Brehaut, L. and Danby, R. K.: Inconsistent relationships between annual tree
ring-widths and satellite-measured NDVI in a mountainous subarctic
environment, Ecol. Indic., 91, 698–711, https://doi.org/10.1016/j.ecolind.2018.04.052, 2018.
Brown, M. E., Pinzon, J. E., Didan, K., Morisette, J. T., and Tucker, C. J.:
Evaluation of the consistency of long-term NDVI time series derived from
AVHRR,SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM
+ sensors, IEEE T. Geosci. Remote, 44, 1787–1793, https://doi.org/10.1109/tgrs.2005.860205, 2006.
Bunn, A. G.: A dendrochronology program library in R (dplR),
Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Bunn, A. G.: Statistical and visual crossdating in R using the dplR library,
Dendrochronologia, 28, 251–258, https://doi.org/10.1016/j.dendro.2009.12.001, 2010.
Camarero, J. J., Albuixech, J., López-Lozano, R., Casterad, M. A., and
Montserrat-Martí, G.: An increase in canopy cover leads to masting in
Quercus ilex, Trees, 24, 909–918, https://doi.org/10.1007/s00468-010-0462-5, 2010.
Chen, L., Huang, J.-G., Stadt, K. J., Comeau, P. G., Zhai, L., Dawson, A.,
and Alam, S. A.: Drought explains variation in the radial growth of white
spruce in western Canada, Agr. Forest Meteorol., 233, 133–142, https://doi.org/10.1016/j.agrformet.2016.11.012, 2017.
Correa-Díaz, A., Silva, L. C. R., Horwath, W. R., Gómez-Guerrero,
A., Vargas-Hernández, J., Villanueva-Díaz, J.,
Velázquez-Martínez, A., and Suárez-Espinoza, J.: Linking
Remote Sensing and Dendrochronology to Quantify Climate-Induced Shifts in
High-Elevation Forests Over Space and Time,
J. Geophys. Res.-Biogeo., 124, 166–183, https://doi.org/10.1029/2018jg004687, 2019.
Coulthard, B. L., Touchan, R., Anchukaitis, K. J., Meko, D. M., and
Sivrikaya, F.: Tree growth and vegetation activity at the ecosystem-scale in
the eastern Mediterranean, Environ. Res. Lett., 12, e084008, https://doi.org/10.1088/1748-9326/aa7b26, 2017.
Dorman, M., Svoray, T., Perevolotsky, A., Moshe, Y., and Sarris, D.: What
determines tree mortality in dry environments? A multi-perspective approach,
Ecol. Appl., 25, 1054–1071, https://doi.org/10.1890/14-0698.1, 2015.
Gao, L., Gou, X., Deng, Y., Wang, Z., Gu, F., and Wang, F.: Increased growth
of Qinghai spruce in northwestern China during the recent warming hiatus,
Agr. Forest Meteorol., 260–261, 9–16, https://doi.org/10.1016/j.agrformet.2018.05.025, 2018.
Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W., Zimmermann, N. E.,
Metsaranta, J. M., de Jong, R., Frank, D. C., Esper, J., Buntgen, U., Guo,
X. J., and Bhatti, J.: No growth stimulation of Canada's boreal forest under
half-century of combined warming and CO2 fertilization, P. Natl. Acad. Sci. USA, 113, E8406–E8414, https://doi.org/10.1073/pnas.1610156113, 2016.
Goetz, S. J., Bunn, A. G., Fiske, G. J., and Houghton, R. A.:
Satellite-observed photosynthetic trends across boreal North America
associated with climate and fire disturbance, P. Natl. Acad. Sci. USA, 102, 13521–13525, https://doi.org/10.1073/pnas.0506179102, 2005.
Grissino-Mayer, H. D.: Evaluating Crossdating Accuracy: A Manual and
Tutorial for the Computer Program COFECHA, Tree-Ring Res., 57, 205–221, https://doi.org/10150/251654, 2001.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Scientific
Data, 7, e109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hashimoto, H., Melton, F., Ichii, K., Cristina, M., Wang, W., and Nemani,
R.: Evaluating the impacts of climate and elevated carbon dioxide on
tropical rainforests of the western Amazon basin using ecosystem models and
satellite data, Glob. Change Biol., 16, 255–271, https://doi.org/10.1111/j.1365-2486.2009.01921.x, 2009.
