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Abstract. Climate change can have severe impacts on tree species distributions. Models consistently show
that tree species will follow climate towards higher elevations and latitudes. This has various effects on forest
ecosystems. Forests have a slow dynamic compared to other ecosystems and are affected severely by tree species
distribution shifts. Forested conservation areas with limited management reveal a slow adaptation process to a
changing climate. In this study, we have modelled and analysed the effect of possible tree species distribution
shift in Norway spruce (Picea abies), European beech (Fagus sylvatica), and two oak species (Quercus petraea
and Quercus robur), considered jointly on forested Natura 2000 sites, an EU-wide conservation area network.
The modelling procedure was performed using 3 to 4 bio-climatic variables derived from 26 variables of the
EURO-CORDEX Coupled Model Intercomparison Project Phase 5 (CMIP5) climate simulations for the Rep-
resentative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5 until 2098. Our results reveal a severe decline in
Picea within Natura 2000 sites in central Europe and lower elevations and confirm a strong shift towards higher
elevations and latitudes. This amounts to an 18 % absolute mean change (−18 % mean loss, 15 % mean gain).
Quercus sp. reveal similar results, with 23 % absolute mean change (−23 % loss, 24 % gain) at Natura 2000
sites, whereas Fagus remains stable throughout the model results with 8 % absolute mean change (−7 % loss,
9 % gain). The best model algorithms for all species were the generalised additive models (GAMs). As ecosys-
tems of any type are highly dynamic, climate change can lead to additional severe pressure on statically defined
conservation goals and associated management activities.

1 Introduction

Climate change often has detrimental effects on vegetation
(Cramer et al., 2001; Allen et al., 2010), although benefi-
cial aspects have also been found (De Graaff et al., 2006;
Keenan et al., 2023). Nevertheless, negative effects predom-
inate (IPCC, 2023), with increased temperatures accompa-
nied by droughts harming forest ecosystems (reviewed by
Adams et al., 2012; Anderegg et al., 2012; Bonan, 2008). A
changing climate further alters forest vegetation dynamics,
including species distribution through space and time (Dy-

derski et al., 2018; Pompe et al., 2008; Pressey et al., 2007;
Hinze et al., 2023; Wessely et al., 2024; Mauri et al., 2023).

Although responses to climate change are complex, there
are consistent findings for species distribution under climate
change: (1) species move polewards and towards higher el-
evations (Mathys et al., 2021; Araújo et al., 2011; Pompe
et al., 2008, 2010; Buras and Menzel, 2019; Thuiller et al.,
2006, among others). (2) The smaller the species’ climate
niche, the lower the probability that these species will persist
(Thuiller et al., 2005; Malanoski et al., 2024). Frequently,
suitable regions become unsuitable due to increased warm-
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ing and droughts. Still, climate change can also result in more
favourable climate conditions in regions that were previously
unsuitable for some species. These species can increase in
abundance in their native ranges and colonise such regions
if they are adjacent (Ackerly et al., 2010). This also applies
to alien and invasive species that can make use of expanding
suitable climatic conditions; they can disperse rapidly into
these favourable areas (Buckley and Csergo, 2017; Walther
et al., 2009).

Conservation areas are of specific interest to assess cli-
mate change impacts through species distribution modelling
(SDM) since management activities are limited and conser-
vation objectives are mostly defined statically. Of particular
interest are Natura 2000 (N2K) sites, as they form the largest
network of conservation areas worldwide. This network cov-
ers threatened species and habitat types, which are listed un-
der the Birds Directive and Habitats Directive, respectively
(European Environment Agency, 2023). The Habitats Di-
rective (92/43/EEC; European Commission, 1992), initiated
in 1992 by the European Union, requires national govern-
ments to declare conservation areas for flora and fauna. For
each site, Annex II protected habitats and/or Annex I pro-
tected species are reported, and their status must not de-
teriorate, in accordance with Article 6 of the Habitats Di-
rective. Intensively and extensively managed forest habitats
require climate-adapted planning, as they inherently have a
long turnover period. Tree species composition within con-
servation forest areas is more strongly determined by the
conservation objectives than the composition of tree species
outside these areas. Therefore, knowledge about the climate
adaptation potential of extensively managed forests in con-
servation areas is of crucial importance. Many studies have
focused on this topic, which we will examine in more detail
hereafter.

Mathys et al. (2021) found increased tree mortality, espe-
cially for Fagus sylvatica in Swiss forest nature reserves, us-
ing a retrospective approach with observations from Switzer-
land. Employing species distribution models for N2K habi-
tat types in Austria, Baatar et al. (2019) report the contrary;
i.e., vegetation units characterised by, among other species,
Fagus sylvatica and Pinus sylvestris benefit from warming.
Using a dynamic vegetation model, Hickler et al. (2012)
concluded that current vegetation might change by 25 % to
30 % in forested N2K sites, and large parts of the arctic and
alpine tundra may become forested by the end of this century.
Araújo et al. (2011) observed similar shifts and indicated a
severe decline in Picea-dominated forests in boreal areas in
favour of Fagus-dominated forests. Hinze et al. (2023) came
to a comparable conclusion and suggested forest manage-
ment to translocate tree species into newly suitable regions,
as many trees being planted today may mature in climates to
which they are not adapted (Hickler et al., 2012).

None of the abovementioned N2K studies used high-
resolution tree species occurrence data to quantify species-
specific threats at forested N2K sites. Instead, they used ei-

ther modelled vegetation units (Baatar et al., 2019), poten-
tial natural vegetation of forests (Hinze et al., 2023), plant
functional types (Hickler et al., 2012), or species occurrence
based on coarse-resolution grid data (Araújo et al., 2011).
Also, only two studies quantified a region-agnostic change
(Hickler et al., 2012; Araújo et al., 2011) for forested N2K
sites. As a result, specific tree species crucial to the Annex II
forest habitat types are still neither thoroughly evaluated nor
quantified for N2K sites in the course of climate change.

We, therefore, aim to address the following research ques-
tions.

(1) How will N2K-relevant European tree species distribu-
tion shift under a changing climate?

(2) How severely will forested N2K sites be influenced by
tree species distribution change?

To address our research questions, we quantified the po-
tential loss and gain of 41 tree species (see list of species in
Appendix Table C1) at N2K sites in Europe. In this study,
we present the results for three taxa that are among the most
frequent species in our input data: (1) Norway spruce (Picea
abies (L.) Karst); (2) European beech (Fagus sylvatica L.);
and (3) Sessile (Quercus petraea (Matt.) Liebl.) and Pedun-
culate (Quercus robur L.) oak, presented jointly as Quercus
sp.

To do so, we apply SDM approaches using three differ-
ent well-established algorithms: generalised additive models
(GAMs), generalised linear models (GLMs), and boosted re-
gression trees (BRTs). Input data are 1 km resolution tree
species occurrence data combined with soil parameter base
saturation and bio-climatic variables for various climate
change scenarios. The modelled reference and modelled fu-
ture projections are compared for forested N2K sites to quan-
tify the potential distribution change per tree species. Since
we are focussing on N2K sites only, we might miss the full
environmental gradient that is necessary for robust results.
We therefore needed to cover as large a gradient as possi-
ble and hence used the whole of Europe (Pompe et al., 2008;
Webber et al., 2023).

2 Material and methods

The study area covers all of Europe except Iceland, Ukraine,
Russia, and Caucasian countries (Fig. 1). We used Eu-
rope’s biogeographical regions (EBRs) (European Environ-
ment Agency, 2016) to group Natura 2000 (N2K) sites ac-
cording to these EBRs. They provide official delineations
for prioritising and planning conservation areas under the
Habitats Directive (92/43/EEC). Here, we concentrated on
the Alpine, Atlantic, Boreal, Continental, Mediterranean, and
Pannonian EBRs. Due to their small spatial proportions, the
Arctic, Black Sea, and Steppic EBRs were omitted. In the
following, materials and methods are described, illustrated
(Fig. 2), and referenced within the following subsections. We
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Figure 1. The study area with six biogeographical regions of Eu-
rope (EBRs), European Environment Agency (2016). The Arctic,
Black Sea, and Steppic regions are combined into the group “Other”
and will be omitted due to their small proportions.

included the ODMAP 1.0 protocol according to Zurell et al.
(2020) in Appendix Table A1, which makes our description
fully reproducible.

