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Species distributional data based on lattice data often display spatial autocorrelation. In
such cases, the assumption of independently and identically distributed errors can be
violated in standard regression models. Based on a recently published review on meth-
ods to account for spatial autocorrelation, we describe here a new statistical approach
which relies on the theory of wavelets. It provides a powerful tool for removing spatial
autocorrelation without any prior knowledge of the undetlying correlation structure.
Our wavelet-revised model (WRM) is applied to artificial datasets of species’ distribu-
tions, for both presence/absence (binary response) and species abundance data (Poisson
or normally distributed response). Making use of these published data enables us to
compare WRM to other recently tested models and to recommend it as an attractive
option for effective and computationally efficient autocorrelation removal.
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Species distributional models based on lattice data often
display spatial autocorrelation. Spatial autocorrelation
means that observations from nearby locations are often
more similar than would be expected on a random basis
(Legendre and Legendre 1998). Spatial autocorrelation
can arise in both species distributions and environmental
variables. Note that statistical analyses of such data need
not be seen as problematic in principle. However, a chosen
method is inconsistent with its application, if and only if
(1) these autocorrelated variables lead to autocorrelated er-
rors and (2) independently and identically distributed
(i.i.d.) errors are assumed in the used statistical model. In
that case results of the method are not reliable (Kiihn

2007).
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There are several reasons for autocorrelated errors in
linear regressions (Kissling and Carl 2008). (1) Response
variables, e.g. species distributions are spatially structured
due to endogenous properties such as, e.g. dispersal, speci-
ation, and extinction. Because structure is only inherent in
the response variable, it can not be explained by explanato-
ry environmental variables. Therefore, it leaves its mark on
the regression errors. (2) Response variables are spatially
structured due to exogenous properties such as specific en-
vironmental variables, e.g. wind or other climatic con-
straints. In the model, however, the very same variables are
either not included or improperly used due to neglected
non-linear transformations. Here the spatial structure, in
turn, affects the errors.
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Note that i.i.d. errors are assumed in so-called standard
regression models such as in ordinary least squares and
generalized linear models. However, Dormann et al.
(2007) presented an overview of different modelling ap-
proaches that are available to account for spatial autocorre-
lation in the analysis of lattice data. In this paper, we de-
scribe and test a new method which is based on wavelet
transforms. We focus on a short description of the so-
called Wavelet-revised model (WRM), and on a presenta-
tion of the WRM results for the data of Dormann et al.
(2007) in exactly the same way as specified in that paper.
An application of the new method on those artificial spe-
cies distribution datasets enables us to further test the po-
tential of the wavelet method and to compare it to more
established methods.

Wavelets are ‘small’ or ‘local’ waves, i.e. specific func-
tions useful for the transformation of time series or images.
An analysis of such data based upon a wavelet transform
can help to pick out features of interest (Percival and Wal-
den 2000). In particular, wavelet transforms are a promis-
ing tool to remove spatial autocorrelation (Carl and Kiihn
2008). The key idea is that data preparation can be carried
out by means of, for example, Haar wavelets. This proce-
dure basically averages data within squared subareas and
subtracts this average from the data to remove autocorrela-
tion.

Method

Simulated datasets

The datasets used here are exactly the same artificial
datasets as in the paper published by Dormann et al.
(2007). In that paper the authors offer lattice data contain-
ing 1108 grid cells. Two explanatory variables are intro-
duced. The first one ‘rain’ is a significant predictor of the
response, whereas the second one ‘djungle’ does not have
any explanatory power (noise variable). The response itself
can be imagined as species distribution. Three types of re-
sponse distributions are considered: normal, binomial and
Poisson. The models for the expected values of responses
are:

(1) E(y,)=80-0.015 X rain, for normal distribution;

(2) E(y,)=g"'(3-0.003 x rain,) for binomial distribu-
tion;

(3) E(y,)=g" (3-0.001 X rain,) for Poisson distribu-
tion,

where g is the logit-link and log—link function for bino-
mial and Poisson distribution, respectively. The responses
basically consist of their expected values and associated er-
rors. In the strict sense, they are generated as normally, bi-
nomial or Poisson distributed values of E(y) + sd(y) X €,
where sd is the standard deviation and € is the error. Spatial
autocorrelation is mainly implemented on the errors. It is
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simulated by use of an exponential function which results
in strongly correlated errors for neighbouring cells but a
steep decline of autocorrelation for increasing distance.

