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Abstract. Transfer function (TF) models are commonly used in palaeoecology for quantitative inference of
environmental variables based on biological proxies. Although the existence of spatial structure is well estab-
lished in ecology, existing TFs do not account for it. This suggests that model performance may be improved by
accounting for spatial structure. Here we demonstrate this using basic and advanced methods — multiple linear
regression (MLR), lasso regression, geographically weighted regression (GWR) and geographically weighted
lasso (GWL) — using geographical distance and bioclimatic distance, respectively. We compared the perfor-
mance of these models for reconstructing water table depth from testate amoeba communities, as commonly
used in peatland palaeoecology. GWL and lasso models performed considerably better (23 %—30 % reduction in
mean squared prediction error) than standard weighted average methods. We provide an R package for the two

innovative spatial methods (GWR and GWL).

1 Introduction

Understanding how ecosystems responded to past environ-
mental change is fundamental to determining how to man-
age or restore them in the context of ongoing environmental
change (Seddon et al., 2014; Swetnam et al., 1999). A wide
range of methods are used in palacoecology to reconstruct
past changes in environmental conditions or ecosystem func-
tioning. Key drivers such as temperature or soil moisture are
often inferred from biotic proxies (e.g. (sub-)fossil pollen,
diatoms and testate amoebae) using mathematical models
called “transfer functions” (Birks et al., 1990).

Aquatic or terrestrial microorganisms, especially protists,
are ideal proxies for environmental monitoring and palaeoe-
cological inference. They are abundant, diverse, sensitive to
variations in (micro)environmental conditions over time or
space, and directly involved in key ecosystem processes such

as carbon cycling (Payne, 2013). Some groups, such as di-
atoms and testate amoebae, produce decay-resistant struc-
tures (“shells”, called frustules or tests in these two groups,
respectively) that can be recovered from peat or sediments
(Harnisch, 1927; Tolonen, 1987; Warner, 1990). This makes
it possible to document changes in community structure over
time and, if the relationships between community structure
and environmental conditions are known, to infer past envi-
ronmental changes from these changes. The key to such re-
constructions is the development of accurate inference mod-
els calibrated on modern data (the so-called training set).
The presumed cosmopolitan distribution of microorgan-
isms (O’Malley, 2008; De Wit and Bouvier, 2006) was con-
sidered an advantage for the development of transfer func-
tions. Indeed, if microbes do not vary in space, it is likely that
the ecological preference of species is also constant over time
(i.e. the uniformitarian principle) (Hutton, 1788). However,
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it is becoming increasingly clear that not all microorgan-
isms are cosmopolitan (Seppey et al., 2020; Foissner, 2006;
Telford et al., 2006), implying that the spatial component of
the data needs to be integrated into model development (Be-
lyea, 2007; Payne et al., 2012). However, this bias is rarely,
if ever, considered when attempting to build transfer func-
tion models over large geographical areas (Amesbury et al.,
2016, 2018; Qin et al., 2021). Improving palaeoecological
reconstructions based on microorganisms therefore requires
better knowledge of microbial diversity, ecology and distri-
bution, as well as advances in the mathematical methods used
to develop predictive models. Mathematical improvements
include seeking for more appropriate models (weighted av-
erage, maximum likelihood calibration, partial least squares,
etc.), selecting species (e.g., removing rare or taxonomically
uncertain taxa) and accounting for spatial distribution (e.g.,
using one-site-out cross-validation) (Payne et al., 2012; Jug-
gins and Birks, 2012).

In this study, we aim to develop and test novel mathemati-
cal models that account for spatial structure to infer past en-
vironmental conditions from biotic proxies. We use testate
amoeba (TA)-based models which are primarily used to infer
past water table depth (WTD) in peatlands (Charman, 2001;
Mitchell et al., 2008).

2 Material and methods

We compare four types of regression model with the model
developed by Amesbury et al. (2016), which is used as a ref-
erence. Amesbury’s model (the best-performing model with
a root mean squared prediction error (RMSEP) of 10.87 be-
fore outlier removal) is called WA-Tol (inv), which stands
for “Weighted Averaging with Tolerance downweighting and
Inverse deshrinking”. It relies on the assumption that each
taxon has an ecological optimum and that if a taxon is very
abundant in a fossil sample, the ecological parameter to be
inferred in this fossil sample should be close to the optimum
of the modern taxon. Tolerance downweighting is applied to
give less weight to taxa that have a large ecological tolerance
(their ecological optimum for the investigated parameter is
broad). Inverse deshrinking is then applied to the model to
compensate for compression of variance due to the weighing
average procedure. In our study, all models are tested on the
same dataset. The different regression models and the dataset
are presented below.