2.1 Tree species data

We used the EU Joint Research Centre (JRC) tree species dis-
tributions as occurrence probabilities (De Rigo et al., 2016),
ranging from 0 to 1, for our modelling procedure. They en-
compass 41 different tree species. All species show a zero-
inflated beta distribution, usually with low occurrence prob-
abilities in nonzero cases. These occurrence probability data
are available in the ETRS89 Lambert azimuthal equal-area
projection format, with a spatial resolution of 1 km. De Rigo
et al. (2016) modelled these occurrence probabilities to de-
rive spatially comprehensive distributions based on binary
input data from various databases, such as national forest in-
ventories. Due to their big-data modelling approach, outlier
detection is negligible (see De Rigo et al., 2016, for further
explanation). We chose to use these model outputs, as they
offer spatially uniformly distributed occurrence probabilities.
We are aware of potential model error propagation. How-

ever, this approach allows us to (a) apply various methods for
cross-validation and reduction in spatial auto-correlation, as
described in the following, and (b) model sparsely distributed
tree species using these methods.

In total, we modelled all 41 available tree species (see Ap-
pendix Table C1). Invalid values within the dataset, such as
−1, were eliminated. De Rigo et al. (2016) assigned any ex-
isting non-forest areas in the dataset a fill value of 0.0225
(Daniele De Rigo, personal correspondence, 2022), which
we excluded from the subsequent modelling process. We
chose to combine the occurrence probabilities of Quercus
robur and Quercus petraea by retaining the maximum value
per pixel, as both species are capable of hybridisation when
co-occurring (Jensen et al., 2009; Gerber et al., 2014).

2.2 Bio-climatic data

The base data for the computation of the bio-climatic data
are the EURO-CORDEX Coupled Model Intercomparison
Project Phase 5 (CMIP5) climate simulations (Samaniego
et al., 2022). These simulations include 88 realisations for the
Intergovernmental Panel on Climate Change (IPCC) Repre-
sentative Concentration Pathways (RCPs; IPCC, 2013) 2.6,
4.5, and 8.5, covering the years 1971 to 2098. Here, we used
a slightly altered version of the reference and projection pe-
riods from Reichmuth et al. (2025).

Based on the existing literature, we selected 26 bio-
climatic variables (Table 1). From all realisations belonging
to one RCP, the 5th, 50th, and 95th percentiles of the bio-
climatic variables were extracted for the projection periods
(Fig. 2c1). For the reference period 1971 to 1990, we ex-
tracted the 50th percentiles of all 88 realisations. We grouped
the combined realisations into five distinct time periods:

– 1971 to 1990 – reference

– 2021 to 2040 – projection

– 2041 to 2060 – projection

– 2061 to 2080 – projection

– 2079 to 2098 – projection due to data availability un-
til 2098 and in order to maintain the period length of
20 years.

We downscaled the data from their original 3 km resolution
to 1 km using the nearest-neighbour resampling method and
reprojected them from WGS84 to the ETRS89 Lambert az-
imuthal equal area to match the resolution and projection of
the other input data. We decided to limit the reference period
to 1990 due to the substantial influence of climate change on
the vegetation physiological responses, which was noticeable
by the end of the 1980s (Chmielewski and Rötzer, 2001; Sch-
aber and Badeck, 2005). As the tree species input data con-
sider forests up to the year 2001 (De Rigo et al., 2016), we
presumed that the stand was established in the 20th century
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and instead focused on historic climate conditions for our
reference period. The remaining four time periods of 2021–
2040, 2041–2060, 2061–2080, and 2079–2098 each mirror
the reference period in length for the sake of consistency.
The results presented in this paper are mainly focused on the
50th percentile for RCP 4.5. The results for RCP 2.6 and
8.5 can be accessed in Appendix D1. All computations here
were done using the Python packages xclim (Bourgault,
2023a, b) and xarray (Hoyer et al., 2023).

2.3 Soil data

We used the chemical parameter base saturation from JRC
“European Soil Database & soil properties” (Van Liedekerke
et al., 2006; Panagos, 2006) as a predictor variable in the
modelling procedure. This dataset is available in the ETRS89
Lambert azimuthal equal-area projection and at a 1 km spa-
tial resolution.

2.4 Natura 2000 areas

We used N2K sites (European Environment Agency, 2021)
in conjunction with the CORINE Land Cover map 2018
(European Environment Agency, 2019) to extract the forest
cover within the protected areas. We used this information to
select areas with a forest proportion ≥ 25 % and an extent
≥ 100 ha. These criteria were applied to 10211 N2K sites.
Per definition, more than one protected area – belonging to
the Birds Directive or the Habitats Directive – can be re-
ported for one and the same geographic location. This might
lead to partial spatial overlap and may affect subsequent sta-
tistical derivations, which we were not able to correct for.

2.5 Variable selection

To reduce the chance of model overfitting, the bio-climatic
variables were subjected to a principal component analysis
(PCA; R (R Core Team, 2023) base function prcomp). We
selected the first four principal components (PCs), as they
cumulatively explained 90 % of the total variance. From each
of these four PCs, the bio-climatic variables with the highest
loading values (Fig. 3) in conjunction with botanical rele-
vance were chosen as potential variables for the modelling
procedure. A correlation analysis was then carried out us-
ing a correlation coefficient of < |0.7| as the threshold (Dor-
mann et al., 2013) to avoid multicollinearity among the po-
tential variables. From these potential variables, we selected
growing degree days (PC1), water deficit (PC2) (Ohlemüller
et al., 2006), continentality index (PC3) (Conrad, 1946), and
precipitation seasonality (PC4) as predictor variables for the
modelling procedure. We neglected bio-climatic variables of
the type driest/wettest season, as they vary greatly within Eu-
rope and during the projection periods. We aggregated the
selected bio-climatic variables to the mean and standard de-
viation per EBR for RCP 4.5 to show their trend over the

Table 1. The 26 bio-climatic variables, calculated for RCPs 2.6,
4.5, and 8.5. The variation in the 88 underlying realisations was
accounted for using the 5th, 50th, and 95th percentiles. Bold rows
indicate the selected bio-climatic variables used for the modelling
procedure, as described in Sect. 2.5. Apart from common bio-
climatic variables, we included water deficit (Ohlemüller et al.,
2006) and continentality index (Conrad, 1946).

Bio-climatic variable Unit

Mean temperature °C
Minimum temperature of coldest month °C
Maximum temperature of warmest month °C
Temperature seasonality (SD× 100) %
Diurnal temperature range (dtr) °C
Temperature range °C
Precipitation sum mm
Precipitation range mm
Mean temperature of wettest quarter °C
Mean temperature of driest quarter °C
Mean temperature of warmest quarter °C
Mean temperature of coldest quarter °C
Last spring frost DOY
Precipitation seasonality (mean/SD× 100) %
Precipitation of wettest quarter mm
Precipitation of driest quarter mm
Precipitation of warmest quarter mm
Precipitation of coldest quarter mm
Dry days No. of days
Max consecutive dry days No. of days
Isothermality (dtr/(tmax− tmin)) %
Growing degree days above 5 °C Kd−1

Index of aridity (tmean July/annual precipitation) Unitless
Water deficit mm
Continentality index Unitless
Mean soil water content for all soil layers mm

time periods (Fig. B1 in Appendix B1). This trend shows a
temperature increase and/or extension of the growing period
of our simulation data over all EBRs (Fig. B1a). At the same
time, differences between winter and summer temperatures
decrease due to a lower continentality rate (Fig. B1b). Addi-
tionally, water deficit increases (Fig. B1c), which means that
evapotranspiration exceeds precipitation. A similar trend can
be observed for increasing precipitation seasonality, which
allows the conclusion about distinct variation within the an-
nual precipitation distribution (Fig. B1d).