Although the second predictor ‘djungle’ is not used in
simulation, it is entered as predictor into all of the follow-
ing statistical models. This is done to assess models regard-
ing their significance tests.

Generalized linear models: GLM

In order to estimate regression coefficients for the above
mentioned data, Generalized linear models (GLM) are
commonly used. GLM is the standard method in case re-
sponse variables have distributions other than the normal
distribution. The GLM estimator for regression coeffi-
cients is:

b™=(X"WX)' X" Wz,

where X is the design matrix and W is a weights matrix.
The vector z

7z=Xbm-D +W—1/2V71/2(y_“')

is an adjusted response variable depending on the real re-
sponse y, its expected value W, and its variance matrix V
(Dobson 2002, Myers et al. 2002). These equations have
to be solved iteratively because, in general, zand W depend
on b. Therefore, it is named an iterative weighted least
squares procedure.

If the responses are normally distributed, then W is the
identity matrix and z is equivalent to y. Moreover, the iter-
ative algorithm leads to a non-iterative model and GLM is
simplified to the straightforward Ordinary least squares
(OLS) method where

b=(X'X)"'X’y

Unfortunately, standard methods such as OLS or GLM
may yield wrong results when data are sampled in a spatial
context. Due to the fact that data sampled at adjacent loca-
tions are more likely to be similar than distant ones, the
basic assumption of i.i.d. errors can be violated. In spatial
statistics it is, therefore, desirable to revise data by remov-
ing spatial autocorrelations. We are going to show that we
can achieve this goal by using the concept of wavelet de-
composition.

Autocorrelation removal via wavelets

First of all, it is necessary that the following preliminary
decisions are made: (1) there are numerous types of wave-
lets in general use (Daubechies 1992, Hubbard 1998). We

decide to utilize so-called Haar wavelets which have a com-
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pact and square-edged shape and are thus useful in the de-
tection of edges and gradients. (2) We deal with datasets as
they appear in statistical samples, especially in linear re-
gressions. To this end we apply the wavelet transform in a
specific form, the so-called discrete wavelet transform,
which is a calculation for a finite set of discrete data (Bruce
and Gao 1996). (3) We have to take into account the spa-
tial, i.e. two-dimensional structure of lattice data. There-
fore, we have to apply a two-dimensional approach of
wavelet theory (Bruce and Gao 1996).

Because Haar wavelets are the simplest wavelets, it is
possible to illustrate how autocorrelation removal works
under the conditions outlined above. Haar transforms can
be viewed as a series of averaging and differencing opera-
tions.

Here is an example of this procedure. Let us demon-
strate the Haar wavelet analysis of the following data ma-
trix F:

a b ¢ d
er f g h
i) ko1

m n o p

In the first step the matrix is simplified by calculating the
average value of the resulting non-overlapping 2 x 2 blocks
of cells. Therefore, the so-called smooth matrix S, is:

q q r r

r r
52|99

s s t ¢t

s s t ¢t

where q=average (a, b, ¢, f), r=average (c, d, g, h), etc.
The so-called detail matrix D, gives the difference to
the original matrix F:

a—q b—-q c¢—r d-r
_q f- ¢ h-—
|79 T B b
i-s  j—s k-t l-t
m—-s n—-s o—t p-—t

In the second step we proceed analogously, now averaging
4 x 4 blocks. Therefore, the smooth matrix S, on level 2

u u u u

u u u u
S, =

u u u u

u u u u

is associated with the detail matrix D, on the same level

a—u b-u c—u d-u
D, - t‘:—u f'—u g—u h-u
i—-u j—u k-u Il-u
m-u n—-u o—-u p-u
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More formally this procedure can be explained as follows: a
two-dimensional discrete Haar wavelet analysis can be per-
formed, provided that data are given as a 2° X 2" matrix.
On level J we divide this original matrix F in 2J x 2
submatrices and construct a smooth 2 X 2" matrix S, by as-
signing the mean value within each submatrix to each ele-
ment of the submatrix. Then the detail matrix D is the differ-
ence between original matrix and smooth matrix D= F-§,.