Hogg, E. H., Michaelian, M., Hook, T. I., and Undershultz, M. E.: Recent
climatic drying leads to age-independent growth reductions of white spruce
stands in western Canada, Glob. Change Biol., 23, 5297–5308, https://doi.org/10.1111/gcb.13795, 2017.
Jochner, M., Bugmann, H., Nötzli, M., and Bigler, C.: Tree growth
responses to changing temperatures across space and time: a fine-scale
analysis at the treeline in the Swiss Alps, Trees, 32, 645–660, https://doi.org/10.1007/s00468-017-1648-x, 2018.
Keyimu, M., Li, Z., Zhang, G., Fan, Z.-X., Wang, X., and
Fu, B.-J.: Tree ring–based minimum temperature reconstruction in the
central Hengduan Mountains, China, Theor. Appl. Climatol., 141, 359–370, https://doi.org/10.1007/s00704-020-03169-5, 2020.
Keyimu, M., Li, Z., Wu, X., Fu, B., Liu, G., Shi, S., Fan, Z., and Wang, X.:
Recent decline of high altitude coniferous growth due to thermo-hydraulic
constrains: evidence from the Miyaluo Forest Reserve, Western Sichuan
Plateau of China, Dendrochronologia, 63, e125751, https://doi.org/10.1016/j.dendro.2020.125751, 2020.
Lambert, J., Drenou, C., Denux, J.-P., Balent, G., and Cheret, V.:
Monitoring forest decline through remote sensing time series analysis,
Gisci. Remote Sens., 50, 437–457, https://doi.org/10.1080/15481603.2013.820070,
2013.
Li, X., Liang, E., Gričar, J., Rossi, S., Čufar, K., and Ellison, A.
M.: Critical minimum temperature limits xylogenesis and maintains treelines
on the southeastern Tibetan Plateau, Sci. Bull., 62, 804–812,
https://doi.org/10.1016/j.scib.2017.04.025, 2017.
Li, Z. S., Liu, G. H., Gong, L., Wang, M., and Wang, X. C.: Tree ring-based
temperature reconstruction over the past 186 years for the Miyaluo Natural
Reserve, western Sichuan Province of China,
Theor. Appl. Climatol., 120, 495–506, https://doi.org/10.1007/s00704-014-1184-1, 2015.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A.,
Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M.,
Lexer, M. J., and Marchetti, M.: Climate change impacts, adaptive capacity,
and vulnerability of European forest ecosystems,
Forest Ecol. Manag., 259, 698–709, https://doi.org/10.1016/j.foreco.2009.09.023, 2010.
Liu, R., Song, Y., Liu, Y., Li, X., Song, H., Sun, C., Li, Q., Cai, Q., Ren,
M., and Wang, L.: Changes in the Tree-Ring Width-Derived Cumulative
Normalized Difference Vegetation Index over Northeast China during 1825 to
2013 CE, Forests, 12, e241, https://doi.org/10.3390/f12020241, 2021.
McMahon, S. M., Parker, G. G., and Miller, D. R.: Evidence for a recent
increase in forest growth, P. Natl. Acad. Sci. USA,
107, 3611–3615, https://doi.org/10.1073/pnas.0912376107, 2010.
Mou, Y.-M., Fang, O., Cheng, X., and Qiu, H.: Recent tree growth decline
unprecedented over the last four centuries in a Tibetan juniper forest,
J. Forestry., 30, 1429–1436, https://doi.org/10.1007/s11676-018-0856-6,
2019.
NASA: MOD13A3, NASA [data set],
http://modis.gsfc.nasa.gov, last access: 17 May 2021.
Nikolaev, A. N., Fedorov, P. P., and Desyatkin, A. R.: Influence of climate
and soil hydrothermal regime on radial growth of Larix cajanderi and Pinus
sylvestris in Central Yakutia, Russia,
Scand. J. Forest Res., 24, 217–226, https://doi.org/10.1080/02827580902971181, 2009.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J.,
and Stenseth, N. C.: Using the satellite-derived NDVI to assess ecological
responses to environmental change, Trends Ecol. Evol., 20,
503–510, https://doi.org/10.1016/j.tree.2005.05.011, 2005.