2.1 Models
2.1.1  Multiple linear regression (MLR)
A MLR (see, for instance, Quinn and Keough, 2023) is a

linear regression with p independent variables x1, x2, ..., Xp:
P

vi=Po+ Y Bexik +ei, (1)
k=1
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where y; is the response variable for observation i (with
i=1,2,...,n), n is the total number of observations, By is
the intercept, By is the kth regression coefficient for variable
xi (withkin 1,2, ..., p), p is the total number of explanatory
variables, x;; represents the k explanatory variables of obser-
vation i, and i ~ N (O, 02) is the error term for observation i;
all the error terms are independent.

The models’ parameters 0, ..., p are usually estimated us-
ing the ordinary least squares (OLS) method; i.e. regres-
sion coefficients are estimated by minimising the sum of the
squared prediction errors:

n

2

R P

BoLs = min > (yi —Bo— Zﬁk}ﬁk) : ()
Py

i=1

where B oLs 1s the vector of estimated regression coefficients
Bos .-, Bp.

However, the OLS method suffers from two major prob-
lems: high variance of the estimates leading to imprecision
in predictions and a lack of parsimony (all variables are in-
cluded even if they are not pertinent) (Tibshirani, 1996).

2.1.2 Lasso regression

The lasso (least absolute shrinkage and selection operator)
regression (Tibshirani, 1996) solves both problems of MLR
by adding a constraint on the sum of the absolute value of the
regression coefficients:

n

R p 2 p
ﬂL:mﬂin Z()’i —ﬂo—Zﬂkxik) -H»LZWH , 3
= =1

i=1
where Ap is the lasso regularisation penalty parameter.

Hence, the lasso stabilises the coefficients, reducing their
variance, and performs variable selection by setting some co-
efficients to zero, resulting in a parsimonious model. This
type of model is typically used to handle genetic data with
many explanatory variables (Ranstam and Cook, 2018).

However, MLR as well as lasso are both global regres-
sion models; i.e., they assume spatial homogeneity and esti-
mate one fixed regression coefficient for each predictor. The
purpose of our research here is to integrate spatial hetero-
geneity, meaning the heterogeneous distribution of microor-
ganisms (explanatory variables) when estimating an environ-
mental parameter (response variable), so we introduce geo-
graphically weighted models.

2.1.3 Geographically weighted regression (GWR)

The principle of GWR is to fit a local MLR for each obser-
vation (Brunsdon et al., 1996; Fotheringham et al., 2002).
Therefore, regression coefficients are not fixed but vary ac-
cording to the geographical locations for each variable. The
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collection of local models then forms a global model:

p
Yi = BoCui, vi) + Y _ Brlui, vi)xix + €. )

k=1

where Bo(u;, v;) and Bi(u;, v;) are the local regression coef-
ficients at location (u;, v;).

As regression coefficients are estimated at each observa-
tion’s location, each of them is characterised by three num-
bers: the coordinates (latitude, longitude) and its estimated
value. When fitting a local regression on a point of interest
(an observation), we only consider its closest neighbours. To
select them, we use a distance matrix (usually based on the
Euclidean distance). The threshold distance from the point in
which we consider the neighbours is called bandwidth and is
chosen by cross-validation. The optimal bandwidth is the one
that minimises the prediction error. Weights are attributed to
the neighbours based on their distance to the point and a ker-
nel function. The kernel function usually attributes a higher
weight to closer neighbours and a lower weight to farther
ones. The weights are then directly used in the regression
to estimate the B regression coefficients by weighted least
squares:

Bowr i, vi) = X W, v)X) ' XTW(u;, )Y, )

where X is an n X p explanatory variable matrix with n
the total number of observations and p the total num-
ber of explanatory variables; W(u;,v;) is an n x n diag-
onal weight matrix for location (u;,v;), with W(u;, v;) =
diag(Ky(di1, Kn(di2, ..., Kp(din)))); Kj is the kernel; d;;
is the distance between observations i and j (with j =
1,...,n); and Y is a vector of n response variables.

There are several possible kernel shapes divided into two
categories: continuous kernels (Fig. 1a) and kernels with
compact support (Fig. 1b). In the first category, we find
uniform, Gaussian and exponential kernels; in the second
we find boxcar, bisquare and tricube kernels. Kernels with
compact support are usually preferred as they ease calcula-
tion, since all weights beyond a fixed bound are set to zero
(De Bellefon and Loonis, 2018).