Therefore, the original data can be regarded as a sum of
detail and smooth components on a certain level, i.e. ata
certain resolution (Bruce and Gao 1996). In general, this
means that in the smooth component the smoothness as
data feature is captured. Smoothness implies that data val-
ues of locations close to each other are more similar than
those further apart. Thus it represents autocorrelation at a
certain scale. Detail components, however, are data adjust-
ed for autocorrelation.

Description of the spatial statistical method:
WRM

Our new method is named Wavelet-revised model
(WRM), because it provides the revision of data outlined
above (Carl and Kiihn 2008). The WRM approach for cal-
culating regression parameters embeds this data revision
into the framework of GLM. To this end additional steps
have to be incorporated into the GLM iteration loops.

Note that the wavelet approach can be carried out by
means of so-called multiresolution analysis. Here the reso-
lution level J should be small (i.e. fine resolution) in order
to extract short-range autocorrelation. Moreover, the two-
dimensional analysis should be applied to both the re-
sponses and the individual predictors. They are given as
vectors or columns of the design matrix within the GLM
iteration loop. Therefore, we have to convert these vectors
into matrices which reflect their spatial sampling structure.
After autocorrelation removal we go back to vectors to pro-
ceed as normal.

The approach can be summarized as follows:

Step 1. Create matrices for all columns of the matrix of
weighted predictors and for the vector of the adjusted de-
pendent variables according to their spatial structure.

Step 2. Perform two-dimensional multiresolution anal-
ysis on each of these matrices.

Step 3. Add up all detail components D, excluding the
smooth components S.

Step 4. Transform matrices into vectors.

Step 5. Use these vectors updated within each loop in
an iterative weighted least squares procedure.

Software

Our computations are based on a software package in the
computer language R (R Development Core Team 2005).
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Table 1. Model quality: Spatial autocorrelation in the model residuals (given as global Moran’s I) and mean estimates for the coefficients
‘rain’ and ‘djungle’ (£ 1 SE across the 10 simulations). True coefficient values are given in the first row for each distribution in italics. ™,
" and ™ refer to median significance levels of p < 0.001, 0.01 < p < 0.05 and p > 0.1, respectively, across the 10 realisations. GLM:
Generalized linear model, WRM: Wavelet-revised model.

Moran’s Coefficients
‘rain’ ‘djungle’
Normal -0.015 0.0
GLM 0.016 £0.026 —0.0143 £0.0010™ 0.0220 £0.0508™
WRM —0.001 £0.001 —0.0138 £0.0021™ 0.0250 £0.0285™
Binomial —0.003 0.0
GLM 0.006+0.011 —0.0022 £0.0003™ 0.0052 +£0.0130™
WRM —0.002 £0.000 —0.0025 £0.0011° 0.0034 £0.0154™
Poisson -0.001 0.0
GLM 0.018 +£0.024 —0.0010 £0.0000™ 0.0006 +£0.0018™
WRM —0.001 £0.001 —0.0010 £0.0002™ 0.0010 £0.0021"
normal
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Fig. 1. Comparison of non-spatial (GLM) and spatial (WRM) modelling approaches for data with normally, binomially and Poisson-
distributed responses. Box and whiskers refer to 25/75%, 0/100%. Vertical lines indicate true values of parameter.
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The tools for calculating wavelet transforms are available
in package waveslim (Whitcher 2005). We used the func-
tion mra.2d for multiresolution analysis. Our R codes are
available as supplementary material.
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Fig. 2. Correlograms of one realisation for each of the three differ-

ent distributions (normal, binomial, Poisson) and the methods
compared.
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Fig. 3. Raw distributional data and residual maps for the different
methods for one realisation of the data with normally distributed
responses. On the residual maps, pixel sizes indicate sizes of resid-
uals. The two colours black and grey represent the positive and
negative signs of residuals, and areas of equal colour indicate au-
tocorrelation. For WRM residuals the areas of equal colour are
essentially reduced compared to OLS residuals.
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Tricks and tips

The function mra.2d offers various wavelets. We used
Haar wavelets. Because of the restriction to finite sets in
discrete wavelet transforms it is necessary to give boundary
treatment rules. Type periodic is implemented for bound-
ary conditions in the software for the two-dimensional dis-
crete wavelet transform. This causes a restriction on the

sample size. The number of rows and columns must be
dyadic (i.e.2”, where n is an integer). In general, one wishes
to analyze samples of arbitrary size though. For this reason
data are padded with zeros until a quadratic matrix of re-
quired size is reached (Bruce and Gao 1996).

