Articles | Volume 21, issue 1
https://doi.org/10.5194/we-21-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-21-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ecological correlates of crop yield growth and interannual yield variation at a global scale
Gabriela Gleiser
CORRESPONDING AUTHOR
Grupo de Ecología de la Polinización, Instituto de
Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad
Nacional del Comahue–CONICET, 8400 San Carlos de Bariloche, Argentina
Nicolay Leme da Cunha
Grupo de Ecología de la Polinización, Instituto de
Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad
Nacional del Comahue–CONICET, 8400 San Carlos de Bariloche, Argentina
Agustín Sáez
Grupo de Ecología de la Polinización, Instituto de
Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad
Nacional del Comahue–CONICET, 8400 San Carlos de Bariloche, Argentina
Marcelo Adrián Aizen
Grupo de Ecología de la Polinización, Instituto de
Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad
Nacional del Comahue–CONICET, 8400 San Carlos de Bariloche, Argentina
Wissenschaftskolleg zu Berlin, 14193 Berlin, Germany
Related subject area
Macroecology
Geographic distribution of mammal diets
María Losada, Miguel Suárez-Couselo, and Mar Sobral
Web Ecol., 24, 71–79, https://doi.org/10.5194/we-24-71-2024, https://doi.org/10.5194/we-24-71-2024, 2024
Short summary
Short summary
The study examined how terrestrial mammals' diets vary across geography. It found that herbivory is more prevalent in cold and desert areas, while frugivory and insectivory dominate in tropical regions. Granivory dominates in temperate environments, while carnivory is more common in the Northern Hemisphere and towards the poles. Terrestrial mammals' diets show conspicuous geographical patterns across the globe, partially explained by climate.
Cited articles
Aizen, M. A. and Harder, L. D.: The global stock of domesticated honey bees
is growing slower than agricultural demand for pollination, Curr. Biol., 19,
915–918, https://doi.org/10.1016/j.cub.2009.03.071, 2009.
Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., and Klein, A. M.:
Long-term global trends in crop yield and production reveal no current
pollination shortage but increasing pollinator dependency, Curr. Biol., 18,
1572–1575, https://doi.org/10.1016/j.cub.2008.08.066, 2008.
Aizen, M. A., Aguiar, S., Biesmeijer, J. C., Garibaldi, L. A., Inouye, D.
W., Jung, C., Martins, D. J., Medel, R., Morales, C. L., Ngo, H., Pauw, A.,
Paxton, R. J., Sáez, A., and Seymour, C. L.: Global agricultural
productivity is threatened by increasing pollinator dependence without a
parallel increase in crop diversification, Glob. Change Biol., 25,
3516–3527, https://doi.org/10.1111/gcb.14736, 2019.
Al-Obaidi, J. R., Farouq Halabi, M., AlKhalifah, N. S., Asanar, S.,
Al-Soqeer, A. A., and Attia, M. F.: A review on plant importance,
biotechnological aspects, and cultivation challenges of jojoba plant, Biol.
Res., 50, 25, https://doi.org/10.1186/s40659-017-0131-x, 2017.
Angiosperm Phylogeny Group, Chase, M. W., Christenhusz, M. J. M., Fay, M.
F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A.
N., Soltis, P. S., and Stevens, P. F.: An update of the Angiosperm Phylogeny
Group classification for the orders and families of flowering plants: APG
IV, Bot. J. Linn. Soc., 181, 1–20, https://doi.org/10.1111/boj.12385, 2016.
Anselin, L.: Local indicators of spatial association – LISA, Geograph.
Analysis, 27, 93–115, https://doi.org/10.1111/j.1538-4632.1995.tb00338.x,
1995.
Arditti, J., Rao, A. N., and Nair, H.: History pollination, in: Orchid
Biology: Reviews and Perspectives, X, edited by: Kull, T., Arditti, J., and
Wong, S. M., Springer, Dordrecht, The Netherlands, 233–249,
https://doi.org/10.1007/978-1-4020-8802-5_7, 2009.
Arias, T., Beilstein, M. A., Tang, M., McKain, M. R., and Pires, J. C.:
Diversification times among Brassica (Brassicaceae) crops suggest hybrid formation
after 20 million years of divergence, Am. J. Bot., 101, 86–91,
https://doi.org/10.3732/ajb.1300312, 2014.
