhodes), Türkiye, Cyprus, Israel, Libya,
and Tunisia (Fig. 10d). The current potential suitable habi-
tat encompasses all coastal areas in the Mediterranean Sea
(Figs. 10a and 4). Under RCP4.5, the Adriatic Sea becomes
more suitable as well as the English Channel (Fig. 10b and c).
However, the probability of occurrence in the English Chan-
nel remains relatively low. Under RCP8.5, the suitability in
the central Mediterranean Sea increases further as well as in
the Adriatic Sea (Fig. 10e and f), while in the English Chan-
nel the suitability decreases.
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Figure 5. Averaged response curves based on all repetitions of all algorithms for Charybdis longicollis. On the x axis, the environmental
variables’ depth (a), distance to shore (b), current velocity (c), salinity range (d), mean salinity (e), minimum temperature (f), mean tem-
perature (g), and maximum temperature (h) are given. Along the y axis, the modelled response (partial probability of occurrence) to these
environmental variables is given.

4 Discussion

We aimed to estimate the current and future environmentally
suitable regions, under present and expected climate condi-
tions, of four priority brachyuran species identified as being
of significant ecological and economic concern for European
marine systems by Tsiamis et al. (2020). Our models showed
that the potential suitable habitat of all four species studied
is much larger than current known distributions. Under all
predicted climate change scenarios, the climatic conditions
for Charybdis longicollis, Matuta victor, and Portunus segnis
will improve in most of the Mediterranean Sea, resulting in
an expansion of suitable habitat. Conditions for Hemigrapsus
sanguineus only improve under RCP8.5, a worst-case sce-
nario in which no climate mitigation will take place.

The Adriatic and Aegean seas were predicted to experi-
ence the most significant changes of the focal species under
all climate scenarios. This finding supports recent sugges-
tions that these seas are at particularly high risk of biological
invasions (Glamuzina et al., 2024; Katsanevakis et al., 2020).
Climate models forecast larger increases in both salinity and
temperature in these seas compared to other regions within
the Mediterranean. The Adriatic–Ionian Bimodal Oscillat-
ing System (BiOS) plays a crucial role in altering salinity
in the Adriatic Sea. Specifically, during the cyclonic phase,
increased salinity occurs as a result of input from the Io-
nian Sea, while the anticyclonic phase brings reduced salin-
ity from lower salinity input from the northern Adriatic (Civ-

itarese et al., 2023). Further, BiOS is sensitive to changes in
climatic variables, potentially affecting salinity in the Adri-
atic, Ionian, and Aegean seas (Gačić et al., 2014; Theocharis
et al., 1999). In addition to the prediction that temperature
and salinity will be the main drivers of changing species
composition in the North Adriatic (Rizzi et al., 2016), nu-
trient input has also been highlighted as important, with flow
from the Po River delta playing a significant role (Bongiorni
et al., 2018; Nasi et al., 2020). Historical data indicate that
salinity fluctuates seasonally in the Northern Adriatic, be-
ing higher in spring and summer and decreasing in autumn
and winter due to river runoff (Appiotti et al., 2014). Further-
more, the Po River’s discharge has been decreasing, leading
to increased salinity in the Adriatic Sea – a trend expected
to continue, based on climate change predictions (Appiotti et
al., 2014). Thus, it is reasonable to expect that the predicted
increase of suitable habitat for the modelled crab species
within this region is accurate. In addition, the BiOS also af-
fects the dispersal of biodiversity; in particular, it introduces
Lessepsian invasive species into the Adriatic Sea (Duman et
al., 2024; Mihanović et al., 2021), whereas the water circula-
tion patterns within the Adriatic Sea facilitate the spread of
invasive species internally (Kraus et al., 2019).

Overall, temperature and salinity resulted in the strongest
response in the distribution of all four invasive crab species,
as both factors significantly affect reproduction and larval de-
velopment as well as dispersal in many crab species. For
example, C. longicollis prefers slightly increased salinity
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Figure 6. Modelled distribution maps and European occurrence records for C. longicollis. These maps include the current potential distribu-
tion (a), the occurrence records in European marine waters (b), the predicted distribution under RCP4.5 for the year 2050 (c), the change in
probability of occurrence from the current situation to 2050 under RCP4.5 (d), the predicted distribution under RCP8.5 for the year 2050 (e),
and the change in probability of occurrence from the current situation to 2050 under RCP8.5 (f).