2.6 Cross-validation using spatial blocking

Spatial block separation is a useful procedure to divide
modelling input data into evenly dispersed non-overlapping
blocks for cross-validation (Roberts et al., 2017). Each data
point is assigned to a block group that is used as either train-
ing or testing input for the model. This increases the transfer-
ability of the trained model to different regions. Using the R
package blockcv (Valavi et al., 2019, 2023), we selected five
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Figure 2. The modelling procedure outlined by a flowchart. In total, 26 bio-climatic variables serve as predictors for the reference period of
1971–1990 (a). To avoid over-parameterisation, they are reduced using a principal component analysis (PCA) and correlation analysis. The
remaining bio-climatic variables (b1) are used as input in combination with tree species occurrence probabilities (b2) for training multiple
statistical (machine learning, ML) models: boosted regression trees (BRTs), generalised linear models (GLMs), and generalised additive
models (GAMs) (b3). Here, we applied spatial blocking for cross-validation and regular pixel spacing to reduce the spatial auto-correlation.
Using the Akaike information criterion (AIC), we reduced the number of models to a set of candidate models (Mc) and finally one best
overall model (Mb). The selected bio-climatic variables are extracted for the future climate scenarios RCP 2.6, 4.5, and 8.5 (c1), which we
summarised in 20-year periods. These periods are used to project the tree species distribution using the best overall model (Mb) (c2).

randomly dispersed block groups with a 600×600 km extent
per block and an equal data distribution among the groups
(Fig. 4). We kept most default settings from the function
cv_spatial and only changed the following: size= 600 000,
iteration= 100, hexagon=FALSE, and offset= 0. During
the modelling procedure, four out of five block groups were
used for training, while the remaining block group was with-
held for testing. This procedure was repeated five times so
that all block groups served as testing data once (Fig. 2b3).

2.7 Reduction in spatial auto-correlation

Spatial auto-correlation can lead to (1) an overestimation of
the predictive power of a trained model (Ploton et al., 2020),
(2) inflated degrees of freedom with resulting false signifi-
cant error probabilities, and (3) incorrect parameter estimates
(Dormann, 2007). Among others, Dormann et al. (2007),
Kühn (2007), and Ploton et al. (2020) corrected for the dis-
tribution of unequal residuals, which depend on the spatial
auto-correlation, using computationally intensive methods.
Even though we are aware of non-independent spatial obser-
vations, we have opted for a computationally cheap method-
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Figure 3. PCA biplot for all 26 bio-climatic variables. PC1 (x axis) and PC2 (y axis) explain 79 % of the variance. The length of the vectors
(arrows) indicates the loading value. The longer the vector, the more information the variable carries. Close-by (opposite) vectors indicate a
highly positive (highly negative) correlation. The selected bio-climatic variables are marked in red.

ology, regular spatial distance separation. Hence, only data
points that are spatially separated by a predefined distance
were considered for the model training process. The distance
assessment was based on global Moran’s I estimations of
model residuals using various distance values with the R
package waywiser (Mahoney, 2023). The Moran’s I range is
[−1,1] and indicates strong auto-correlation in the form of
clustered residuals (� 0), perfectly random data and thus no
auto-correlation (∼ 0), or chequerboard-like dispersed data
(< 0). A regular distance of 20 km was selected as a trade-
off between Moran’s I estimates and a sufficient amount of
training data (Fig. 5). The distance spacing was applied to
the training data.

2.8 Statistical modelling

We modelled the potential distribution of each taxon us-
ing three well-established and widely used modelling algo-
rithms: (1) generalised linear models (GLMs) (Nelder and
Wedderburn, 1972), (2) generalised additive models (GAMs)

(Hastie and Tibshirani, 1986), and (3) boosted regression
trees (BRTs) (Friedman et al., 2000; Freund and Schapire,
1996; Friedman, 2001) (Fig. 2b). The corresponding R pack-
ages are stats (R Core Team, 2023) for GLMs, gam (Hastie,
2023) for GAMs, and dismo (Hijmans et al., 2022) (function
gbm.step) for BRTs. First- and second-order polynomials of
all predictor variables were included in the GLM and GAM.
For the BRT, we used the default parameters but increased
the number of initial trees (n.trees) from 50 to 100 for some
performance gain, as the tree depth was rather high (5000
to 10 000), see Appendix Table A1 for parameter specifica-
tions. The tree species data serve as response variables; bio-
climatic and soil data serve as predictor variables (Fig. 2b1
and b2). Only model runs in which the training data con-
tained at least 200 nonzero data records were considered.

The model evaluation for each run was performed using
the R package dismo (Hijmans et al., 2022). The evaluation
parameters of interest were the Akaike information criterion
(AIC) (Akaike, 1974), the true skill statistic (TSS) (Allouche
et al., 2006), and the root-mean-square error for training vs.
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Figure 4. Spatial block distribution across Europe, with a block
size of 600×600 km for cross-validation during the modelling pro-
cedure. Blocks with the same number belong to one group.

Figure 5. Moran’s I of the Picea model residuals using GLMs and
spatial distances of 1, 2, 5, 7, 10, 15, 20, 25, 30, and 35 km iterating
over all five block groups and aggregated to their mean.

fitted values (RMSE). The TSS is an appropriate indicator of
how well the model prediction fits the test data. The value
range is [−1,1], where +1 indicates maximum agreement
of model prediction vs. the test dataset, and values close to

0 indicate random performance of that model. Values < 0
indicate that the opposite relationship would be better (i.e.,
coefficients multiplied by −1).

We trained 15 models in total: 5 block realisations × 3
algorithms (Fig. 2b3). We reduced these 15 models in two
steps. (1) We took the best algorithm according to the low-
est AIC score, which resulted in five candidate models, one
for each block group. After the initial model runs and the
candidate model selection, an evaluation of the model AIC
(GLM, GAM) and feature importance (BRT) was used for
model simplification. Here, the soil parameter base satura-
tion was omitted from all models, as it had the lowest im-
portance. In addition, we reduced the bio-climatic predictors
where applicable. We calculated models with four and three
bio-climatic variables and used the ones where delta AIC was
> 0. Similarly, the feature importance of the candidate BRT
models using four bio-climatic predictors was evaluated. The
least important predictor, with < 10 %, was excluded if ap-
plicable. Hence, we only used the most appropriate and least
parametric model. This model thinning for nonparametric
BRT was applied for consistency with the GAM and GLM
thinning approach. (2) From these candidate models, we se-
lected the best-performing model Mb according to the sum
of 1−RMSEMc and T SSMc (Eq. 1). They capture different
aspects, but for transferability one needs both, recovering the
observed pattern (large TSS) and at the same time minimis-
ing the error (low RMSE). Partial response curves of the final
GAM model for Fagus with the three bio-climatic variables,
continentality index, growing degree days, and water deficit,
are shown in the Appendix Fig. C1. This best-performing
model was used for projecting to the four projection peri-
ods (Fig. 2c). The projection outputs are pixel maps with
a 1 km spatial resolution. The projection was applied to all
three RCPs and all four projection periods (2021 to 2040,
2041 to 2060, 2061 to 2080, and 2079 to 2098) for the 5th,
50th, and 95th percentiles (see Sect. 2.2), as well as to the
reference period of 1971 to 1990.

Mb =max((1−RMSEMc) + TSSMc) (1)

2.9 Natura 2000 evaluation

To evaluate the potential effect of tree species distribu-
tion shifts at N2K sites, a change value (CVi) was com-
puted by taking occurrence probabilities per projection pe-
riod (Pi(Time)) vs. projected reference (Pi(Reference)) per
pixel i into account (Eq. 2). By relating this pixel-wise nu-
merator to the overall maximum value within the projected
reference (max(P (Reference))) as a denominator, we can ex-
tract the CVi as the percentage of change. The change value
range is [−1,1] and indicates an increase (Pi > 0) or de-
crease (Pi < 0) of the probabilities per projection period in
comparison to the projected reference. Due to the intraspe-
cific denominator, the CVi can not be compared between the
species but only within the projection periods per species. We
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extracted this change value for all pixels within each N2K
site considered and aggregated them to a mean change value
CV per N2K site (Eq. 3). We can use this information to
quantify a potential tree species distribution change per N2K
site. We then aggregated the median and 25th and 75th per-
centiles from all N2K site CV within an EBR. These metrics
allow the quantification of the range of the shifts per EBR.

CVi =
Pi(Time)−Pi(Reference)

max(P (Reference))
, (2)

with CVi as the change value per pixel, Pi(Time) as the prob-
ability of occurrence for the projection periods per pixel,
Pi(Reference) as the probability of occurrence for the ref-
erence period per pixel, and max(P (Reference)) as the max-
imum probability of occurrence for the reference period.

CV=
1
n

n∑
i=1

CVi (3)

3 Results

Here we present results of the statistical modelling (Sect. 3.1)
and the N2K evaluation (Sect. 3.2) for the tree species Fagus,
Picea, and Quercus.