Bauer, D. M. and Wing, I. S.: The macroeconomic cost of catastrophic
pollinator declines, Ecol. Econ., 126, 1–13,
https://doi.org/10.1016/j.ecolecon.2016.01.011, 2016.
Bedigian, D., Seigler, D. S., and Harlan, J. R.: Sesamin, sesamolin and the
origin of sesame, Biochem. Syst. Ecol., 13, 133–139,
https://doi.org/10.1016/0305-1978(85)90071-7, 1985.
Blomberg, S. P., Garland, T., and Ives, A. R.: Testing for phylogenetic
signal in comparative data: behavioral traits are more labile, Evolution,
57, 717–745, https://doi.org/10.1111/j.0014-3820.2003.tb00285.x, 2003.
Bogdziewicz, M., Żywiec, M., Espelta, J. M., Fernández-Martinez, M.,
Calama, R., Ledwoń, M., McIntire, E., and Crone, E. E.: Environmental
veto synchronizes mast seeding in four contrasting tree species, Am. Nat.,
194, 246–259, https://doi.org/10.1086/704111, 2019.
Bommarco, R., Kleijn, D., and Potts, S. G.: Ecological intensification:
harnessing ecosystem services for food security, Trends Ecol. Evol., 28,
230–238, https://doi.org/10.1016/j.tree.2012.10.012, 2013.
Brittain, C., Kremen, C., Garber, A., and Klein, A.-M.: Pollination and plant
resources change the nutritional quality of almonds for human health, PLoS
ONE, 9, e90082, https://doi.org/10.1371/journal.pone.0090082, 2014.
Brown, J. and Cunningham, S. A.: Global-scale drivers of crop visitor
diversity and the historical development of agriculture, P. Roy. Soc.
B-Biol. Sci., 286, 20192096, https://doi.org/10.1098/rspb.2019.2096, 2019.
Caracuta, V., Weinstein-Evron, M., Kaufman, D., Yeshurun, R., Silvent, J.,
and Boaretto, E.: 14,000-year-old seeds indicate the Levantine origin of the
lost progenitor of faba bean, Sci. Rep.-UK., 6, 37399,
https://doi.org/10.1038/srep37399, 2016.
Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R.,
and Chhetri, N.: A meta-analysis of crop yield under climate change and
adaptation, Nat. Clim. Change, 4, 287–291,
https://doi.org/10.1038/nclimate2153, 2014.
Cheplick, G. P.: The allometry of reproductive allocation, in: Reproductive
allocation in plants, edited by: Reekie, E. G. and Bazzaz, F. A., Elsevier
Academic Press,
Burlington, USA,
97–128, 2005.
Chomicki, G. and Renner, S. S.: Watermelon origin solved with molecular
phylogenetics including Linnaean material: another example of museomics, New
Phytol., 205, 526–532, https://doi.org/10.1111/nph.13163, 2015.
Decroocq, S., Cornille, A., Tricon, D., Babayeva, S., Chague, A., Eyquard,
J.-P., Karychev, R., Dolgikh, S., Kostritsyna, T., Liu, S., Liu, W., Geng,
W., Liao, K., Asma, B. M., Akparov, Z., Giraud, T., and Decroocq, V.: New
insights into the history of domesticated and wild apricots and its
contribution to Plum pox virus resistance, Mol. Ecol., 25, 4712–4729,
https://doi.org/10.1111/mec.13772, 2016.
Eilers, E. J., Kremen, C., Greenleaf, S. S., Garber, A. K., and Klein, A.
M.: Contribution of pollinator-mediated crops to nutrients in the human food
supply, PLoS ONE, 6, e21363, https://doi.org/10.1371/journal.pone.0021363,
2011.
Evenson, R. E. and Gollin, D.: Assessing the impact of the green
revolution, 1960 to 2000, Science, 300, 758–762,
https://doi.org/10.1126/science.1078710, 2003.
FAOSTAT: Food and Agriculture Organization Corporate Statistical Database, available at:
http://www.fao.org/faostat/en (last access: 18 November 2020), 2019.
Faust, M. and Timon, B.: Origin and dissemination of peach,
Horticultural Reviews 17, 331–379,
https://doi.org/10.1002/9780470650585.ch10, 1995.
Felsenstein, J.: Phylogenies and the comparative method, Am. Nat., 125,
1–15, https://doi.org/10.1086/284325, 1985.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C.,
Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C.,
Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and
Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478, 337–342,
https://doi.org/10.1038/nature10452, 2011.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 3rd
Edition, Thousand Oaks, CA, USA, 2019.
