Articles | Volume 24, issue 1
https://doi.org/10.5194/we-24-11-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-24-11-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Disturbance can slow down litter decomposition, depending on severity of disturbance and season: an example from Mount Kilimanjaro
Juliane Röder
CORRESPONDING AUTHOR
Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
Tim Appelhans
Environmental Informatics, Faculty of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35032 Marburg, Germany
now at: Addium GmbH, Flaschenhofstraße 3, 90402 Nuremberg, Germany
Marcell K. Peters
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97974 Würzburg, Germany
Thomas Nauss
Environmental Informatics, Faculty of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35032 Marburg, Germany
Roland Brandl
Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
Related authors
No articles found.
Mohammed Ahmed Muhammed, Binyam Tesfaw Hailu, Georg Miehe, Luise Wraase, Thomas Nauss, and Dirk Zeuss
Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, https://doi.org/10.5194/essd-15-5535-2023, 2023
Short summary
Short summary
We processed the only available and oldest historical aerial photographs for the Bale Mountains, Ethiopia. We used structure-from-motion multi-view stereo photogrammetry to generate the first high-resolution DEMs and orthomosaics for 1967 and 1984 at larger spatial extents (5730 km2) and at high spatial resolutions (0.84 m and 0.98 m, respectively). Our datasets will help the scientific community address questions related to the Bale Mountains and afro-alpine ecosystems.
Paulina Grigusova, Annegret Larsen, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, and Jörg Bendix
Biogeosciences, 20, 3367–3394, https://doi.org/10.5194/bg-20-3367-2023, https://doi.org/10.5194/bg-20-3367-2023, 2023
Short summary
Short summary
In our study, we included bioturbation into a soil erosion model and ran the model for several years under two conditions: with and without bioturbation. We validated the model using several sediment fences in the field. We estimated the modeled sediment redistribution and surface runoff and the impact of bioturbation on these along a climate gradient. Lastly, we identified environmental parameters determining the positive or negative impact of bioturbation on sediment redistribution.
Diana Kraus, Roland Brandl, Jörg Bendix, Paulina Grigusova, Sabrina Köhler, Annegret Larsen, Patricio Pliscoff, Kirstin Übernickel, and Nina Farwig
EGUsphere, https://doi.org/10.5194/egusphere-2022-1427, https://doi.org/10.5194/egusphere-2022-1427, 2023
Preprint archived
Short summary
Short summary
We investigate the effect of bioturbators on near-surface soil by measuring the physical properties clay, silt and sand and the chemical macronutrients C, N and P for soil samples taken from mounds created via bioturbation and soil samples from surrounding soil as controls in three different climatic regions (arid, semi-arid and Mediterranean) in coastal Chile. Our findings show that already minor input of especially C and N by bioturbators in arid climates can impact ecosystem functioning.
Paulina Grigusova, Annegret Larsen, Sebastian Achilles, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, Kirstin Übernickel, and Jörg Bendix
Earth Surf. Dynam., 10, 1273–1301, https://doi.org/10.5194/esurf-10-1273-2022, https://doi.org/10.5194/esurf-10-1273-2022, 2022
Short summary
Short summary
In our study, we developed, tested, and applied a cost-effective time-of-flight camera to autonomously monitor rainfall-driven and animal-driven sediment redistribution in areas affected by burrowing animals with high temporal (four times a day) and spatial (6 mm) resolution. We estimated the sediment redistribution rates on a burrow scale and then upscaled the redistribution rates to entire hillslopes. Our findings can be implemented into long-term soil erosion models.
Alexander R. Groos, Janik Niederhauser, Luise Wraase, Falk Hänsel, Thomas Nauss, Naki Akçar, and Heinz Veit
Earth Surf. Dynam., 9, 145–166, https://doi.org/10.5194/esurf-9-145-2021, https://doi.org/10.5194/esurf-9-145-2021, 2021
Short summary
Short summary
Large sorted stone stripes have been discovered on the 4000 m high central Sanetti Plateau of the tropical Bale Mountains in Ethiopia. The stripes are a mystery as similar landforms have so far only been reported in the temperate zone and polar regions. Our investigations suggest that the stripes formed in the vicinity of a former ice cap on the plateau during a much colder climatic period. The distinct pattern is the result of a process related to cyclic freezing and thawing of the ground.
Daniel Acquah-Lamptey and Roland Brandl
Web Ecol., 18, 81–89, https://doi.org/10.5194/we-18-81-2018, https://doi.org/10.5194/we-18-81-2018, 2018
Short summary
Short summary
In the absence of mosquitoes, diseases such as Malaria and Yellow fever will not exist. Although mosquito larvae have been identified to be a non-selective food to dragonfly larvae, it is unclear if the two naturally co-exist, hence reported as a non-viable strategy for controlling mosquito populations. However, a simple experiment in tropical Africa has shown a significant reduction in mosquitoes following colonization of mosquito larvae habitats by the dragonfly, Bradinopyga strachani.