3.1 Modelled species distributions

GAM was the overall best-performing model (Table 2) for
the taxa Fagus, Picea, and Quercus (Appendix Table C1 for
all 41 tree species). The predictor reduction from four to
three predictors was applicable for Fagus and Quercus. The
TSS values vary from 0.60 (Fagus) to 0.75 (Picea) to 0.70
(Quercus). The shifts in occurrence probability vary depend-
ing on the species and region.

The projected reference period reveals very similar distri-
bution patterns to those of the actual input data (Figs. 6a, 7a,
and 8a vs. 6b, 7b, and 8b). The occurrence probabilities,
however, are lower. The projection period of 2079 to 2098
for RCP 4.5 shows small changes compared to the reference
period for Fagus (Fig. 6c). On the other hand, Picea and
Quercus reveal a severe decline throughout the study area
(Figs. 7c and 8c). Fagus declines in lowland areas across Eu-
rope (Fig. 6d), while it increases in the foothills of mountain
ranges. In order to quantify these changes, we have to con-
sider the change value range of [−1,1], which cancels itself
out during mean change value calculation. We have there-
fore calculated the absolute mean change value and also the
mean above 0 as well as the mean below 0 to reveal gain
and loss. This results in a 6 % absolute mean change value
(−6 % mean loss, 8 % mean gain). Similarly, Quercus shows
a severe decline in western Europe, as well as in the Pan-
nonian and Mediterranean areas, and further shifts into the
Scandinavian countries, Finland, the Baltic countries, and

higher elevations (Fig. 8d). This accounts for a 23 % abso-
lute mean change value (−28 % mean loss, 21 % mean gain).
For Picea, we can see a severe decline in most areas in central
Europe, Baltic countries, and southern Norway/Sweden/Fin-
land (Fig. 7d). The taxon increases in northern Norway/Swe-
den/Finland and in the central Alps. In general, lowland areas
are affected by losses, whereas the taxon shifts into higher
elevations and northern areas. This accounts for a 17 % abso-
lute mean change value (−17 % mean loss, 18 % mean gain).
The results for RCP 2.6 and RCP 8.5 are included in the Ap-
pendix and show either less pronounced (RCP 2.6 Figs. C2,
C3, and C4) or more pronounced development (RCP 8.5
Figs. C5, C6, and C7).

3.2 Effects on Natura 2000 sites

At the N2K sites across Europe, Fagus shows again the least
decline in the three modelled taxa and showed increases in
lower and higher mountain ranges such as the Ore mountains
and the Alps, Tatras, and Carpathians (Fig. 9a). Aggregating
the change over the study area, it accounts for 8 % of the ab-
solute mean change value (−7 % mean loss, 9 % mean gain)
until 2098 for RCP 4.5. On the other hand, Picea potentially
loses ground at the N2K sites in these mountainous regions
(Fig. 9c). In contrast, that taxon reveals a strong increase in
Scandinavia and Finland as it moves further north and into
higher elevations. Aggregated over all N2K sites, Picea re-
veals a mean absolute change value of 18 % (−18 % mean
loss, 15 % mean gain) until 2098, taking RCP 4.5 into ac-
count. Quercus shows a decline at N2K sites of the Mediter-
ranean, France, and the Pannonian area, as well as increases
in central Europe, lower mountain ranges, Finland, and the
Baltic countries (Fig. 9e). The overall mean absolute change
value until 2098 amounts to 23 % (−23 % mean loss, 24 %
mean gain).

Focusing on the EBRs, we can see similar trends. Fa-
gus reveals an increase at N2K sites in the Alpine and Bo-
real regions, while it decreases in the Atlantic, Continental,
Mediterranean, and Pannonian regions (Fig. 9b). Only a few
outliers show a negative or positive change value of <−50 %
or > 50 % (Alpine and Continental EBRs). However, Picea
shows a negative trend in all EBRs (Fig. 9d). The trend in the
Boreal and Alpine regions is quite severe, as some whiskers
(1.5× interquartile range) exceed −50 % towards the end of
the century. Quercus, however, again shows a similar pattern
to Fagus, with positive trends in the Alpine and Boreal re-
gions and negative trends in the remaining EBRs (Fig. 9f).
However, here also some whiskers exceed 50 % or −50 %.
RCPs 2.6, 4.5, and 8.5 reveal similar trends per species and
EBR (Tables D1, D2, and D3 in Appendix D1) over all pe-
riods. The negative as well as positive trends continue over
time and RCPs. They partly exceed change values of 50 % or
−50 %, e.g., Quercus at the 75th and 25th percentile for RCP
8.5. The plot results for RCPs 2.6 and 8.5 can be accessed in
Appendix Figs. D1 and D2.
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Table 2. The best model evaluation result for species Fagus, Picea, and Quercus. The test block column indicates the block that was
omitted during the training process. The RMSE training column is the RMSE calculated based on training data vs. model fit, whereas TSS
is calculated based on testing data and values predicted by the model. The no. of predictors and removed predictor columns show whether a
predictor was removed during the training procedure and if so, which one.

Tree species Model Test block RMSE training TSS No. of predictors Removed predictor

Fagus sylvatica GAM 3 0.088 0.60 3 Precipitation seasonality
Picea abies GAM 4 0.132 0.75 4 –
Quercus sp. GAM 3 0.068 0.70 3 Water deficit

Figure 6. Occurrence probability for Fagus sylvatica. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al.,
2016)), panel (b) is the model projection for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to
2098 RCP 4.5 at the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the
projected reference. Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species
is not present in reference or in projection data.

4 Discussion

Our results reveal substantial shifts in tree species’ proba-
bilities of occurrence towards the end of the century under
warming climate conditions according to the IPCC RCP 4.5
scenario. The combination of decreasing precipitation dur-
ing the vegetation period with increasing temperatures and/or
longer vegetation periods can lead to diminished species-
specific site adaptation.

4.1 Shifts in tree species distribution

Based on past studies, we would expect the main distribu-
tional shifts to be in the lowlands, but we would also expect
species-dependent shifts within elevated areas and at higher
latitudes. Our results can confirm the overall species distribu-
tion trend from other modelling studies (Buras and Menzel,
2019; Hinze et al., 2023; Hickler et al., 2012; Thuiller et al.,
2005) but differ in some aspects, especially for Quercus and
Fagus. Fagus experiences the lowest distribution changes,
which is contradictory to findings by Mathys et al. (2021),
who found the strongest climatically induced effect (mor-
tality) for Fagus. In our study, Quercus instead gains abun-
dance distinctively in the Boreal and Alpine EBRs, with si-

multaneous losses in the Atlantic, Mediterranean, and Pan-
nonian EBRs. Similar results were found by Thuiller (2004)
and confirmed by Hickler et al. (2012), who revealed the
greatest changes in arctic and alpine regions. The trend in
bio-climatic variables can lead to reduced growth, especially
for Picea, as this cold-adapted taxon reveals a strong de-
pendency on summer precipitation and responds more neg-
atively to higher summer temperatures in comparison to
thermophilic Quercus species (Zang et al., 2012) or Fagus
(Obladen et al., 2021; Pretzsch et al., 2020). This is con-
firmed by Thuiller et al. (2005): warm-adapted species have
higher chances for an increase in their range extent than
cold-climate-adapted species. Also, the maps reveal an in-
creasing occurrence probability for Quercus in warmer re-
gions, while Picea migrate to higher elevations and latitudes,
which is in line with Araújo et al. (2011). Fagus shows higher
drought and heat sensitivity compared to other co-existing
tree species and reveals a reduction in competitive strength
under unfavourable conditions (Leuschner, 2020; Scharnwe-
ber et al., 2011). Among the three species analysed, Quer-
cus showed the most gain, but on the other hand, this taxon
also revealed the most severe losses. However, Brandl et al.
(2020) revealed similar survival/mortality rates for Quercus
and Fagus.
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Figure 7. Occurrence probability for Picea abies. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)),
panel (b) is the model projections for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP
4.5 at the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected
reference. Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not
present in reference or in projection data.

Figure 8. Occurrence probability for Quercus sp. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)),
panel (b) is the model projections for the reference period 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP
4.5 at the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected
reference. Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not
present in reference or in projection data.