Gallai, N., Salles, J. M., Settele, J., and Vaissière, B. E.: Economic
valuation of the vulnerability of world agriculture confronted with
pollinator decline, Ecol. Econ., 68, 810–821,
https://doi.org/10.1016/j.ecolecon.2008.06.014, 2009.
Garibaldi, L. A., Aizen, M. A., Cunningham, S., and Klein, A. M.: Pollinator
shortage and global crop yield: looking at the whole spectrum of pollinator
dependency, Commun. Integr. Biol., 2, 37–39,
https://doi.org/10.4161/cib.2.1.7425, 2009.
Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A., and Harder,
L. D.: Global growth and stability of agricultural yield decrease with
pollinator dependence, P. Natl. Acad. Sci.-Biol., 108, 5909–5914,
https://doi.org/10.1073/pnas.1012431108, 2011.
Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco,
R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik,
O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P.,
Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S.,
Hipólito, J., Holzschuh, A., Howlett, B., Isaacs, R., Javorek, S. K.,
Kennedy, C. M., Krewenka, K. M., Krishnan, S., Mandelik, Y., Mayfield, M.
M., Motzke, I., Munyuli, T., Nault, B. A., Otieno, M., Petersen, J.,
Pisanty, G., Potts, S. G., Rader, R., Ricketts, T. H., Rundlöf, M.,
Seymour, C. L., Schüepp, C., Szentgyörgyi, H., Taki, H., Tscharntke,
T., Vergara, C. H., Viana, B. F., Wanger, T. C., Westphal, C., Williams, N.,
and Klein, A. M: Wild pollinators enhance fruit set of crops regardless of
honey bee abundance, Science, 339, 1608–1611,
https://doi.org/10.1126/science.1230200, 2013.
Garibaldi, L. A., Carvalheiro, L. G., Leonhardt, S. D., Aizen, M. A.,
Blaauw, B. R., Isaacs, R., Kuhlmann, M., Kleijn, D., Klein, A. M., Kremen,
C., Morandin, L., Scheper, J., and Winfree, R.: From research to action:
practices to enhance crop yield through wild pollinators, Front. Ecol.
Environ., 12, 439–447, https://doi.org/10.1890/130330, 2014.
Garibaldi, L. A., Sáez, A., Aizen, M. A., Fijen, T., and Bartomeus, I:
Crop pollination management needs flower-visitor monitoring and target
values, J. Appl. Ecol., 57, 664–670,
https://doi.org/10.1111/1365-2664.13574, 2020.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence,
D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.:
Food security: the challenge of feeding 9 billion people, Science, 327,
812–818, https://doi.org/10.1126/science.1185383, 2010.
Gondola, I. and Papp, P. P.: Origin, geographical distribution and
phylogenetic relationships of common buckwheat (Fagopyrum esculentum Moench), Eur. J. Plant Sci.
Biotechnol., 4,17–32, 2010.
Guo, D., Zhang, H., and Luo, Z.: Genetic relationships of Diospyros kaki Thunb and
related species revealed by IRAP and REMAP analysis, Plant Sci., 170,
528–533, https://doi.org/10.1016/j.plantsci.2005.10.006, 2006.
Guo, J., Wang, Y., Song, C., Zhou, J., Qiu, L., Huang, H., and Wang, Y.: A
single origin and moderate bottleneck during domestication of soybean
(Glycine max): implications from microsatellites and nucleotide sequences, Ann. Bot.,
106, 505–514, https://doi.org/10.1093/aob/mcq125, 2010.
Harper, J. L.: Population biology of plants, Academic Press, London, UK, 1977.
Harris, S. A., Robinson, J. P., and Juniper, B. E: Genetic clues to the
origin of the apple, Trends Genet., 18, 426–430,
https://doi.org/10.1016/S0168-9525(02)02689-6, 2002.
Hatfield, J. L. and Walthall, C. L.: Meeting global food needs: realizing
the potential via genetics x environment x management interactions, Agron.
J., 107, 1215–1226, https://doi.org/10.2134/agronj15.0076, 2015.
Herrera, C. M.: Variation in mutualisms: the spatiotemporal mosaic of a
pollinator assemblage, Biol. J. Linn. Soc., 35, 95–125,
https://doi.org/10.1111/j.1095-8312.1988.tb00461.x, 1988.