For all subsequent analyses, our WRM method should
be compared to the methods given in Dormann et al.
(2007). Therefore, we present the results in the same way

level 1

level 2

level 3

level 4

level 5

WEB ECOLOGY 8, 2008

Fig. 4. Smooth parts of OLS residuals on different resolution lev-
els for one realization of the data with normally distributed re-
sponses. Scaling is different for every plot.
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as it was done in that paper. Table 1 and Fig. 1-3 given
here correspond to Table 2 and Fig. 1-3 in Dormann et al.
(2007). For the purpose of comparison, the results of the
non-spatial models OLS/GLM are given here as well.

Results

WRM models yield approximately the same values as ex-
pected and as calculated by GLM for means and variances
of the estimates ‘rain’ and ‘djungle’ (Fig. 1). However, only
10 data realizations were evaluated in each case of data
with normally, binomially and Poisson-distributed re-
sponses. Thus conclusions regarding model performance
should be avoided here.

Our WRM model and the non-spatial model GLM
differ obviously in the spatial signature of their residuals.
Figure 2 shows that residual autocorrelation measured by
Moran’s I is considerably reduced compared to GLM. Cor-
responding values for Global Moran’s I are given in Table
1. WRM always performs better than GLM. Moreover, we
present maps to determine whether there are any spatial
patterns of regression residuals (Fig. 3). The maps show
raw data y, OLS residuals and WRM residuals for a dataset
with normally distributed responses. They demonstrate
that WRM removes the clusters of positive or negative
OLS residuals. WRM was carried out on level 1. Figure 4
shows patterns for smooth parts of OLS residuals at differ-
ent resolutions. These smooth components need to be re-
moved for WRM residuals. Level 1 captures the smooth
parts best describing the spatial autocorrelation structure
in this dataset. The decorrelated WRM residuals (Fig. 3)
can be imagined as the difference of OLS residuals (Fig. 3)
and their smooth parts at the finest resolution, i.e. on level

1 (Fig. 4, top left).

Discussion

Dormann et al. (2007) presented an overview of different
modelling approaches for multiple regressions displaying
spatial autocorrelation. The authors state that the most
flexible methods applicable to non-normal distributions
are spatial GLMM, GEE and SEVM. Our new WRM
method represents an alternative approach to obtain an
approximately equal performance.

Carl and Kiihn (2008) investigated the type I error con-
trol of WRM in a more reliable analysis of 500 data realiza-
tions per distribution. The results showed a better error
calibration curve for WRM than for GLM. Furthermore,
in comparing the above-mentioned models one has to
consider the following facts:

(1) GLMM and GEE are useful to correct autocorrela-
tion effects when the correlation structure is known as in
our simulated datasets. WRM, however, provides a power-
ful tool for removing autocorrelation without any prior
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knowledge of the underlying correlation structure in lat-
tice data. However, WRM requires comparably large sam-
ples sizes whereas GEE may reach their limits with large
sample sizes (Carl and Kiithn 2007, Dormann et al. 2007).
The methods may therefore be regarded as complementary.

(2) SEVM (and Bayesian) methods are very time-con-
suming, whereas WRM is a computationally very fast and
efficient procedure.

(3) Almost all methods assume spatial stationarity, i.c.
spatial autocorrelation to be constant across the region,
whereas WRM is a method that allows for spatial non-sta-
tionarity. Moreover, WRM is able to detect anisotropic
autocorrelation. This is true for at least such autocorrela-
tion which acts differently in vertical, horizontal, and diag-
onal direction.

Summarizing, this paper presented a wavelet-based
method for regressions influenced by spatial autocorrela-
tion. WRM is a good alternative to the methods described
in Dormann et al. (2007), especially for large data-sets.
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