Pretzsch, H., Biber, P., Schütze, G., Uhl, E., and Rötzer, T.:
Forest stand growth dynamics in Central Europe have accelerated since 1870,
Nat. Commun., 5, e4967, https://doi.org/10.1038/ncomms5967, 2014.
Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J. M.: Global
Terrestrial Gross and Net Primary Productivity from the Earth Observing
System, in: Methods in Ecosystem Science, edited by: Sala, O. E., Jackson,
R. B., Mooney, H. A., and Howarth, R. W., Springer New York, New York, NY, USA, 44–57, https://doi.org/10.1007/978-1-4612-1224-9_4, 2000.
Seftigen, K., Frank, D. C., Björklund, J., Babst, F., and Poulter, B.:
The climatic drivers of normalized difference vegetation index and
tree-ring-based estimates of forest productivity are spatially coherent but
temporally decoupled in Northern Hemispheric forests,
Global Ecol. Biogeogr., 27, 1352–1365, https://doi.org/10.1111/geb.12802, 2018.
Shestakova, T. A., Gutierrez, E., Kirdyanov, A. V., Camarero, J. J., Genova,
M., Knorre, A. A., Linares, J. C., Resco de Dios, V., Sanchez-Salguero, R.,
and Voltas, J.: Forests synchronize their growth in contrasting Eurasian
regions in response to climate warming, P. Natl. Acad. Sci. USA, 113,
662–667, https://doi.org/10.1073/pnas.1514717113, 2016.
Shi, C., Shen, M., Wu, X., Cheng, X., Li, X., Fan, T., Li, Z., Zhang, Y.,
Fan, Z., Shi, F., and Wu, G.: Growth response of alpine treeline forests to
a warmer and drier climate on the southeastern Tibetan Plateau, Agr. Forest Meteorol., 264, 73–79, 2019a.
Shi, F., Wu, X., Li, X., Wang, P., Yang, X., Li, Y., Jiang, X., Pei, T.,
Bai, Y., Hao, B., Zhang, C., and Tong, Y.: Seasonal Divergent Tree Growth
Trends and Growth Variability along Drought Gradient over Northeastern
China, Forests, 10, e39, https://doi.org/10.3390/f10010039, 2019b.
St. George, S.: An overview of tree-ring width records across the Northern
Hemisphere, Quaternary Sci. Rev., 95, 132–150, https://doi.org/10.1016/j.quascirev.2014.04.029, 2014.
Sun, C., Liu, Y., Song, H., Li, Q., Cai, Q., Wang, L., Fang, C., and Liu,
R.: Tree-ring evidence of the impacts of climate change and agricultural
cultivation on vegetation coverage in the upper reaches of the Weihe River,
northwest China, Sci. Total Environ., 707, e136160, https://doi.org/10.1016/j.scitotenv.2019.136160, 2020.
Tei, S. and Sugimoto, A.: Time lag and negative responses of forest
greenness and tree growth to warming over circumboreal forests, Glob. Change
Biol., 24, 4225–4237, https://doi.org/10.1111/gcb.14135, 2018.
Tei, S., Sugimoto, A., Yonenobu, H., Matsuura, Y., Osawa, A., Sato, H.,
Fujinuma, J., and Maximov, T.: Tree-ring analysis and modeling approaches
yield contrary response of circumboreal forest productivity to climate
change, Glob. Change Biol., 23, 5179–5188, https://doi.org/10.1111/gcb.13780, 2017.
van Breugel, M., Ransijn, J., Craven, D., Bongers, F., and Hall, J. S.:
Estimating carbon stock in secondary forests: Decisions and uncertainties
associated with allometric biomass models, Forest Ecol. Manag.,
262, 1648–1657, https://doi.org/10.1016/j.foreco.2011.07.018, 2011.
Van Der Schrier, G., Barichivich, J., Briffa, K. R., and Jones, P. D.: A
scPDSI-based global data set of dry and wet spells for 1901–2009, J. Geophys. Res.-Atmos., 118, 4025–4048, https://doi.org/10.1002/jgrd.50355, 2013.
Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M.,
Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera,
M., Gazol, A., Azorin-Molina, C., Bhuyan, U., and El Kenawy, A.: Diverse
relationships between forest growth and the Normalized Difference Vegetation
Index at a global scale, Remote Sens. Environ., 187, 14–29, https://doi.org/10.1016/j.rse.2016.10.001, 2016.