Hirschegger, P., Jakse, J., Trontelj, P., and Bohanec, B.: Origins of
Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium:
Alliaceae), Mol. Phylogenet. Evol., 54, 488–497,
https://doi.org/10.1016/j.ympev.2009.08.030, 2010.
Horvitz, C. C. and Schemske, D. W.: Spatiotemporal variation in insect
mutualists of a neotropical herb, Ecology, 71, 1085–1097,
https://doi.org/10.2307/1937377, 1990.
Horvitz C. C. and Schemske, D. W.: Effects of plant size, leaf herbivory,
local competition and fruit production on survival, growth and future
reproduction of a neotropical herb, J. Ecol., 90, 279–290,
https://doi.org/10.1046/j.1365-2745.2001.00660.x, 2002.
Hulshof, C. M., Stegen, J. C., Swenson, N. G., Enquist, C. A. F., and
Enquist, B. J.: Interannual variability of growth and reproduction in
Bursera simaruba: the role of allometry and resource variability, Ecology, 93, 180–190,
https://doi.org/10.1890/11-0740.1, 2012.
Iizumi, T., Yokozawa, M., Sakurai, G., Travasso, M. I., Romanenkov, V.,
Oettli, P., Newby, T., Ishigooka, Y., and Furuya, J: Historical changes in
global yields: major cereal and legume crops from 1982 to 2006, Global Ecol.
Biogeog., 23, 346–357, https://doi.org/10.1111/geb.12120, 2014.
Jeffery S., Avalos, D., Prodana, M., Bastos, A. C., van Groenigen, J. W.,
Hungate, B. A., and Verheijen, F.: Biochar boosts tropical but not temperate
crop yields, Environ. Res. Lett., 12, 053001,
https://doi.org/10.1088/1748-9326/aa67bd, 2017.
Jensen, J. L. W.: Sur les fonctions convexes et les inégalités entre
les valeurs moyennes, Acta Math., 30, 175–193, 1906.
Jin, Y. and Qian, H.: V.PhyloMaker: an R package that can generate very
large phylogenies for vascular plants, Ecography, 42, 1–7,
https://doi.org/10.1111/ecog.04434, 2019.
Kantar, M. B., Sosa, C. C., Khoury, C. K., Castañeda-Álvarez, N. P.,
Achicanoy, H. A., Bernau, V., Kane, N. C., Marek, L., Seiler, G., and
Rieseberg, L. H.: Ecogeography and utility to plant breeding of the crop
wild relatives of sunflower (Helianthus annuus L.), Front. Plant Sci., 6, 841,
https://doi.org/10.3389/fpls.2015.00841, 2015.
Keck, F., Rimet, F., Bouchez, A., and Franc, A.: phylosignal: an R package
to measure, test, and explore the phylogenetic signal, Ecol. Evol., 6,
2774–2780, https://doi.org/10.1002/ece3.2051, 2016.
Kho, R. M.: On crop production and the balance of available resources, Agr.
Ecosyst. Environ., 80, 71–85, https://doi.org/10.1016/S0167-8809(00)00135-3,
2000.
Khoury, C. K., Achicanoy, H. A., Bjorkman, A. D., Navarro-Racines, C.,
Guarino, L., Flores-Palacios, X., Engels, J. M. M., Wiersema, J. H.,
Dempewolf, H., Sotelo, S., Ramírez-Villegas, J., Castañeda-Alvarez,
N. P., Fowler, C., Jarvis, A., Rieseberg, L. H., and Struik, P. C.: Origins
of food crops connect countries worldwide, P. Roy. Soc. B-Biol. Sci., 283,
20160792, https://doi.org/10.1098/rspb.2016.0792, 2016.
Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I.,
Cunningham, S. A., Kremen, C., and Tscharntke, T.: Importance of pollinators
in changing landscapes for world crops, P. Roy. Soc. B-Biol. Sci., 274,
303–313, https://doi.org/10.1098/rspb.2006.3721, 2007.
Knight, T. M., Steets, J. A., Vamosi, J. C., Mazer, S. J., Burd, M.,
Campbell, D. R., Dudash, M. R., Johnston, M. O., Mitchell, R. J., and
Ashman, T.-L.: Pollen limitation in plant reproduction: pattern and process,
Annu. Rev. Ecol. Evol. S., 36, 467–497,
https://doi.org/10.1146/annurev.ecolsys.36.102403.115320, 2005.