The kernel can be fixed or adaptive depending on what de-
fines its extent. If it is determined by a fixed distance to the
point of interest, the kernel is identical at any location and is
considered fixed (Fig. 2a). On the other hand, if the kernel’s
extent is determined by the number of neighbours to con-
sider, the kernel will be large when there is a low observation
density and small when density is high; we call it an adaptive
kernel (Fig. 2b).

2.1.4 Geographically weighted lasso (GWL)

GWR models are already improved versions of MLR as they
take into account local variations. However, local correlation
in explanatory variables can lead GWR to estimate strongly
correlated regression coefficients, which is problematic for
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inference on relationship between variables (Wheeler and
Tiefelsdorf, 2005). With respect to local correlation, three
phenomena must be considered: pairwise variables’ corre-
lation (or collinearity), multicollinearity and spatial autocor-
relation (SA). Pairwise correlation is well known, but mul-
ticollinearity and spatial autocorrelation are often ignored.
Multicollinearity appears when some explanatory variables
of a dataset, in a MLR, are linked by a linear relation, i.e.
when one can be reconstructed based on the others. And
spatial autocorrelation, similarly to temporal autocorrelation
where two observations close in time tend to have correlated
values, occurs when geographically close observations have
similar values. To model relationships in a dataset presenting
local correlation, we recommend the use of GWL, which is
more robust to local correlation (Wheeler, 2009). The lasso,
by adding a constraint on the magnitude of the estimated co-
efficients, stabilises the coefficients and limits the effects of
correlation of the explanatory variables.

n

2
N »
Bowr(ui, vi) = mﬂin [Z (yz' — Bolui, vi) = Y Brlui, Ui)xik)
=1

i=1

P
+)\GWLZ|/3k(uisUi)|}v (0)
k=1
where AgwL is the GWL regularisation penalty parameter.
Therefore, in addition to considering the spatial structure,
GWL has the advantage of producing a parsimonious model
as lasso regression performs variable selection. GWL models
have been used for various applications; for example, Wang
and Zuo (2020) applied GWL to detect geochemical anoma-
lies by identifying geological parameters that are locally sig-
nificant, and Im and Kim (2021) used such a model to iden-
tify local socio-economic factors that enhanced the transmis-
sion of SARS-CoV-2 in the Seoul metropolitan area during
the COVID-19 pandemic.

2.2 Dataset

In this work, we use a dataset published in Amesbury et al.
(2016) (called “Amesbury” in our R package; see Sect. 5).
That study aimed to build a pan-European transfer func-
tion using the most common reconstruction models (WA,
weighted averaging partial least squares regression (WA-
PLS), maximum likelihood (ML) and MAT) along with a
large geographically extended dataset, spanning from Spain
to western Russia. This large dataset is a compilation of sev-
eral datasets. The details of this compilation and the exhaus-
tive list of datasets included are given in Amesbury et al.
(2016). The compiled dataset contains 1799 samples from
113 sites in 18 countries. Each sample is characterised by
four descriptive variables (PERSON (the analyst), COUN-
TRY, SITE, SAMPLE), two geographical coordinates (Lat
(latitude), Long (longitude)) and 62 numerical measures
(WTD (water table depth), pH and the relative abundances
of 60 taxa). In total, the dataset contains 68 variables.

Web Ecol., 25, 169-176, 2025




172 S. Erb et al.: Geographically weighted models in palaeoecology

o (a) (b)
- Uniform ] Boxcar

22 4 e

'gm Gaussian

5 1

2

&< —

8 o

go - _
o
S - \_/I {ul, v T = T {ui,vi) T T

2000 1000 0 1000 2000 2000 1000 0 1000 2000

Distance to the calibration point

Figure 1. Different kernel shapes. (a) Continuous kernels: they are defined over the whole domain but do not reach zero; (b) compact kernels:
they are defined over the whole domain but are set to zero outside a fixed range.
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Figure 2. Two kernel configurations. (a) Fixed kernel: the distance does not vary; (b) adaptive kernel: the distance varies according to the

density.

We worked on the cleaned dataset, the same used as in-
put in the article of Amesbury et al. (2016). To clean it,
the authors made a few changes: to begin with, due to
the large number of contributors in the compiled dataset,
the authors adopted a low-resolution taxonomy to unify the
data. Morphologically similar taxa were merged to form
new groups (morpho-taxa). The rationale is that (1) TA
with a similar shape likely share similar ecological prefer-
ences and (2) morphologically similar taxa are more likely
to be misidentified, potentially leading to erroneous infer-
ence (Payne et al., 2011) — pooling them reduces this bias
(but also the precision). Rare taxa were removed, as well as
samples with “NA” values, and high pH value and extreme
WTD measurements were removed as they risk distorting the
prediction. Finally, the cleaned dataset included 1103 sam-
ples and 47 taxa, resulting in 55 variables in total. For model
fitting, we only used WTD, the coordinates (Lat, Long) and
the 47 taxa.