Jutta Stadler, Stefan Klotz, Roland Brandl, and Sonja Knapp
Web Ecol., 17, 37–46, https://doi.org/10.5194/we-17-37-2017, https://doi.org/10.5194/we-17-37-2017, 2017
Short summary
Short summary
During early succession plant communities show a decrease in the initial species richness and a change in the phylogenetic structure from random or clustered to overdispersion. We tested this general model in two regional distinct sites. In one region we found the expected trajectory of species richness while phylogenetic structure did not follow the expected trend. In the other region species richness did not follow the expected trajectory and phylogenetic structure remained clustered.
Martin Brändle, Jan Sauer, Lars Opgenoorth, and Roland Brandl
Web Ecol., 17, 29–35, https://doi.org/10.5194/we-17-29-2017, https://doi.org/10.5194/we-17-29-2017, 2017
G. H. Kagezi, M. Kaib, P. Nyeko, C. Bakuneeta, M. Schädler, J. Stadler, and R. Brandl
Web Ecol., 16, 51–58, https://doi.org/10.5194/we-16-51-2016, https://doi.org/10.5194/we-16-51-2016, 2016
Short summary
Short summary
Tropical forests are faced with a loss of forest cover with effects on ecosystem processes. We quantified decomposition within forest fragments and sites affected by increasing levels of agricultural land-use intensity. Mass loss increased with the area of forest fragments and decreased with land-use intensification. Fragmentation has negative effects on litter decomposition. However, the magnitude of this negative effect was not as large as expected.
H. Ruhnke, D. Matthies, and R. Brandl
Web Ecol., 13, 79–84, https://doi.org/10.5194/we-13-79-2013, https://doi.org/10.5194/we-13-79-2013, 2013
Related subject area
Ecosystem Ecology
Low-intensity insect herbivory could have large effects on ecosystem productivity through reduced canopy photosynthesis
Towards spatial predictions of disease transmission risk: classical scrapie spill-over from domestic small ruminants to wild cervids
Little evidence for land-use filters on intraspecific trait variation in three arthropod groups
The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands
Co-varying effects of vegetation structure and terrain attributes are responsible for soil respiration spatial patterns in a sandy forest–steppe transition zone
Morphometric traits of shells determine external attack and internal utilization marks in the Roman snail in eastern Germany
Unassisted establishment of biological soil crusts on dryland road slopes
Effects of agricultural practices on soil and microbial biomass carbon, nitrogen and phosphorus content: a preliminary case study
The rise of ecosystem ecology and its applications to environmental challenges
The effect of mixtures on colonisation of leaf litter decomposing in a stream and at its riparian zone
The "four-color issue" in ecology for considering ecosystem boundaries
The ecosystem: research and practice in North America
Millipede and centipede (Myriapoda: Diplopoda, Chilopoda) assemblages in secondary succession: variance and abundance in Western German beech and coniferous forests as compared to fallow ground
Kristiina Visakorpi, Sofia Gripenberg, Yadvinder Malhi, and Terhi Riutta
Web Ecol., 24, 97–113, https://doi.org/10.5194/we-24-97-2024, https://doi.org/10.5194/we-24-97-2024, 2024
Short summary
Short summary
Plant-feeding insects can have large impacts on the photosynthetic rate of their host plants. Through reducing photosynthesis, and thus carbon assimilation by the plant, these impacts might have large-scale influences on ecosystem carbon cycling. Nevertheless, these effects are rarely considered in ecosystem-level studies. Here we propose an approach to incorporating these changes in plant physiology into estimates of ecosystem productivity.
Nuno Mouta, Leonor Orge, Joana Vicente, João Alexandre Cabral, José Aranha, João Carvalho, Rita Tinoco Torres, Jorge Pereira, Renata Carvalho, Maria Anjos Pires, and Madalena Vieira-Pinto
Web Ecol., 24, 47–57, https://doi.org/10.5194/we-24-47-2024, https://doi.org/10.5194/we-24-47-2024, 2024
Short summary
Short summary
This study investigates classical scrapie (CS) and the risk of interspecies prion transmission by using presence data from wild cervids and infected small ruminant flocks. Employing remote sensing technologies, it derives vegetative and biophysical satellite indices to represent habitat features. A species distribution model integrates these data to identify suitable areas for CS and its hosts. The resultant consensus map and overlapping suitable areas create a detailed infection risk matrix.
Katja Wehner, Matthias Brandt, Andrea Hilpert, Nadja K. Simons, and Nico Blüthgen
Web Ecol., 23, 35–49, https://doi.org/10.5194/we-23-35-2023, https://doi.org/10.5194/we-23-35-2023, 2023
Short summary
Short summary
We focus on the consequences of land-use intensity on functional trait variation within species. In general, only few effects on intraspecific trait variation were found showing a decreasing variation with increasing land-use intensity in forests but an increasing variation in grasslands. Although many studies confirmed strong land-use impacts on arthropod communities, we were not able to confirm similar effects at the intraspecific level.