Modelled species distributions from Mauri et al. (2022)
reveal very similar trends for the three taxa. They used bi-
nary input data regarding tree species occurrence but simi-
lar climate data as well as model algorithms (BRT, GAM,
and GLM, among others), which means that their study can
serve as an appropriate verification study. Consequently, dif-
ferences between our study and the abovementioned ones
(Mathys et al., 2021, Hickler et al., 2012, and Hinze et al.,
2023) might stem from several factors such as the input
data and/or model algorithms employed, as well as methods
for optimising the modelling procedure, such as a reduction
in spatial auto-correlation and block cross-validation. These
factors concern the spatiotemporal resolution and spatial ex-
tent employed. The implementation of interspecific interac-

tions and species behaviour scenarios such as dispersal can
also influence the model outcome significantly, which we did
not implement here. Beyond the climate conditions used in
SDM, other parameters such as potential land use change can
influence the species distribution potential and diminish the
quantitative comparability of studies.

4.2 Effect of tree species shift at forested Natura 2000
sites and their conservation goals

Considering these species shifts, we can quantify the poten-
tial changes in species distributions for forested N2K sites
(≥ 25 % forest cover and ≥ 100 ha extent). In our study, we
assess the change value for N2K sites to quantify potential
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Figure 9. Change values for Picea, Fagus, and Quercus, aggregated to the mean per N2K site with forest cover ≥ 25 % and size ≥ 100 ha.
Panels (a), (c), and (e) show the period for the 2079 to 2098 RCP 4.5 at the 50th percentile. Negative change values presented in dark magenta
reveal a decline, which means that the species was present in the reference period but is no longer present in the projection period. The green
colour or positive change values indicate increasing abundance in this area. Yellow (change values of 0) indicates no change in abundance,
and grey indicates that the species is present in neither the reference period nor the projection period. Panels (b), (d), and (f) show the change
value development over all periods and the RCP 4.5 projection for the EBRs.
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gains and losses in the occurrence probabilities, taking cur-
rent forest tree species distributions into account. In partic-
ular, consideration of the current tree species distributions
is essential, as the definition of N2K sites relies on current
species-specific habitats. Our approach allows us to pinpoint
areas where tree species occurrences might change without
considering the entire habitat since habitats will not remain
intact when single species migrate in and out. Severe changes
in Quercus and Picea can influence the prevalence of charac-
ter species and the associated conservation goal.

Parmesan and Yohe (2003) found a possible expansion
of temperate species with a simultaneous decline in po-
lar species distributions. Ackerly et al. (2010) even infer
that climates with retracting extent could lead to a de-
crease in species abundance and an increasing extinction
risk of species adapted to such climatic conditions, which is
questioned by Sporbert et al. (2020). Nevertheless, climate-
induced species shifts can lead to severe economic losses as
well as ecological ones, and the early (anticipatory) planting
of possible non-European replacement tree species is recom-
mended (Hanewinkel et al., 2012). As non-European species
conflict with the Habitats Directive, suitable tree species
should be considered in order to maintain the conservation
objectives. Recently, potential replacement species in forest
management (Mauri et al., 2023) and also the climate po-
tential of tree species throughout the century (Wessely et al.,
2024) were analysed without a focus on conservation areas.

The response to potential habitat losses generally involves
more conservation efforts or alterations in habitat definition
rather than the removal of the conservation status. The ul-
timate goal of the Habitats Directive is to prevent species
extinction and to protect endangered habitats. This often re-
quires ongoing and increasing efforts (Hermoso et al., 2019)
and adjustments to conservation strategies. A political de-
bate on how to deal with climate-change-induced alterations
at forest N2K sites is ongoing. De Koning et al. (2014) de-
rived three main points of discourse: (1) further enforcement
by more strict policies, (2) taking dynamic effects within
the N2K sites into account, and (3) maintaining the current
policy until new scientific evidence allows changes. Cabeza
and Moilanen (2001), Hannah et al. (2002), Hermoso et al.
(2019), Mawdsley et al. (2009), and Root et al. (2003) en-
dorse the second point of discourse by considering biodi-
versity dynamics and potential species shift when design-
ing conservation areas. Biodiversity is undergoing natural
transformations due to shifts in species distribution (Pressey
et al., 2007), and historically defined habitat status cannot
prevail through climate change (Baatar et al., 2019). Araújo
et al. (2011) even conclude that N2K sites do not preserve
climate suitability for species or do so less effectively than
in unprotected areas due to less management; they demand
new and adapted strategies. Hermoso et al. (2019) recom-
mend amending N2K sites’ conservation goals and defining
protected species in a dynamic way based on their Interna-
tional Union for Conservation of Nature (IUCN) Red List

threat status. An alteration of species composition or struc-
ture in a habitat is not necessarily to be regarded as de-
terioration (European Commission and Directorate-General
for Environment, 2013). Therefore, European Commission
and Directorate-General for Environment (2013) recommend
an adaptive management strategy for the site management
plans to face the direct and indirect effects of climate change.
Araújo et al. (2011) also mention integrated management for
the area surrounding the N2K sites to allow species move-
ment between protected areas. Nevertheless, the conserva-
tion efforts in the EU lack financial, personal, and political
support (Hermoso et al., 2019).

We support this demand and recommend a dynamic defini-
tion of habitat conservation goals similar to those of Hermoso
et al. (2019) within existing or new N2K sites, as our results
reveal significant species shifts and thus potentially severe
habitat changes for Picea and Quercus. These species can-
not remain in areas with unfavourable climatic conditions,
especially in the Boreal, Alpine, Mediterranean, and Atlantic
EBRs. This development will affect Annex II habitat types
where these taxa are defined as typical species and thus will
also affect dependent Annex I species with the protected sta-
tus. We do not recommend a spatially dynamic definition of
N2K sites itself as socioeconomic conflicts (Hermoso et al.,
2019) (e.g., with other land use types) interfere with conser-
vation goals and species distribution.

4.3 Methodological constraints and limitations

Most species distribution studies that we refer to use bi-
nary (i.e., presence/absence or presence-only) input data. Our
species input data are spatially uniformly distributed occur-
rence probabilities with a value range of [0,1] and reveal
a zero-inflated beta distribution that leads to reduced pro-
jection probabilities that never reach 1, [0,1). The change
value, which we calculated, is species-specific and reflects
the change in relation to the projected reference data. This
allows a trend comparison but no alignment to absolute val-
ues across studies. The variable reduction is intended to re-
duce model complexity based on statistical inference, such
as AIC evaluation. Neglecting the soil variable base satura-
tion was necessary, as it revealed lowest variable importance
within the models. This is contrary to Walthert and Meier
(2017) and Pompe et al. (2008), who found improved statis-
tics by including edaphic parameters. It is possible that the
relatively coarse information content within the base satu-
ration layer (three classes) has led to the insignificant impor-
tance within the models. In general, species distribution mod-
els attempt to map important elements of the n-dimensional
hyperspace of Hutchinson’s niche (Hutchinson, 1957) by de-
riving a statistical relationship between the occurrence of a
species and the environmental variables. Distribution mod-
elling presumes species climate equilibrium to be their in-
put state (Guisan et al., 1999; Pearson and Dawson, 2003).
But this does not include the influence of forest manage-
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ment with reduced competition and delayed species reaction
to changes in climatic conditions. The prevalence of a certain
tree species in the current climate does not necessarily imply
that these conditions are the most favourable for that species.
In particular, pure stands with heavy forest management can
also occur in areas with less suitable site conditions, such
as the economically important Picea. This could affect the
niche that is realised and thus the modelling results (Pearson
and Dawson, 2003).

4.4 Conclusion

Our study highlights the significant influence of tree species
distribution shifts on forested N2K sites across Europe. Ma-
jor tree species distribution changes have potential negative
effects on the N2K integrity, an EU-wide conservation area
network. Although the European Commission enables and
encourages an adaptive management of N2K sites, the static
protection regime counteracts the dynamic nature of climate
impacts. We therefore advocate for a more dynamic defini-
tion of the conservation objectives that takes climate-driven
changes in tree species distributions into account, particu-
larly in relation to Annex I and Annex II protected species
and habitats. Cold-adapted Picea in particular reveals a se-
vere decline at forested N2K sites throughout Europe, which
emphasises the need for dynamic conservation goals. Future
research should explore and evaluate potential surrogate tree
species that satisfy the conservation goals in a changing cli-
mate and provide important ecosystem services for the so-
ciety. These findings should provide valuable guidance for
decision-makers to ensure the effectiveness of the conserva-
tion efforts.
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Appendix A

A1 ODMAP standard protocol

Table A1. ODMAP 1.0 standard protocol (Zurell et al., 2020), including mandatory fields.