2.3 Model comparison

To assess the performance of the GWL method, we calcu-
lated its root mean squared prediction error (RMSEP) using
the leave-one-out (LOO) technique and compared it with the
RMSEP of other models (Birks, 2003). In total, we com-
pared seven different models based on their prediction er-
ror (see Table 1): MLR, lasso, two GWR models (GWR-geo
and GWR-bio, using geographical and bioclimatic distance,
respectively, for spatial selection), two GWL models (GWL-
geo and GWL-bio, similar to GWR), and WA-Tol (inv) as
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a reference. WA-Tol (inv) stands for “Weighted Averaging
with Tolerance downweighting and Inverse deshrinking” and
is the best-performing model in Amesbury et al. (2016). For
GWR and GWL models, we used the Euclidean geographi-
cal and bioclimatic distances. Bioclimatic data were retrieved
from the CHELSA database (Karger et al., 2018, 2017).

Two steps are required to fit a geographically weighted
model: (1) calculating the optimal bandwidth through cross-
validation and (2) fitting local models using the previously
calculated bandwidth for neighbour selection. Due to com-
putational limitations, we calculated the optimal bandwidth
for each geographically weighted method (GWR-geo, GWR-
bio, GWL-geo, GWL-bio) once for each model instead of
once for each LOO step, and we used the same bandwidth
for all LOO steps. We checked the validity of this assumption
by calculating the bandwidth for each LOO step of a sub-
set of 500 observations from the original dataset. As the 500
bandwidth values were very stable (mean = 1062, sd =0),
we concluded that this assumption was reasonable in regard
to computational time savings.

3 Results

The results of calculating the RMSEP for each of the six
models and for Amesbury’s model are shown in Table 1, to-
gether with the bandwidths (n nearest neighbours selected
for local regression) for the geographically weighted mod-
els. The order of the models corresponds to their description
in Sect. 2.1, with the reference model coming first, and the
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others listed in order of increasing recency. The RMSEP ex-
presses the mean prediction error in centimetres (cm) in pre-
dicting the WTD, so a smaller RMSEP indicates better per-
formance. The ranking of the models, from best to worst in
terms of prediction error, is the following: GWL-geo, lasso,
GWR-geo, MLR, GWL-bio, GWR-bio and finally Ames-
bury’s WA-Tol.

All models performed substantially better than Ames-
bury’s WA-Tol model. Geographically weighted models pro-
vide a 27 % and 30 % improvement in model performance as
assessed using RMSEP, while the improvement using biocli-
matic weighted models is somewhat lower (23 % and 26 %).
In contrast, the differences in RMSEP between lasso, GWR
and GWL models are small (at most 0.75 cm between GWR-
bio and GWL-geo). Compared to Amesbury, our GWL-geo
model, the best-performing model, improves the reconstruc-
tion with a gain of 3.22 cm (30 % improvement) in accuracy,
which is considerable relative to the range of WTD values
we predict.

The bandwidths also provide information on the selective
behaviour of the geographically weighted models. The GWL
models are more parsimonious in terms of the number of
neighbours selected for the local regressions, selecting 19 %
and 30 % of the observations (n = 1103) as neighbours for
GWL-geo and GWL-bio, respectively. GWR, on the other
hand, is much less local, selecting 74 % and 73 % of the ob-
servations as neighbours for GWR-geo and GWR-bio, re-
spectively.

In addition to improving prediction, geographically
weighted models, particularly GWL, allow for the produc-
tion of maps of the importance of each species (explanatory
variable) by location. Since geographically weighted models
fit local regressions, we obtain local regression coefficients
that can be interpreted as the influence of the species on the
prediction of WTD at a given location. A coefficient close to
zero indicates that the presence of the species is not informa-
tive to predict the WTD, while the presence of a species with
non-null coefficients indicates wetter conditions if the coef-
ficient is negative (higher WTD) and drier conditions if the
coefficient is positive (lower WTD). The map therefore indi-
cates in which region a species should or should not be con-
sidered. For example, Fig. 3 illustrates the importance of Ar-
cella discoides (ARC.DIS), a taxon associated with wet con-
ditions. We note that it is important to consider in northern
Europe, especially in Ireland and the UK, but not in central
Europe, where its coefficients are almost null. In this sense,
species with null coefficients in most locations are poor indi-
cators.