Kozlowski J. and Uchmanski, J.: Optimal individual growth and reproduction
in perennial species with indeterminate growth, Evol. Ecol., 1, 214–230,
https://doi.org/10.1007/BF02067552, 1987.
Kramer, P. J.: Crop reactions to water and temperature stresses in humid,
temperate climates, CRC Press, Boca Ratón, USA, 2019.
Křístková, E., Doležalová, I., Lebeda, A., Vinter, V.,
and Novotná, A.: Description of morphological characters of lettuce
(Lactuca sativa L.) genetic resources, Hort. Sci., 35, 113–129,
https://doi.org/10.17221/4/2008-HORTSCI, 2008.
Kucharik, C. J., Ramiadantsoa, T., Zhang, J., and Ives, A. R.:
Spatiotemporal trends in crop yields, yield variability, and yield gaps
across the USA, Crop Sci., https://doi.org/10.1002/csc2.20089, in press, 2020.
Kumar, S., Mangal, M., Dhawan, A. K., and Singh, N.: Assessment of genetic
fidelity of micropropagated plants of Simmondsia chinensis (Link) Schneider using RAPD and ISSR
markers, Acta Physiol. Plant., 33, 2541–2545,
https://doi.org/10.1007/s11738-011-0767-z, 2012.
Lacey, E. P.: Onset of reproduction in plants: size- vs age-dependency,
Trends Ecol. Evol., 3, 72–75, https://doi.org/10.1016/0169-5347(86)90021-2,
1986.
Leff, B., Ramankutty, N., and Foley, J. A.: Geographic distribution of major
crops across the world, Global Biogeochem. Cy., 18, GB1009,
https://doi.org/10.1029/2003GB002108, 2004.
Li, D., Trotta, L., Marx, H. E., Allen, J. M., Sun, M., Soltis, D. E.,
Soltis, P. S., Guralnick, R. P., and Baiser, B.: For common community
phylogenetic analyses, go ahead and use synthesis phylogenies, Ecology, 100,
e02788, https://doi.org/10.1002/ecy.2788, 2019.
Martin, A. R., Cadotte, M. W., Isaac, M. E., Milla, R., Vile, D., and
Violle, C.: Regional and global shifts in crop diversity through the
Anthropocene, PLoS ONE, 14, e0209788,
https://doi.org/10.1371/journal.pone.0209788, 2019.
Mazer, S. J.: Ecological, taxonomic, and life history correlates of seed
mass among Indiana dune angiosperms, Ecol. Monogr., 59, 153–175,
https://doi.org/10.2307/2937284, 1989.
Miflin, B.: Crop improvement in the 21st century, J. Exp. Bot., 51, 1–8,
https://doi.org/10.1093/jexbot/51.342.1, 2000.
Milla, R.: Crop Origins and Phylo Food: A database and a phylogenetic tree
to stimulate comparative analyses on the origins of food crops, Global Ecol.
Biogeog., 29, 606–614, https://doi.org/10.1111/geb.13057, 2020.
Milla, R., Osborne, C. P., Turcotte, M. M., and Violle, C.: Plant
domestication through an ecological lens, Trends Ecol. Evol., 30, 463–469,
https://doi.org/10.1016/j.tree.2015.06.006, 2015.
Milla, R., Bastida, J. M., Turcotte, M. M., Jones, G., Violle, C., Osborne,
C. P., Chacón-Labella, J., Sosinski, Ê. E., Kattge, J., Laughlin, D.
C., Forey, E., Minden, V., Cornelissen, J. H. C., Amiaud, B., Kramer, K.,
Boenisch, G., He, T., Pillar, V. D., and Byun, C.: Phylogenetic patterns and
phenotypic profiles of the species of plants and mammals farmed for food,
Nat. Ecol. Evol., 2, 1808–1817, https://doi.org/10.1038/s41559-018-0690-4,
2018.
Obeso, J. R.: The costs of reproduction in plants, New Phytol., 155,
321–348, https://doi.org/10.1046/j.1469-8137.2002.00477.x, 2002.
Paradis, E.: Analysis of phylogenetics and evolution with R, 2nd edition,
Springer, New York, USA, 2012.
Paradis, E. and Schliep, K.: ape 5.0: and environment for modern
phylogenetics and evolutionary analyses in R, Bioinformatics, 35, 526–528,
https://doi.org/10.1093/bioinformatics/bty633, 2019.
