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Statistical analysis is an important and responsible stage 
in ecological research, often posing a challenge. One of 
the main problems is that the statistical samples typical of 
ecological research frequently include data that violate the 
original assumptions of standard analytical tools. A large 
array of tests has been designed for data of different charac-
teristics (non-normal distribution, unequal variance). Yet, 
recommendations found in textbooks (Snedecor and Co-
chran 1980, Sokal and Rohlf 1995, Zar 1999) and hand-
books of statistical software (e.g. Statistix 8, Analytical 
Software, Tallahassee, FL) are not always consistent. For 
example, ANOVA can compare two or more means, and, 

when applied to two samples, produces exactly the same 
p-values as t-test for equal variance. Therefore, ANOVA 
can replace t-tests for two samples, yet habitually we still 
use t-tests, and employ ANOVA only when we have more 
than two means. Why this redundancy? The advantage 
of t-tests may be that it has a special version adjusted to 
unequal variance. As far as we know, ANOVA does not 
provide any widely used procedure for correcting p-values 
for unequal variance, although tests for equality of vari-
ance, such as Bartlett’s test or Levene’s test, are routinely 
calculated for testing departures from ANOVA assump-
tions. In these situations, the user is left in a position of 
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uncertainty: how much can we trust ANOVAs if the tests 
show significant heteroscedascity (i.e. unequal variances)? 
Some recent manuals do not discuss tests for unequal vari-
ance at all (Quinn and Keough 2002, Gotelli and Ellison 
2004).

Another example of uncertainty is the use of non-par-
ametric tests recommended for ‘low quality’ data such as 
samples of unknown distribution (Snedecor and Cochran 
1980, Sokal and Rohlf 1995, Zar 1999). Non-paramet-
ric tests are generally considered weaker than parametric 
tests, but it is believed that because non-parametric tests 
are based on data ranks and not on the assumptions on 
data distribution, they are robust to distribution type. 
Hence, non-parametric tests can be employed when the 
use of parametric test is doubtful due to indeterminable 
distribution type. However, several studies have criticized 
non-parametric tests for their poor robustness (Johnson 
1995, Smith 1995, Vickers 2005), and experts actually ad-
vocate for the use of computer-intensive methods such as 
randomization tests (Manly 1997, Slade 1999, Fortin and 
Jacquez 2000, Peres-Neto and Olden 2001, Roff 2006).

Finally, standard tests such as ANOVAs were originally 
designed for samples of even size, and formulations for 
samples of uneven size have been derived later. Textbooks 
rarely comment on this issue in detail and usually provide 
only a vague note that the power of a test is highest with 
even sample sizes (Snedecor and Cochran 1980, Sokal and 
Rohlf 1995, Zar 1999). For factorial designs (i.e. more 
than one experimental factor), the use of different types of 
sums of squares for improving robustness in unbalanced 
designs have been largely discussed (Milliken and Johnson 
1992). However, in principle, for uni-factorial designs, 
such as the ones we discuss here, ANOVAs should not be 
highly influenced by unequal sample sizes.

In addition to the above uncertainties, it is unclear how 
the combination of unsuitable characteristics affects popu-
lar statistical tests. Here we address these questions using 
generated data sets that simulate statistical samples typi-

cal of ecological research. We measured the rates of type I 
and II errors with the aim to assess how the combinations 
of non-normal distribution, unequal variance and sample 
size affect the performance of the tests. In addition, we as-
sess whether the special test devised for unequal variances 
is robust to distribution type and uneven sample size, and 
whether non-parametric and randomization tests are uni-
versally robust to the combinations of these unsuitable 
characteristics, as it is implicitly assumed.

Methods

Data generation – simulations

For the basic simulations, we used a random number gen-
erator to produce 20 000 normally distributed data points 
following a standard normal distribution (mean ≈ 0 and 
SD ≈ 1). For additional simulations, we also converted the 
original data using an exponential transformation to ob-
tain a highly skewed log-normal distribution (If Y is a ran-
dom variable with a normal distribution, then X = exp(Y) 
has a log-normal distribution). We then randomly divided 
the generated data arrays into control and treatment popu-
lations (10 000 cases in each), and adjusted means and 
SD values to desirable numbers up to their second deci-
mal place (Table 1, columns 5–8). We then sampled the 
populations randomly to obtain the control and treatment 
samples of desired size (Table 1, columns 2 and 3). The pa-
rameters of samples generated in this way varied consider-
ably (for example, the sample size n ranged from 5 to 200, 
the relative variance from 1 to 100%, etc.). However, for 
simplicity, here we only present a part of these simulations 
with certain extreme characteristics as an illustration. We 
tested evenly large, evenly small, and uneven-size samples 
(Table 1, second and third columns). The variance of these 
samples was equal or unequal (Table 1, last two columns). 