ODMAP element Content

Overview

Authorship Study title Natura 2000 sites under climate change: effects of tree species distribution shifts

Author names

Contact

Study link –

Model objective Model objective Forecast and transfer

Target output Occurrence probabilities of the target tree species. Change values of projected vs. reference periods for forested
Natura 2000 sites.

Focal taxon Focal taxon European beech (Fagus sylvatica), Norway spruce (Picea abies), Sessile oak (Quercus petraea), and Peduncu-
late oak (Quercus robur)

Location Location Europe except Iceland, Ukraine, Russia, and Caucasian countries

Scale of analysis Spatial extent 10.66° W, 31.59° E, 34.80° N, 71.18° N (xmin, xmax, ymin, ymax)

Spatial resolution 1 km2

Temporal extent 1971 to 2098

Temporal resolution 20-year periods

Boundary Political

Biodiversity data Observation type Occurrence probabilities

Response data type Occurrence probabilities

Predictors Predictor types Climatic, edaphic

Hypotheses Hypotheses We hypothesise that the tree species occurrence probabilities correlate with climatic conditions and edaphic
parameter base saturation. Therefore, we selected 26 bio-climatic variables based on a literature review and
trained our models on the reference period of 1971 to 1990.

Assumptions Model assumptions Relevant ecological drivers of species distributions are included.
Response data serve as adequate input to the modelling procedure.

Algorithms Modelling techniques GLM, BRT, and GAM

Model complexity –

Model averaging No, we projected one model derived as the best-performing one per tree species.

Workflow Model workflow Before model fitting, we selected appropriate bio-climatic variables based on principal component analysis
(PCA) and correlation analysis. We selected four bio-climatic variables and base saturation as the edaphic
parameter. The input data for model fitting were divided into five blocks to perform cross-validation (four
blocks were trained, one block was omitted for testing). Furthermore, we applied a regular pixel spacing of
20 km in lat/long directions in order to account for spatial auto-correlation. This resulted in 15 models (three
algorithms and five cross-validation blocks), which we reduced to 5 candidate models (one per block) based on
the minimum AIC per algorithm. Here we trained the candidate models again, reducing the number of predictor
variables. We were able to omit base saturation in all model runs. In addition, in some cases it was appropriate
to reduce the number of bio-climactic variables to three. Based on the candidate models, we selected best model
per species based on lowest RMSE (training vs. fitted values) and highest TSS on test data.

Software Software R (version 4.2.2) with the packages gam, stats, dismo, gbm, waywiser, and blockCV.

Code availability Code shared, available at https://doi.org/10.5281/zenodo.11400444 (Reichmuth, 2024).

Data availability Response data available at https://forest.jrc.ec.europa.eu/en/european-atlas/atlas-data-and-metadata/ (last ac-
cess: 25 March 2025).

Predictor data available at https://doi.org/10.48758/ufz.14933 (Helmholtz-Centre for Environmental Research,
2024).
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Table A1. Continued.

ODMAP element Content

Data

Biodiversity data Taxon names Fagus sylvatica, Picea abies, and Quercus sp.

Taxonomic reference
system

–

Ecological level Species

Data sources Occurrence probabilities of tree species
(https://forest.jrc.ec.europa.eu/en/european-atlas/atlas-data-and-metadata/)

Sampling design Harmonisation of present/absent records per tree species

Sample size Area-wide occurrence probability per species (each pixel is one value)

Absence data –

Background data –

Data partitioning Training data Five-fold block cross-validation (four leave one out)

Validation data Not applied

Test data Five-fold block cross-validation (one leave four out)

Predictor variables Predictor variables We selected four bio-climatic variables based on PCA on all 26 bio-climatic variables and subsequent correla-
tion analysis, including base saturation.

Data sources Predictor data available upon request. An adapted version of the predictor data is available from Reichmuth et
al. (2025)

Spatial extent 10.66° W, 31.59° E, 34.80° N, 71.18° N (xmin, xmax, ymin, ymax)

Spatial resolution 1 km2

Coordinate reference
system

EPSG 3035

Temporal extent 20-year period, 1971–1990

Transfer data Data sources

Spatial extent 10.66° W, 31.59° E, 34.80° N, 71.18° N (xmin, xmax, ymin, ymax)

Spatial resolution 1 km2

Temporal extent 20-year periods from 2021 to 2098

Models and scenarios EURO-CORDEX CMIP5 scenarios and RCPs 2.6, 4.5, and 8.5

Data processing We used the median, 5th (minimum temperature of the coldest month), and 95th (consecutive dry days, maxi-
mum temperature of the warmest month) percentiles of annual bio-climatic variables for the 20-year period.

Quantification of
novelty

We reduced the spatial auto-correlation based on global Moran’s I estimates. Here we applied a regular pixel
spacing of 20 km in the lat/long directions.

Model

Variable
preselection

Variable preselection

Multicollinearity Multicollinearity We applied a PCA analysis and subsequent correlation analysis.

Model settings Model settings (fitting) GLM: family (binomial), formula (y∼ pred 1+ I (pred 1)2
+ pred 2+ I (pred 2)2

+ pred 3+ I (pred 3)2
+ pred

4+ I (pred 4)2
+ pred 5+ I (pred 5)2).

BRT: formula (y∼ pred 1+ pred 2+ pred 3+ pred 4+ pred 5), distribution (binomial), nTrees (100), interac-
tionDepth (1), shrinkage (0.01), bagFraction (0.75), trainFraction (1).

GAM: family (binomial), formula (y∼ pred 1+ I (pred 1)2
+ pred 2+ I (pred 2)2

+ pred 3+ I (pred 3)2
+ pred

4+ I (pred 4)2
+ pred 5+ I (pred 5)2).

Model settings Model settings (extrap-
olation)

–

Model estimates Coefficients –

Analysis and
correction of
non-independence

Spatial auto-correlation Estimation of global Moran’s I : we chose a computationally inexpensive method of regular 20 km pixel spacing
in lat/long directions based on Moran’s I .

Threshold selection Threshold selection No threshold
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Table A1. Continued.

ODMAP element Content

Assessment

Performance statis-
tics

Performance on
training data

AIC, RMSE

Performance on testing
data

TSS

Plausibility check Response shapes Inflated response plots for the four remaining bio-climatic variables

Expert judgement Map display

Prediction

Prediction output Prediction unit We used continuous occurrence probability predictions per species and quantified changes between reference
and projection period for forested Natura 2000 sites (≥ 25 % forest, ≥ 100 ha size).

Uncertainty
quantification

Scenario uncertainty Three climate scenarios

Novel environments We visualised changed values of distribution as shifts in colour coded for gain and loss in projections and
quantified the changed values for forested Natura 2000 sites.
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Appendix B

B1 Bio-climatic variables

Figure B1. Trend for selected bio-climatic variables over the reference and projection periods (RCP 4.5, 50th percentile) for the EBRs.
Black lines indicate the mean values, and the grey areas show the corresponding standard deviations.
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Appendix C

Table C1. Model evaluation results for the best model and for all 41 tree species.

Tree species Model Testing block RMSE training TSS No. of predictors Thinned predictor