Figure 7. Averaged response curves based on all repetitions of all algorithms for Matuta victor. On the x axis, the environmental variables’
depth (a), distance to shore (b), current velocity (c), salinity range (d), mean salinity (e), minimum temperature (f), mean temperature (g),
and maximum temperature (h) are given. Along the y axis, the modelled response (partial probability of occurrence) to these environmental
variables is given.
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Figure 8. Modelled distribution maps and European occurrence records for M. victor. These maps include the current potential distribu-
tion (a), the occurrence records in European marine waters (b), the predicted distribution under RCP4.5 for the year 2050 (c), the change in
probability of occurrence from the current situation to 2050 under RCP4.5 (d), the predicted distribution under RCP8.5 for the year 2050 (e),
and the change in probability of occurrence from the current situation to 2050 under RCP8.5 (f).

levels, which affects the male–female ratio, resulting in a
higher proportion of females (Yesılyurt et al., 2019), with
similar observations reported for P. segnis (Tureli and Yesi-
lyurt, 2018). Additionally, increased temperature and salinity
are known to accelerate maturity in blue crabs, Callinectes
sapidus, with smaller crabs maturing faster under these con-
ditions (Fisher, 1999). This pattern has also been observed
in P. segnis (Tureli and Yesilyurt, 2018). However, Giraldes
et al. (2016) found that smaller P. segnis produce fewer and
potentially less viable eggs compared to their larger con-
specifics. Under lower salinity levels, osmosis can lead to
swelling, which may explain the size differences but not the
difference in egg numbers (Huang et al., 2022). P. segnis typ-
ically spawns during warmer months, but in tropical regions,
reproduction occurs year-round (Safaie et al., 2013). Thus,
temperature and salinity not only affect the occurrence of
these crab species but may also enhance their reproductive
success, thereby potentially adding to their invasive success
and dispersal to nearby regions.

Distance to shore was an important predictor for M. victor.
This is likely related to the species preference for shallower
waters, occurring nearer to shore (Mohanty et al., 2019), but
could also be related to anthropogenic disturbances that are
more common in the nearshore. Disturbances such as eu-

trophication, physical disturbances, and pollution seem to
be advantageous for M. victor as it is more tolerant than
its competitors to such disturbances, although these findings
are based on circumstantial evidence (Innocenti et al., 2017;
Zviely et al., 2021). It is therefore possible that more en-
closed areas that are exposed to high agricultural runoff, such
as those in the Adriatic Sea, could be more susceptible to this
species.

Our results accounted for various model and data is-
sues that can significantly affect the accuracy and reliabil-
ity of predictions made using species distribution modelling
(SDM). Specifically, Hui (2023) describes several points that
should be carefully considered when building and interpret-
ing SDMs. SDMs should be fitted using only relevant vari-
ables that, from a biological/ecological perspective, can be
expected to affect the distribution of the focal species. Fur-
thermore, occurrence records should be filtered in order to
remove clustering and inaccuracies. We accounted for these
issues by selecting the most relevant variables and filtering
the occurrence records. However, filtering resulted in low
sample sizes for both C. longicollis and P. segnis, which
resulted in poor performance for some of the applied algo-
rithms. Our ensemble approach used relatively high thresh-
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Figure 9. Averaged response curves based on all repetitions of all algorithms for Portunus segnis. On the x axis, the environmental variables’
depth (a), distance to shore (b), current velocity (c), salinity range (d), mean salinity (e), minimum temperature (f), mean temperature (g),
and maximum temperature (h) are given. Along the y axis, the modelled response (partial probability of occurrence) to these environmental
variables is given.

old values, which resulted in the exclusion of these specific
algorithms from the final models.

Although ensemble modelling is likely to improve the ro-
bustness of our predictions, it is not always an improve-
ment over single-algorithm models (Araújo and New, 2007;
Parker, 2013). Several studies have also shown that some
single-algorithm models perform just as well, require less
computation, and are easier to interpret (Kaky et al., 2020).
MaxEnt, for example, is one of the most used single-
algorithm models and often performs really well and some-
times better than ensemble models (Kaky et al., 2020). Max-
Ent was used as part of our ensemble approach, although it
was excluded for P. segnis and C. longicollis due to poor per-
formance. MaxEnt performed poorly for these two species,
possibly as a result of the lower sample size in combination
with the global range that we modelled (van Proosdij et al.,
2016).

Species distribution models model the environmental
niche in which a species occurs (Thuiller et al., 2024). How-
ever, it should be noted that other factors may also impose
limitations on a species’ distribution. Such factors include
predation pressure, food availability, and competition (Can-
nicci et al., 2018; Peer et al., 2018; Poggiato et al., 2025;
Trainor et al., 2014; Yackulic et al., 2014). Invasive species
are often opportunistic and can easily adapt to new cir-
cumstances (Simberloff, 2013). Thus, selection would likely
favour invasive populations that are better adapted to the en-
vironmental conditions in their new range than the species

would be in their native range (Vera-Escalona et al., 2023).
Therefore, its environmental niche does not necessarily rep-
resent a species’ tolerance to certain environmental factors.
For example, Paz and Guarnizo (2020) compared the thermo-
physiological tolerance limits of 50 reptile and amphibian
species with niche estimates from SDMs. The differences
that were observed between, for example, minimum tem-
peratures were large for many species, indicating that in-
ference about niche traits and tolerance limits from these
models should be avoided. Predicting a species’ distribution
based on the niche where circumstances could be entirely
different requires caution when interpreting such results, es-
pecially when sample numbers are low, as seen for P. segnis
and C. longicollis in this study.