Table 1. Parameters of data categories (seven parameter combinations used with each of three distribution types).

Category 
no.

Sample size Mean SD

Control Treatment Control
Treatment

Control Treatment
type I type II

1 60 60 100 100 105 10 10

2 60 60 100 100 105 5 15

3 6 6 100 100 105 10 10

4 6 6 100 100 105 5 15

5 6 60 100 100 105 10 10

6 6 60 100 100 105 5 15

7 6 60 100 100 105 15 5
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Finally, in samples of uneven size, variance could be equal 
or unequal. When variances were unequal, it could be that 
the control was more variable than the treatment or vice 
versa (Table 1, last three rows). However, in all cases in 
which there was an effect, the treatment mean was larger 
than that of the control.

Tests and analyses

The difference between means of control and treatment 
samples we compared using parametric, non-parametric 
and randomization tests. As parametric tests, we used 
common t-tests for equal and unequal (Blalock 1972) 
variances. The t-test for equal variances produces p-values 
identical to ANOVA when applied to two-sample tests (In-
troduction), and accordingly hereafter we refer to this test 
as ANOVA. The t-test for unequal variance will be here-
after referred to as TUV. As a non-parametric statistical 
test we used the popular Wilcoxon rank sum test, which is 
identical to the Mann–Whitney U-test (hereafter U-test). 
All calculations were performed with the software Statistix 
8. We also applied randomization tests, using the differ-
ence between means of the control- and test-samples as a 
pivotal test statistic. We reshuffled data between these two 
samples, and recalculated the mean difference between the 

samples randomized in this way. We repeated randomi-
zations 10 000 times and determined p-values from the 
number of randomized mean difference values equal or 
more extreme than that observed (Slade 1999, Fortin and 
Jacquez 2000).

The rates of type I and II errors were calculated in the 
usual way by repeatedly sampling the statistical popu-
lations described above (Moya-Laraño and Wise 2007), 
and converting the frequencies of tests in which results 
were significant (p-values below 0.05) into percentages. 
For type I error rates we used samples with equal means, 
and for type II error rates we adjusted mean values of 
treatment population to 105 (Table 1). The error rates 
were calculated as the percentages from testing 300 sam-
ples.

Results
Two tests, ANOVA and randomization tests, performed 
practically indistinguishably as their error rates clustered 
very closely (Fig. 1). Rates of error type I and II produced 
by ANOVA, TUV, and U-tests were also very close with 
samples of even size (not shown). With skewed distribu-
tions, however, tests showed different results depending on 
the combination of the other parameters. While with sam-

Fig. 1. Similar performance of ANOVA and randomization test with samples of different parameters (sample size and variance) and 
different distribution types as shown by clustered values of type I and II error rates. See Table 1 for a list of the combination of pa-
rameters used.
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Fig. 2. Performance of statistical tests with skewed samples of even size and equal variances. ANOVA stands for analysis of variance, 
TUV for t-test for unequal variances, and U-test for Mann–Whitney U-test. 

Fig. 3. Performance of statistical tests with skewed samples of even size but unequal variances. ANOVA stands for analysis of variance, 
TUV for t-test for unequal variances, and U-test for Mann–Whitney U-test.
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Fig. 4. Performance of statistical tests with skewed samples of uneven size and unequal variance. ANOVA stands for analysis of vari-
ance, TUV for t-test for unequal variances, and U-test for Mann–Whitney U-test. Vc and Vt refer to the variance of the control and 
treatment groups respectively.