Partap, U. M. A. and Ya, T.: The human pollinators of fruit crops in
Maoxian County, Sichuan, China, Mt. Res. Dev., 32, 176–186,
https://doi.org/10.1659/MRD-JOURNAL-D-11-00108.1, 2012.
Partap, U. M. A., Partap, T. E. J., and Yonghua, H. E.: Pollination failure
in apple crop and farmers' management strategies in Hengduan mountains,
China, Acta Hortic., 561, 225–230,
https://doi.org/10.17660/ActaHortic.2001.561.32, 2001.
Pearse, I. S., Koenig, W. D., and Kelly, D.: Mechanisms of mast seeding:
resources, weather, cues, and selection, New Phytol., 212, 546–562,
https://doi.org/10.1111/nph.14114, 2016.
Petit, R. J. and Hampe, A.: Some evolutionary consequences of being a tree,
Annu. Rev. Ecol. Evol. S., 37, 187–214,
https://doi.org/10.1146/annurev.ecolsys.37.091305.110215, 2006.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and the R Core Team: nlme: linear
and nonlinear mixed effects models, R package version 3.1-140, 2019.
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., and
Kunin, W. E.: Global pollinator declines: Trends, impacts and drivers,
Trends Ecol. Evol., 25, 345–353, https://doi.org/10.1016/j.tree.2010.01.007,
2010.
Price, M. V., Waser, N. M., Irwin, R. E., Campbell, D. R., and Brody, A. K.:
Temporal and spatial variation in pollination of a montane herb: a
seven-year study, Ecology, 86, 2106–2116, https://doi.org/10.1890/04-1274,
2005.
Rabeling, S. C., Lim, J. L., Tidon, R., Neff, J. L., Simpson, B. B., and Pawar,
S.: Seasonal variation of a plant-pollinator network in the Brazilian
Cerrado: Implications for community structure and robustness, PLoS ONE, 14,
e0224997, https://doi.org/10.1371/journal.pone.0224997, 2019.
Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B.
G., Winfree, R., Cunningham, S. A., Mayfield, M. M., Arthur, A. D,
Andersson, G. K. S., Bommarco, R., Brittain, C., Carvalheiro, L. G.,
Chacoff, N. P., Entling, M. H., Foully, B., Freitas, B. M., Gemmill-Herren,
B., Ghazoul, J., Griffin, S. R., Gross, C. L., Herbertsson, L., Herzog, F.,
Hipólito, J., Jaggar, S., Jauker, F., Klein, A.-M., Kleijn, D.,
Krishnan, S., Lemos, C. Q., Lindström, S. A. M., Mandelik, Y., Monteiro,
V. M., Nelson, W., Nilsson, L., Pattemore, D. E., de Pereira, N. O.,
Pisanty, G., Potts, S. G., Reemer, M., Rundlöf, M., Sheffield, C. S.,
Scheper, J., Schüepp, C., Smith, H. G., Stanley, D. A., Stout, J. C.,
Szentgyörgyi, H., Taki, H., Vergara, C. H., Viana, B. F., and
Woyciechowski, M.: Non-bee insects are important contributors to global crop
pollination, P. Natl. Acad. Sci.-Biol., 113, 146–151,
https://doi.org/10.1073/pnas.1517092112, 2016.
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., and Foley, J. A.:
Recent patterns of crop yield growth and stagnation, Nat. Commun., 3, 1293,
https://doi.org/10.1038/ncomms2296, 2012.
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate
variation explains a third of global crop yield variability, Nat. Commun.,
6, 5989, https://doi.org/10.1038/ncomms6989, 2015.
Revell, L. J.: Phylogenetic signal and linear regression on species data,
Methods Ecol. Evol., 1, 319–329,
https://doi.org/10.1111/j.2041-210X.2010.00044.x, 2010.
Revell, L. J.: phytools: An R package for phylogenetic comparative biology
(and other things), Methods Ecol. Evol., 3, 217–223,
https://doi.org/10.1111/j.2041-210X.2011.00169.x, 2012.
Rodrigo, J.: Spring frosts in deciduous fruit trees – morphological damage
and flower hardiness, Sci. Hortic-Amsterdam, 85, 155–173,
https://doi.org/10.1016/S0304-4238(99)00150-8, 2000.
Rosenzweig, C. and Liverman, D.: Predicted effects of climate change on
agriculture: A comparison of temperate and tropical regions, in: Global
climate change: Implications, challenges, and mitigation measures, edited
by: Majumdar, S. K., The Pennsylvania Academy of Sciences,
Easton, USA,
342–361,
1992.