Abies alba BRT 3 0.0338 0.61 3 Precipitation seasonality
Abies sp. BRT 3 0.0347 0.58 3 Precipitation seasonality
Acer campestre BRT 2 0.0247 0.59 3 Precipitation seasonality
Acer pseudoplatanus BRT 3 0.0253 0.53 4 –
Alnus glutinosa BRT 3 0.0239 0.55 3 Precipitation seasonality
Alnus incana BRT 1 0.0223 0.68 3 Precipitation seasonality
Betula sp. GAM 3 0.0937 0.84 4 –
Carpinus betulus BRT 5 0.0483 0.61 3 Precipitation seasonality
Castanea sativa BRT 4 0.0366 0.82 3 Precipitation seasonality
Corylus avellana BRT 4 0.0131 0.58 3 Continentality index
Fagus sylvatica GAM 3 0.0881 0.6 3 Precipitation seasonality
Fraxinus excelsior BRT 5 0.0294 0.58 3 Continentality index
Fraxinus ornus BRT 4 0.0273 0.67 4 –
Larix decidua BRT 3 0.0315 0.55 4 –
Picea abies GAM 4 0.132 0.75 4 –
Picea sitchensis GAM 3 0.0244 0.84 4 –
Pinus contorta BRT 4 0.0115 0.74 3 Water deficit
Pinus halepensis BRT 4 0.0275 0.87 3 Continentality index
Pinus mugo BRT 4 0.0086 0.71 4 –
Pinus nigra BRT 1 0.0327 0.57 4 –
Pinus pinaster BRT 4 0.0398 0.83 4 –
Pinus pinea BRT 4 0.0137 0.95 3 Continentality index
Pinus sylvestris GAM 4 0.1565 0.81 4 –
Populus nigra BRT 2 0.011 0.56 3 Precipitation seasonality
Populus tremula BRT 2 0.0245 0.59 3 Precipitation seasonality
Prunus avium BRT 5 0.0194 0.65 3 Precipitation seasonality
Pseudotsuga menziesii BRT 3 0.0139 0.65 3 Precipitation seasonality
Quercus cerris BRT 4 0.0451 0.75 3 Continentality index
Quercus faginea BRT 1 0.0147 0.52 4 –
Quercus frainetto BRT 5 0.0115 0.72 3 Precipitation seasonality
Quercus ilex BRT 4 0.042 0.82 3 Continentality index
Quercus petraea GAM 2 0.0577 0.67 4 –
Quercus pubescens BRT 1 0.0397 0.74 3 Continentality index
Quercus pyrenaica BRT 5 0.013 0.47 4 –
Quercus robur GAM 1 0.0587 0.68 3 Water deficit
Quercus sp. GAM 3 0.0681 0.7 3 Water deficit
Quercus suber BRT 4 0.0209 0.97 3 Continentality index
Robinia pseudoacacia BRT 2 0.0231 0.64 3 Precipitation seasonality
Salix caprea BRT 1 0.021 0.65 4 –
Sorbus aucuparia GAM 3 0.0246 0.64 4 –
Tilia sp. BRT 3 0.0169 0.44 3 Precipitation seasonality
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Figure C1. Partial response curves of the final GAM model for Fagus with the three bio-climatic variables: continentality index, growing
degree days, and water deficit. The response curves show the fitted taxon–variable relationship along the entire gradient.

Figure C2. Occurrence probability for Fagus. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)), panel
(b) is the model projection for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP 2.6 at
the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected reference.
Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not present in
reference or in projection data.
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Figure C3. Occurrence probability for Picea. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)), panel
(b) is the model projection for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP 2.6 at
the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected reference.
Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not present in
reference or in projection data.

Figure C4. Occurrence probability for Quercus. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)),
panel (b) is the model projection for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP
2.6 at the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected
reference. Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not
present in reference or in projection data.
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Figure C5. Occurrence probability for Fagus. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)), panel
(b) is the model projection for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP 8.5 at
the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected reference.
Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not present in
reference or in projection data.

Figure C6. Occurrence probability for Picea. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)), panel
(b) is the model projection for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP 8.5 at
the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected reference.
Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not present in
reference or in projection data.
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Figure C7. Occurrence probability for Quercus. Panel (a) shows the reference data (JRC tree species occurrences (De Rigo et al., 2016)),
panel (b) is the model projection for the reference period of 1971 to 1990, and panel (c) shows model projections for the 2079 to 2098 RCP
8.5 at the 50th percentile. Panel (d) indicates the change value, a proportional difference for the projection 2079 to 2098 vs. the projected
reference. Here magenta reveals loss, green shows gain, yellow reveals no change in abundance, and grey indicates that the species is not
present in reference or in projection data.

Appendix D

D1 N2K quantification

Table D1. Natura 2000 change value statistics (in % · 10−2) per EBR, period, and RCP for Fagus sylvatica for the 50th percentile. The
median and 25th and 75th percentile metrics are provided to show the variance.

EBR 25th percentile Median 75th percentile Period

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

Alpine 0.0052 0.0011 0 0.04 0.0358 0.0364 0.0909 0.079 0.0865 2021–2040
Alpine 0.001 0.0003 0 0.0364 0.0408 0.0461 0.0883 0.1085 0.1257 2041–2060
Alpine 0.0036 0 -0.0291 0.0403 0.0482 0.0553 0.0937 0.1226 0.1455 2061–2080
Alpine 0.0004 −0.026 −0.0909 0.042 0.0506 0.0364 0.0828 0.1305 0.1454 2079–2098

Atlantic −0.0545 −0.0545 −0.0565 −0.0364 −0.0364 −0.0407 −0.0182 −0.0182 −0.021 2021–2040
Atlantic −0.0727 −0.0727 −0.0793 −0.0545 −0.0545 −0.0545 −0.0303 −0.0339 −0.0364 2041–2060
Atlantic −0.0662 −0.0878 −0.1091 −0.0492 −0.0606 −0.0814 −0.0273 −0.0375 −0.0545 2061–2080
Atlantic −0.0636 −0.1091 −0.1452 −0.0327 −0.0727 −0.0986 −0.0112 −0.0364 −0.0483 2079–2098

Boreal 0.0182 0.0182 0.0204 0.0364 0.0364 0.0364 0.0436 0.0545 0.0545 2021–2040
Boreal 0.0182 0.025 0.0364 0.0364 0.0364 0.0545 0.0545 0.0545 0.0727 2041–2060
Boreal 0.0182 0.0364 0.0471 0.0364 0.0545 0.0727 0.0545 0.0727 0.1039 2061–2080
Boreal 0.0182 0.0364 0.0182 0.0364 0.0727 0.0926 0.0727 0.1091 0.1773 2079–2098

Continental −0.0259 −0.0273 −0.0303 0.007 0.004 0.0061 0.0364 0.0364 0.0364 2021–2040
Continental −0.0364 −0.04 −0.05 0 0 0 0.0287 0.0316 0.0336 2041–2060
Continental −0.0364 −0.0523 −0.0758 0 −0.0084 −0.0276 0.0327 0.0273 0.004 2061–2080
Continental −0.0251 −0.0711 −0.1333 0 −0.0273 −0.0667 0.0424 0.0144 −0.0364 2079–2098

Mediterranean −0.0484 −0.0455 −0.0498 −0.024 −0.0233 −0.0253 −0.0182 −0.0182 −0.0182 2021–2040
Mediterranean −0.0512 −0.0629 −0.0779 −0.0256 −0.032 −0.0364 −0.0182 −0.0182 −0.0182 2041–2060
Mediterranean −0.0513 −0.0732 −0.0991 −0.025 −0.0364 −0.0447 −0.0182 −0.0182 −0.0194 2061–2080
Mediterranean −0.0463 −0.0727 −0.102 −0.0165 −0.0223 −0.0314 0 −0.0053 −0.0062 2079–2098

Pannonian 0 0.0019 0 0.0182 0.0182 0.0142 0.0215 0.0227 0.0182 2021–2040
Pannonian 0 −0.0091 −0.0182 0.0117 0 −0.0061 0.0182 0.0084 0 2041–2060
Pannonian −0.0008 −0.0182 −0.0364 0.0045 −0.0077 −0.0242 0.0182 0 −0.0182 2061–2080
Pannonian −0.0182 −0.0364 −0.0406 −0.0159 −0.0208 −0.0364 0 −0.0165 −0.0182 2079–2098
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Table D2. Natura 2000 change value statistics (in % · 10−2) per EBR, period, and RCP for Picea abies for the 50th percentile. The median
and 25th and 75th percentile metrics are provided to show the variance.

EBR 25th percentile Median 75th percentile Period

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

Alpine −0.1452 −0.1302 −0.1483 −0.0806 −0.0791 −0.0897 0.0152 0.0096 0 2021–2040
Alpine −0.1478 −0.1975 −0.2538 −0.0839 −0.1196 −0.1613 0.0197 −0.0161 −0.0458 2041–2060
Alpine −0.1613 −0.2548 −0.3512 −0.0926 −0.1613 −0.2372 0.0106 −0.0468 −0.0968 2061–2080
Alpine −0.1554 −0.2762 −0.4268 −0.0888 −0.1774 −0.3056 0.0078 −0.0635 −0.1336 2079–2098

Atlantic −0.0968 −0.0968 −0.0968 −0.0544 −0.0572 −0.0645 −0.0323 −0.0323 −0.0323 2021–2040
Atlantic −0.0981 −0.1056 −0.1129 −0.0645 −0.0708 −0.0806 −0.0323 −0.0344 −0.0347 2041–2060
Atlantic −0.0968 −0.1234 −0.1286 −0.0645 −0.0796 −0.0806 −0.0326 −0.0347 −0.0347 2061–2080
Atlantic −0.0968 −0.1244 −0.1286 −0.0615 −0.0806 −0.0806 −0.0323 −0.0347 −0.0347 2079–2098