Adaptation to new niches either through ecological re-
lease, evolution, or favourable genotypes can explain niche
shifts and incorporating this into SDMs can significantly im-
prove models and provide more reliable prediction (Gallien
et al., 2012; Rödder et al., 2009). In SDMs, this can be done
by modelling a species’ native and invasive range separately.
Besides increasing the accuracy of the predictions, this will
also provide insights into a species’ adaptability to new en-
vironmental conditions, as demonstrated by Crickenberger
(2016) when modelling the distribution of an introduced bar-
nacle species in the USA. Here, the observed range retraction
of Megabalanus coccopoma was modelled in its introduced
range, using models trained on datasets containing only ob-
servation from the native, introduced, and global range. The
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Figure 10. Modelled distribution maps and European occurrence records for P. segnis. These maps include the current potential distribu-
tion (a), the occurrence records in European marine waters (b), the predicted distribution under RCP4.5 for the year 2050 (c), the change in
probability of occurrence from the current situation to 2050 under RCP4.5 (d), the predicted distribution under RCP8.5 for the year 2050 (e),
and the change in probability of occurrence from the current situation to 2050 under RCP8.5 (f).

models trained on the introduced range were only able to
correctly predict the retraction, which can be indicative of
a niche shift. The model fitted on global data was much more
conservative and overestimated the range. Other SDM stud-
ies report similar discrepancies between the native and intro-
duced niche, advocating for splitting data between native and
introduced ranges when sample sizes are large enough and
otherwise using a global dataset (Gallien et al., 2012; Röd-
der et al., 2009). Sample sizes for all our species were not
sufficient to split between invasive and native range observa-
tions, especially in their invasive ranges, as this study focused
on species that have not yet fully established in their inva-
sive ranges (Tsiamis et al., 2020). Therefore, we used occur-
rence records from both the native and invasive ranges to fit
the models, possibly resulting in a more conservative model
(Crickenberger, 2016). As observations of these species will
become more available in the future, it is advisable to com-
pare these species’ adaptations to these new environments.

For all species, the surface range envelope (SRE) algo-
rithm performed well below the TSS and AUC thresholds.
This algorithm defines the distribution based on the mini-
mum and maximum values of the environmental variables.
When a location falls within the ranges for all environmental
variables, the area is considered suitable for that species. In

the default settings of biomod2, this range is reduced to the
2.5th and 97.5th percentiles in order to reduce overpredic-
tions caused by outliers. It is a relatively simple algorithm,
but it is susceptible to overpredictions (Thuiller et al., 2024).
The poor performance of SRE in biomod2 is also seen in
other studies (Esmaeili and Eslami Barzoki, 2023; Liu et al.,
2022; Tanaka et al., 2020). For example, Liu et al. (2022)
developed species distribution models using biomod2 for an-
other crab species (Portunus trituberculatus), also reporting
SRE as the poorest-performing model. The dismo package
uses a similar algorithm named BIOCLIM which calculates
a range of percentiles while assuming that areas closer to the
median values are more suitable (Hijmans et al., 2023). Al-
though this is an improvement in comparison to the SRE al-
gorithm in biomod2, it still underperforms in comparison to
other algorithms (Elith et al., 2006). Hence, we suggest that
the use of the SRE algorithm should be carefully considered
when building future species distribution models, especially
when using low TSS and AUC threshold values.

For predicting future environmental suitability, we used
modelled climate data based on a combination of three global
climatic models: the Community Climate System Model 4,
the Hadley Centre Global Environmental Model 2, and the
Model for Interdisciplinary Research on Climate 5 (Assis
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et al., 2018). These modelled data are based on four rep-
resentative concentration pathways (RCPs). More recently,
these data have been updated based on the Shared Socioeco-
nomic Pathways (SSPs), including less earth system models
and more variables that may be relevant for species distribu-
tion modelling (Assis et al., 2024). These new data include
possibly relevant variables (e.g. pH and dissolved oxygen)
that we were unable to use for our study and could have re-
sulted in more accurate models. In addition, substrate type
is an important variable that could help model species at a
higher accuracy and scale. De La Barra et al. (2020) showed
that this variable is very important in predicting the distri-
bution of other portunid crabs. Nevertheless, substrate data
were not available and difficult to attain on a large spatial
scale (De La Barra et al., 2020). This does not invalidate our
models, but it only allows for interpreting the predicted envi-
ronmental suitability on a larger regional scale.

In conclusion, this study highlights the growing concern of
marine invasive species in the EU, particularly under chang-
ing climatic conditions and demonstrates that a species’ suit-
able habitat can expand significantly. Our research focused
on four introduced crab species in the European marine en-
vironment, showing that suitable habitats for most of these
species will increase. Habitat suitability for M. victor and
C. longicollis should be expected to further increase more
than others, especially in the Adriatic and Aegean seas due to
predicted increases in temperatures and salinity. The effects
of rising temperatures and salinity may also positively affect
the reproductive success of these crab species, potentially ex-
acerbating their invasive potential. Thus, we also highlight
the potential importance of further study and the exploration
of effective monitoring and risk screening strategies (Sta-
solla et al., 2021), such as early detection in high-risk areas
(e.g. the use of crab condos; Hewitt and McDonald, 2013)
for these two species to better understand the potential eco-
logical implications of predicted range expansions.
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