Vicente-Serrano, S. M., Martín-Hernández, N., Camarero, J. J.,
Gazol, A., Sánchez-Salguero, R., Peña-Gallardo, M., El Kenawy, A.,
Domínguez-Castro, F., Tomas-Burguera, M., Gutiérrez, E., de Luis,
M., Sangüesa-Barreda, G., Novak, K., Rozas, V., Tíscar, P. A.,
Linares, J. C., del Castillo, E. M., Ribas, M., García-González,
I., Silla, F., Camisón, A., Génova, M., Olano, J. M., Longares, L.
A., Hevia, A., and Diego Galván, J.: Linking tree-ring growth and
satellite-derived gross primary growth in multiple forest biomes.
Temporal-scale matters, Ecol. Indic., 108, e105753, https://doi.org/10.1016/j.ecolind.2019.105753, 2020.
Wang, Z., Lyu, L., Liu, W., Liang, H., Huang, J., and Zhang, Q.-B.:
Topographic patterns of forest decline as detected from tree rings and NDVI,
Catena, 198, e105011, https://doi.org/10.1016/j.catena.2020.105011, 2021.
Wickham, H.: ggplot2, https://doi.org/10.1007/978-3-319-24277-4, data available at: Elegant Graphics for Data Analysis, Springer New York, New York, USA, hafro [code],
https://cran.hafro.is/web/packages/ggplot2/index.html (last access: 17 October 2021), 2016.
Williams, A. P., Allen, C. D., Millar, C. I., Swetnam, T. W., Michaelsen,
J., Still, C. J., and Leavitt, S. W.: Forest responses to increasing aridity
and warmth in the southwestern United States, P. Natl. Acad. Sci. USA, 107,
21289–21294, https://doi.org/10.1073/pnas.0914211107, 2010.
Worrall, J. J., Rehfeldt, G. E., Hamann, A., Hogg, E. H., Marchetti, S. B.,
Michaelian, M., and Gray, L. K.: Recent declines of Populus tremuloides in
North America linked to climate, Forest Ecol. Manag., 299, 35–51, https://doi.org/10.1016/j.foreco.2012.12.033, 2013.
Xu, P., Zhou, T., Yi, C., Fang, W., Hendrey, G., and Zhao, X.: Forest
drought resistance distinguished by canopy height, Environ. Res. Lett., 13, e075033, https://doi.org/10.1088/1748-9326/aacadd, 2018.
Xu, P., Fang, W., Zhou, T., Zhao, X., Luo, H., Hendrey, G., and Yi, C.:
Spatial Upscaling of Tree-Ring-Based Forest Response to Drought with
Satellite Data, Remote Sens., 11, 2344, https://doi.org/10.3390/rs11202344, 2019.
Xu, X.: Spatial distribution dataset of annual vegetation index (NDVI) in
China, Data Registration and Publication System of Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences [data set], https://doi.org/10.12078/2018060601, 2018.
Zhang, G., Kang, Y., Han, G., and Sakurai, K.: Effect of climate change over
the past half century on the distribution, extent and NPP of ecosystems of
Inner Mongolia, Glob. Change Biol., 17, 377–389, https://doi.org/10.1111/j.1365-2486.2010.02237.x, 2011.
Zhang, Y., Gao, J., Liu, L., Wang, Z., Ding, M., and Yang, X.: NDVI-based
vegetation changes and their responses to climate change from 1982 to 2011:
A case study in the Koshi River Basin in the middle Himalayas, Glob. Planet. Change, 108, 139–148, https://doi.org/10.1016/j.gloplacha.2013.06.012, 2013.
Zheng, K., Wei, J. Z., Pei, J. Y., Cheng, H., Zhang, X. L., Huang, F. Q.,
Li, F. M., and Ye, J. S.: Impacts of climate change and human activities on
grassland vegetation variation in the Chinese Loess Plateau, Sci. Total
Environ., 660, 236–244, https://doi.org/10.1016/j.scitotenv.2019.01.022, 2019.
Zhou, Y., Yi, Y., Jia, W., Cai, Y., Yang, W., and Li, Z.: Applying
dendrochronology and remote sensing to explore climate-drive in montane
forests over space and time, Quaternary Sci. Rev., 237, e106292, https://doi.org/10.1016/j.quascirev.2020.106292, 2020.