Boreal −0.1452 −0.1774 −0.1855 −0.1053 −0.1285 −0.1344 0.0806 0.0763 0.0751 2021–2040
Boreal −0.2097 −0.2258 −0.2742 −0.1452 −0.1663 −0.2061 0.0631 0.0685 0.0081 2041–2060
Boreal −0.1845 −0.2903 −0.3871 −0.1371 −0.2097 −0.2669 0.0795 0.0077 −0.1375 2061–2080
Boreal −0.1935 −0.3065 −0.4677 −0.1394 −0.2166 −0.311 0.073 −0.0161 −0.2339 2079–2098

Continental −0.1694 −0.1705 −0.1774 −0.1194 −0.1183 −0.1254 −0.0695 −0.0699 −0.0726 2021–2040
Continental −0.1855 −0.2097 −0.2399 −0.129 −0.1438 −0.1506 −0.0726 −0.0806 −0.0914 2041–2060
Continental −0.1907 −0.2461 −0.2769 −0.129 −0.1572 −0.1673 −0.0761 −0.0916 −0.0927 2061–2080
Continental −0.1774 −0.2581 −0.2895 −0.126 −0.1613 −0.168 −0.0717 −0.0923 −0.0927 2079–2098

Mediterranean −0.1113 −0.1061 −0.1166 −0.0598 −0.0591 −0.0608 −0.0289 −0.0289 −0.0289 2021–2040
Mediterranean −0.1148 −0.1385 −0.1605 −0.0624 −0.0654 −0.0671 −0.0289 −0.029 −0.029 2041–2060
Mediterranean −0.1146 −0.157 −0.1773 −0.0628 −0.067 −0.0673 −0.0289 −0.029 −0.029 2061–2080
Mediterranean −0.1092 −0.1629 −0.1824 −0.0586 −0.0673 −0.0686 −0.0285 −0.029 −0.029 2079–2098

Pannonian −0.0377 −0.0342 −0.0382 −0.0231 −0.0229 −0.0231 −0.0161 −0.0161 −0.0161 2021–2040
Pannonian −0.0394 −0.0415 −0.042 −0.0231 −0.0233 −0.0233 −0.0161 −0.0161 −0.0161 2041–2060
Pannonian −0.0402 −0.0431 −0.0431 −0.0231 −0.0233 −0.0233 −0.0161 −0.0161 −0.0161 2061–2080
Pannonian −0.0377 −0.0431 −0.0431 −0.0231 −0.0233 −0.0233 −0.0161 −0.0161 −0.0161 2079–2098
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Table D3. Natura 2000 change value statistics (in % · 10−2) per EBR, period and RCP for Quercus sp. for the 50th percentile. The median
and 25th and 75th percentile metrics are provided to show the variance.

EBR 25th percentile Median 75th percentile Period

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

Alpine 0.0038 0.0182 0.0262 0.0667 0.0667 0.0762 0.1125 0.1206 0.1333 2021–2040
Alpine 0.0269 0.0309 0.0644 0.0751 0.1 0.1323 0.1322 0.1724 0.2368 2041–2060
Alpine 0.0302 0.0667 0.0667 0.0854 0.1333 0.1748 0.1333 0.2421 0.3698 2061–2080
Alpine 0.0667 0.0667 −0.0944 0.1133 0.1673 0.1915 0.1681 0.2882 0.4003 2079–2098

Atlantic −0.0726 −0.0707 −0.069 0.0667 0.0759 0.083 0.185 0.2 0.2 2021–2040
Atlantic −0.1064 −0.145 −0.2 0.0232 0.0167 0 0.1333 0.159 0.1404 2041–2060
Atlantic −0.1 −0.2101 −0.3578 0.0525 −0.0333 −0.1938 0.1412 0.1333 0 2061–2080
Atlantic −0.1743 −0.3333 −0.6 −0.0667 −0.2 −0.4182 0.0667 0 −0.2667 2079–2098

Boreal 0.0667 0.0667 0.0667 0.1 0.1333 0.1333 0.2 0.2444 0.2667 2021–2040
Boreal 0.0667 0.0667 0.1333 0.1333 0.1417 0.2167 0.2667 0.3333 0.4 2041–2060
Boreal 0.0667 0.1333 0.2667 0.1333 0.2544 0.4 0.2417 0.4112 0.5444 2061–2080
Boreal 0.0667 0.2 0.3333 0.1333 0.2667 0.4127 0.2667 0.4 0.5333 2079–2098

Continental −0.0463 −0.0123 −0.0022 0.0667 0.0824 0.0933 0.1667 0.182 0.1933 2021–2040
Continental −0.0353 −0.0435 −0.0667 0.0793 0.1111 0.1289 0.1778 0.203 0.2667 2041–2060
Continental −0.0508 −0.0667 −0.1389 0.0667 0.1333 0.0667 0.1853 0.2667 0.2889 2061–2080
Continental −0.0095 −0.1318 −0.3496 0.1083 0.07 −0.188 0.1843 0.2556 0.0667 2079–2098

Mediterranean −0.1895 −0.1867 −0.1905 −0.1333 −0.1329 −0.1333 −0.0697 −0.0667 −0.0667 2021–2040
Mediterranean −0.2 −0.2497 −0.2919 −0.1333 −0.1667 −0.1887 −0.0756 −0.0922 −0.0986 2041–2060
Mediterranean −0.198 −0.2815 −0.3578 −0.1333 −0.1833 −0.2224 −0.069 −0.0983 −0.1154 2061–2080
Mediterranean −0.1974 −0.3132 −0.4224 −0.1267 −0.1905 −0.2583 −0.0667 −0.095 −0.1333 2079–2098

Pannonian −0.2287 −0.2 −0.2 −0.2 −0.15 −0.1622 −0.1333 −0.123 −0.1244 2021–2040
Pannonian −0.2133 −0.2667 −0.3333 −0.2 −0.23 −0.2667 −0.1333 −0.1667 −0.2 2041–2060
Pannonian −0.2444 −0.3163 −0.4 −0.2 −0.2667 −0.338 −0.1333 −0.1855 −0.2889 2061–2080
Pannonian −0.2 −0.4 −0.5333 −0.149 −0.3333 −0.4667 −0.0667 −0.2464 −0.4 2079–2098
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Figure D1. Change values for Picea, Fagus, and Quercus, aggregated to the mean per N2K site with forest cover ≥ 25 % and size ≥ 100 ha.
Panels (a), (c), and (e) show the period for the 2079–2098 RCP 2.6 at the 50th percentile. Negative change values presented in dark magenta
reveal a decline, which means that the species was present in the reference period but is no longer present in the projection period. The green
colour or positive change values indicate increasing abundance in this area. Yellow (change values of 0) indicates no change in abundance,
and grey indicates that the species is present in neither the reference period nor the projection period. Panels (b), (d), and (f) show the change
value development over all periods and the RCP 2.6 projection for the EBRs.
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Figure D2. Change values for Picea, Fagus, and Quercus, aggregated to the mean per N2K site with forest cover ≥ 25 % and size ≥ 100 ha.
Panels (a), (c), and (e) show the period for the 2079–2098 RCP 8.5 at the 50th percentile. Negative change values presented in dark magenta
reveal a decline, which means that the species was present in the reference period but is no longer present in the projection period. The green
colour or positive change values indicate increasing abundance in this area. Yellow (change values of 0) indicates no change in abundance,
and grey indicates that the species is present in neither the reference period nor the projection period. Panels (b), (d), and (f) show the change
value development over all periods and the RCP 8.5 projection for the EBRs.
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Code and data availability. The basic code for the modelling,
prediction, and evaluation for Natura 2000 sites is available at
https://doi.org/10.5281/zenodo.11400444 (Reichmuth, 2024). Data
for this analysis are available at https://doi.org/10.48758/ufz.14933
(Helmholtz-Centre for Environmental Research, 2024). The dataset
contains four bio-climatic variables for five time periods (1971–
1990, 2021–2040, 2041–2060, 2061–2080, and 2079–2098). Infor-
mation about block affiliations is attached to the data file of the ref-
erence period (1971–1990). The tree species and soil parameter data
are not included, as they are published by a different institution. The
condensed results of species distribution modelling are available on
our WebGIS system: https://web.app.ufz.de/waldzustandsmonitor/
en?area=49&layer=347 (Helmholtz-Centre for Environemental Re-
search, 2025).
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