Ruel, J. J. and Ayres, M. P.: Jensen's inequality predicts effects of
environmental variation, Trends Ecol. Evol., 14, 361–366,
https://doi.org/10.1016/S0169-5347(99)01664-X, 1999.
Sáez, A., Negri, P., Viel, M., and Aizen, M. A: Pollination efficiency
of artificial and bee pollination practices in kiwifruit, Sci.
Hortic-Amsterdam, 246, 1017–1021,
https://doi.org/10.1016/j.scienta.2018.11.072, 2019.
Sanjur, O. I., Piperno, D. R., Andres, T. C., and Wessel-Beaver, L.:
Phylogenetic relationships among domesticated and wild species of
Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop
plant evolution and areas of origin, P. Natl. Acad. Sci.-Biol., 99, 535–540,
https://doi.org/10.1073/pnas.012577299, 2002.
Santiago, L. S.: Nutrient limitation of eco-physiological processes in
tropical trees, Trees, 29, 1291–1300,
https://doi.org/10.1007/s00468-015-1260-x, 2015.
Schauberger, B., Rolinski, S., and Müller, C.: A network-based approach
for semi-quantitative knowledge mining and its application to yield
variability, Environ. Res. Lett., 11, 123001,
https://doi.org/10.1088/1748-9326/11/12/123001, 2016.
Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein,
K., and Scherer-Lorenzen, M.: Plant Ecology, Second Edition, Springer,
Berlin and Heidelberg, Germany, https://doi.org/10.1007/978-3-662-56233-8, 2019.
Sebastian, P., Schaefer, H., Telford, I. R. H., and Renner, S. S.: Cucumber
(Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the
sister species of melon is from Australia, P. Natl. Acad. Sci.-Biol., 107,
269–273, https://doi.org/10.1073/pnas.1005338107, 2010.
Slot, M. and Winter, K.: In situ temperature response of photosynthesis of
42 tree and liana species in the canopy of two Panamanian lowland tropical
forests with contrasting rainfall regimes, New Phytol., 214, 1103–1117,
https://doi.org/10.1111/nph.14469, 2017.
Smith, H. M. and Samach, A.: Constraints to obtaining consistent annual
yields in perennial tree crops. I: Heavy fruit load dominates over
vegetative growth, Plant Sci., 207, 158–167,
https://doi.org/10.1016/j.plantsci.2013.02.014, 2013.
Snyder, R. L. and de Melo-Abreu, J. P.: Frost Protection: fundamentals,
practice and economics, Volume 1., Food and Agriculture Organization of the
United Nations, FAO,
Rome, Italy,
2005.
Soriano, J. M., Pecchioli, S., Romero, C., Vilanova, S., Llácer, G.,
Giordani, E., and Badenes, M. L.: Development of microsatellite markers in
polyploidy persimmon (Diospyros kaki Lf) from an enriched genomic library, Mol. Ecol.
Notes, 6, 368–370, https://doi.org/10.1111/j.1471-8286.2006.01236.x, 2006.
Souza, C. S., Maruyama, P. K., Aoki, C., Sigrist, M. R., Raizer, J., Gross,
C. L., and de Araujo, A. C.: Temporal variation in plant-pollinator networks
from seasonal tropical environments: Higher specialization when resources
are scarce, J. Ecol., 106, 2409–2420,
https://doi.org/10.1111/1365-2745.12978, 2018.
Symonds, M. R. and Blomberg, S. P.: A primer on phylogenetic generalised
least squares, in: Modern phylogenetic comparative methods and their
application in evolutionary biology, edited by: Garamszegi, L. Z., 105–130,
Springer, Heidelberg, Germany, https://doi.org/10.1007/978-3-662-43550-2, 2014.
Tan, S., Yang, Y., and Huang, W.: Moderate heat stress accelerates
photoinhibition of photosystem I under fluctuating light in tobacco young
leaves, Photosynth. Res., 144, 373–382,
https://doi.org/10.1007/s11120-020-00754-7, 2020.
Teteni, P.: Biodiversity of Papaver somniferum L. (opium poppy), Acta Hortic., 390, 191–201,
https://doi.org/10.17660/ActaHortic.1995.390.27, 1995.