ples of equal variance the U-tests were slightly superior to 
ANOVA (Fig. 2), with unequal variance non-parametric 
test started to unexpectedly fail, producing very high (up 
to 80% rates) of both type errors for large samples (yet for 
small samples most tests were very close to each other, Fig. 
3). The tests differed also in robustness when samples of 
uneven size was combined with unequal variances (Fig. 4): 
when the smaller sample (control) was less variable than 
the larger one (treatment) ANOVA showed very low type 
I (close to 0) but very high type II (close to 100%) error 
rates. Under this scenario, TUV performed better than 
ANOVA, with relatively low type I but moderate type II 
error rates (ca 40%). Conversely, when the smaller sample 
was more variable than the larger one, ANOVA appeared 
more balanced (ca 40% for both type errors) while TUV 
produced lower type I error rates (ca 20%) but higher type 
II error rates (60%). The performance of U-tests was close 
to that of ANOVA. Remarkably, the dependence of per-
formance of tests on the combination of unequal variance 
and sample size was observed also in normal samples (Fig. 
5), although ANOVA was evidently superior to the U-test 
in these samples. Yet the case with normal samples of un-
even size is remarkable, because TUV lost its power with 
more variable small sample size even more dramatically 
than in cases of skewed samples, as type II errors increased 
up to 90%! This coincided with a decrease of type I error 

to 7%, which means that the test became too conservative. 
ANOVA was more balanced producing 43 and 47% of, 
respectively, type I and type II errors.

Discussion
Our results show very similar performances for ANOVA 
and randomization tests. Randomization tests are believed 
to be robust to distribution type (Manly 1997, Slade 1999, 
Fortin and Jacquez 2000, Roff 2006), and the coincidence 
of the results of randomization tests with ANOVA suggests 
that, at least for the range of parameters in our simulations, 
the latter is as robust as the former. ANOVA is probably 
robust enough to analyze even highly skewed data, which 
researchers often try to transform to fit a normal distribu-
tion using functions such as logarithms. Transformations 
could still be used in scenarios in which ANOVAs perform 
with high type I and type II errors, such as when there 
are highly unbalanced designs with unequal variances, for 
which we found high error rates even for ANOVA. Yet 
McArdle and Anderson (2004) warn that data transfor-
mations greatly inflate the type I error rate if the mean–
variance relationship does not stay constant. These authors 
discuss some explicit models of distribution transforma-
tions to solve this problem.
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The t-tests of unequal variances showed good perform-
ance or unexpected failure depending on the parameter 
landscape. With samples of equal size TUV preformed 
similar to ANOVA, but with samples of unequal size its 
behavior depended on how variance and sample size were 
combined. While TUV was very good producing low rates 
of type I and II errors when the smaller sample was more 
variable than the larger one, it lost power producing high 
rates of type II errors when the small sample was less varia-
ble than the large one. This empirical result does not agree 
well with the theoretical expectations derived recently by 
Ruxton (2006), although we share his criticisms of the U-
test. However, Ruxton (2006) did not test the type II error 
rates produced by TUV. This may mean that in half of the 
cases analyzed with TUV, where uneven sample size com-
bines with unequal variances, the conclusions are doubt-
ful. It would appear that statistical textbooks and manuals 
should warn the reader about this important failure of this 
test.

Non-parametric tests generally performed better than 
parametric tests with small samples, but there was still an 
unexpected important case of failure with large samples of 
unequal variance. Textbooks shall warn the user that non-
parametric tests may depend on variance heterogeneity in 
large samples. Yet, with uneven sample size non-parametric 
tests were more robust to the landscape of parameters.

From the above analyses we can reach several conclu-
sions. First, testing variance equality (Bartlett’s or Lev-
ene’s tests) has little sense with samples of even, or nearly 
even size, and ANOVA can be used even for comparing 
two samples (where t-tests are routinely used). How-
ever, when sample size is notably uneven, the researcher 
shall check how variance combines with samples size to 
decide whether ANOVA or TUV is more appropriate. 
When does unevenness of sample size become critical? 
This question needs further study. Our next conclusion is 
that ANOVA is robust to data distribution type, even to 
highly skewed distributions. Finally, non-parametric tests 
are sensitive to unequal variance in even samples of large 
size, and care should be taken when using them. However, 
non-parametric tests can be useful with samples of uneven 
size, especially when the combination of parameters is not 
in favor of ANOVA. Importantly, the TUV should be 
considered with caution and only be used in a restricted 
number of scenarios.
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Fig. 5. Performance of statistical tests with normal samples combining uneven size and unequal variance. ANOVA stands for analysis 
of variance, TUV for t-test for unequal variances, and U-test for Mann–Whitney U-test. Vc and Vt refer to the variance of the control 
and treatment groups respectively.
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