4 Discussion
Given the existence of spatial structure in ecology, we hy-

pothesised that the performance of the testate amoeba water
table depth transfer function model would improve if mod-
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els incorporated geographic or bioclimatic information. Our
results clearly confirm this hypothesis, with up to 30 % im-
provement in model performance compared to the model pre-
sented by Amesbury et al. (2016). Furthermore, we found
that the performance of basic methods such as lasso and
MLR is surprisingly good compared to spatially aware mod-
els. The respectable performance of the lasso model also
highlights that this dataset, with many explanatory variables,
is likely to be too noisy for other models that do not perform
variable selection. In this context, the advantages of GWL are
confirmed: spatial awareness, robustness to correlation (mul-
ticollinearity, autocorrelation) and variable selection. On the
one hand, GWL-geo, the best-performing model, allows one
to characterise the importance of a species depending on the
location, but on the other hand, it is computationally inten-
sive compared to the lasso model, which also performs well.
We therefore suggest choosing between these two methods
depending on the objective of the study: using a lasso for a
simple reconstruction when we focus on predicting the WTD
in a relatively restricted area and using a GWL when we
focus not only on prediction but also on characterising the
bioindicator value of species in a wider area.

Nonetheless, our results using this dataset (maps and re-
gression coefficients) must be considered with caution due
to the nature of the dataset. Indeed, the dataset is a compila-
tion, and different authors contributed data from different re-
gions, so there may be a potentially significant and geograph-
ically structured identification bias. The grouping of species
reduces this bias but still introduces a problem of low taxo-
nomic resolution, as the newly defined “morpho-taxa” have
broader ecological preferences and thus a loss of specificity.
A possible solution and future work would be to consider
morphological traits instead of species or taxa, as they may
be better indicators of the living conditions of microorgan-
isms (Fournier et al., 2015; Marcisz et al., 2020).

5 R package

To allow researchers to use GWL, typically for palaeore-
construction, we published an R package called “GWlasso”
(Mulot and Erb, 2024). The package also includes the dataset
we used in this study, which is presented in Sect. 2.2. In gen-
eral, we do not recommend the use of GWR models, espe-
cially for biological objects, due to their sensitivity to local
correlation (Wheeler, 2009). For this reason, we did not in-
clude them in the package.

To fit a GWL model, two steps are necessary: first cal-
culate the optimal bandwidth (bw) parameter through cross-
validation with function gwl_bw_estimation and, second,
use the optimal bandwidth to fit the model with function
gwl_fit(). The inputs for the bandwidth and fitting functions
are similar: a matrix of explanatory variables (x.var), a vector
of corresponding response variable (y.var), a matrix of dis-
tance between observations (dist.mat) and a few parameters
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Table 1. Performance of different regression models for inferring the water table depth from testate amoeba communities.

Model RMSEP  Percent improvement vs.  Bandwidth
WA-Tol
WA-Tol (inv) (Amesbury) 10.87 0% -
MLR 8.02 26 % -
Lasso 7.91 27 % -
GWR-geo 7.94 27 % 822
GWR-bio 8.40 23 % 802
GWL-geo 7.65 30 % 211
GWL-bio 8.06 26 % 331

Latitude

Longitude

-

Beta coef
0.0

30 40

Figure 3. Map of the § regression coefficients for Arcella discoides (ARC.DIS), according to each location extracted from the GWL model

based on geographical distance.

to specify the model’s local selection criteria (kernel type,
adaptive or not). In addition, function gwl_bw_estimation re-
quires the smallest bandwidth to be tested (adaptbw.thresh),
and gwl_fif() requires a bandwidth value, ideally the opti-
mal bandwidth calculated with the corresponding bandwidth
function.

Further documentation is available in the dedicated
GitHub repository (Mulot and Erb, 2024). Our code is in-
spired by “Geographically weighted elastic net logistic re-
gression” from Comber and Harris (2018) for the spatial se-
lection of neighbours.

Web Ecol., 25, 169-176, 2025

6 Conclusions

Despite some caveats, the relative differences between
Amesbury’s model and our new models are solid results as
they only report the change in model performance using the
same input. Those results suggest reconsidering the actual re-
construction models commonly used in palaeoecology, and
they explore the use of more recent mathematical methods,
like GWL and lasso models, in this field. The GWL method
already has applications in socio-economics (Setiyorini et al.,
2017) and geochemistry (Wang and Zuo, 2020) but, to our
knowledge, not yet in ecology, and it seems to be promising.
Future work using this method is now needed.
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Code and data availability. The data and GWL code
are available in the R package “GWlasso”, which
can be downloaded directly from GitHub and CRAN

(https://nibortolum.github.io/GWlasso/, last access: 17 June 2025;
DOI: https://doi.org/10.32614/CRAN.package.GWlasso) (Mulot
and Erb, 2024).
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