Tilman, D.: Global environmental impacts of agricultural expansion: the need
for sustainable and efficient practices, P. Natl. Acad. Sci.-Biol., 96,
5995–6000, https://doi.org/10.1073/pnas.96.11.5995, 1999.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S.:
Agricultural sustainability and intensive production practices, Nature, 418,
671–677, https://doi.org/10.1038/nature01014, 2002.
Toffolatti, S. L., De Lorenzis, G., Costa, A., Maddalena, G., Passera, A.,
Bonza, M. C., Pindo, M., Stefani, E., Cestaro, A., Casati, P., Failla, O.,
Bianco, P. A., Maghradze, D., and Quaglino, F.: Unique resistance traits
against downy mildew from the center of origin of grapevine (Vitis vinifera), Sci. Rep.-UK,
8, 12523, https://doi.org/10.1038/s41598-018-30413-w, 2018.
Tuller, J., Marquis, R. J., Andrade, S. M. M., Monteiro, A. B., and Faria,
L. D. B.: Trade-offs between growth, reproduction and defense in response to
resource availability manipulations, PLoS ONE, 13, 1–12,
https://doi.org/10.1371/journal.pone.0201873, 2018.
van der Vossen, H. A. M. and Mkamilo, G. S. (Eds.): Plant resources of tropical Africa 14, Vegetable Oils, PROTA Foundation, Wageningen, the Netherlands, 2007.
Wang, L., He, F., Huang, Y., He, J., Yang, S., Zeng, J., Deng, C., Jiang,
X., Fang, Y., Wen, S., Xu, R., Yu, H., Yang, X., Zhong, G., Chen, C., Yan,
X., Zhou, C., Zhang, H., Xie, Z., Larkin, R. M., Deng, X., and Xu, Q.:
Genome of wild mandarin and domestication history of mandarin, Mol. Plant,
11, 1024–1037, https://doi.org/10.1016/j.molp.2018.06.001, 2018.
Weiner, J., Campbell, L. G., Pino, J., and Echarte, L.: The allometry of
reproduction within plant populations, J. Ecol., 97, 1220–1233,
https://doi.org/10.1111/j.1365-2745.2009.01559.x, 2009.
West, B. T., Welch, K. B., and Galecki, A. T.: Linear Mixed Models: A
Practical Guide Using Statistical Software, Chapman and Hall/CRC, Boca
Raton, FL, USA, 2007.
Willmer, P.: Pollination and floral ecology, Princeton University Press,
Princeton, New Jersey, USA, 2011.
Wu, G. A., Terol, J., Ibanez, V., López-García, A.,
Pérez-Roman, E., Borreda, C., Domingo, C., Tadeo, F. R.,
Carbonell-Caballero, J., Alonso, R., Curk, F., Du, D., Ollitrault, P.,
Roose, M. L., Dopazo, J., Gmitter, F. G., Rokhsar, D. S., and Talon, M.:
Genomics of the origin and evolution of Citrus, Nature, 554, 311–316,
https://doi.org/10.1038/nature25447, 2018.
Zeinalabedini, M., Khayam-Nekoui, M., Grigorian, V., Gradziel, T. M.,
Martínez-Gómez, P.: The origin and dissemination of the cultivated
almond as determined by nuclear and chloroplast SSR marker analysis, Sci.
Hortic-Amsterdam, 125, 593–601,
https://doi.org/10.1016/j.scienta.2010.05.007, 2010.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M.,
Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F.,
Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng,
S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z.,
Zhu, Y., Zhu, Z., and Asseng, S.: Temperature increase reduces global yields
of major crops in four independent estimates, P. Natl. Acad. Sci.-Biol.,
114, 9326–9331, https://doi.org/10.1073/pnas.1701762114, 2017.
Zheng, L., Ives, A. R., Garland Jr, T., Larget, B. R., Yu, Y., and Cao, K.:
New multivariate tests for phylogenetic signal and trait correlations
applied to ecophysiological phenotypes of nine Manglietia species, Funct. Ecol.,
23,1059–1069, https://doi.org/10.1111/j.1365-2435.2009.01596.x, 2009.
Short summary
Human population growth imposes increasing demands on crop yield (i.e., crop production per unit area). Worryingly, first signs of yield deceleration and stagnation were reported. In our study we show how crop cultivation region, type of harvested organ, pollinator dependency, and life form affect yield growth and/or stability of globally important crops. Our results together advocate for a more diverse agriculture involving the cultivation of different crops with different ecological features.
Human population growth imposes increasing demands on crop yield (i.e., crop production per unit...