Fernando T. Maestre, David J. Eldridge, Nicolas Gross, Yoann Le Bagousse-Pinguet, Hugo Saiz, Beatriz Gozalo, Victoria Ochoa, and Juan J. Gaitán
Web Ecol., 22, 75–96, https://doi.org/10.5194/we-22-75-2022, https://doi.org/10.5194/we-22-75-2022, 2022
Short summary
Short summary
Here we introduce the BIODESERT survey, the first systematic field survey devoted to evaluating the joint impacts of grazing by domestic livestock and climate on the structure and functioning of dryland ecosystems worldwide. We describe the major characteristics and the field protocols used in this survey and the organizational aspects followed to carry it out succesfully.
Gabriella Süle, Szilvia Fóti, László Körmöczi, Dóra Petrás, Levente Kardos, and János Balogh
Web Ecol., 21, 95–107, https://doi.org/10.5194/we-21-95-2021, https://doi.org/10.5194/we-21-95-2021, 2021
Short summary
Short summary
Forest–steppe habitats have contrasting canopy structure with strong influence on the spatio-temporal variability of ecosystem functions. In our study, environmental and functional variables were evaluated in this transition zone. We found that topography and vegetation structure have co-varying effects on abiotic–biotic factors. Our observations are valuable for assessing the dynamics of functional and driving variables in this natural transition zone of the temperate vegetation.
Claudia Tluste, Udo Bröring, Tomáš Němec, and Klaus Birkhofer
Web Ecol., 20, 87–94, https://doi.org/10.5194/we-20-87-2020, https://doi.org/10.5194/we-20-87-2020, 2020
Short summary
Short summary
The Roman snail has a high conservation status in Germany, and it is important to study the impact of predators and parasites on local populations. Morphometric traits and signs of external attack and internal utilization were studied in eight subpopulations. External attacks by predators were more frequently recorded on larger shells, while internal utilization depended on body density and local soil pH values. This highlights the value of abiotic habitat conditions and trophic interactions.
Laura Concostrina-Zubiri, Juan M. Arenas, Isabel Martínez, and Adrián Escudero
Web Ecol., 19, 39–51, https://doi.org/10.5194/we-19-39-2019, https://doi.org/10.5194/we-19-39-2019, 2019
Short summary
Short summary
Can organisms other than vascular plants establish and develop on road slopes? Yes, biological soil crusts (or biocrusts) can. Here, we found that lichen biocrusts are common and relatively abundant in road slopes after ~20 years of construction with no assistance needed. These findings are of critical importance for dryland restoration because biocrusts can speed up ecosystem recovery by stabilizing soil surface, improving soil fertility and facilitating vascular plant establishment.
F. Amaral and M. Abelho
Web Ecol., 16, 3–5, https://doi.org/10.5194/we-16-3-2016, https://doi.org/10.5194/we-16-3-2016, 2016
Short summary
Short summary
In this study we assessed carbon, nitrogen and phosphorus in soil and soil microbial biomass subject to conventional farming and three different organic farming practices. The results showed that microbial biomass was P-limited in soils subject to conventional farming and to organic farming with alfalfa green manure. Organic farming with compost amendment showed the best results in terms of microbial performance.
R. G. Woodmansee and S. R. Woodmansee
Web Ecol., 15, 43–44, https://doi.org/10.5194/we-15-43-2015, https://doi.org/10.5194/we-15-43-2015, 2015
Short summary
Short summary
The state of “ecosystem” ecology before 1970 is discussed briefly with emphasis on development of a new paradigm – systems ecology. The philosophy and theory embedded in ecosystem science, the methodologies introduced for conducting research, and the development of a vast warehouse of knowledge as they developed after 1970 are explored. The discussion ends with the contributions of the new paradigm to current and future local- to global-scale environmental and societal problems and solutions.
M. Abelho
Web Ecol., 14, 13–22, https://doi.org/10.5194/we-14-13-2014, https://doi.org/10.5194/we-14-13-2014, 2014
H. Doi
Web Ecol., 13, 91–93, https://doi.org/10.5194/we-13-91-2013, https://doi.org/10.5194/we-13-91-2013, 2013
S. Bocking
Web Ecol., 13, 43–47, https://doi.org/10.5194/we-13-43-2013, https://doi.org/10.5194/we-13-43-2013, 2013
A. Schreiner, P. Decker, K. Hannig, and A. Schwerk
Web Ecol., 12, 9–17, https://doi.org/10.5194/we-12-9-2012, https://doi.org/10.5194/we-12-9-2012, 2012
Cited articles
Aerts, R.: Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship, Oikos, 79, 439–449, https://doi.org/10.2307/3546886, 1997.
Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., and Nauss, T.: Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania, Spat. Stat.-Neth., 14, 91–113, https://doi.org/10.1016/j.spasta.2015.05.008, 2015.
Appelhans, T., Mwangomo, E., Otte, I., Detsch, F., Nauss, T., and Hemp, A.: Eco-meteorological characteristics of the southern slopes of Kilimanjaro, Tanzania, Int. J. Climatol., 36, 3245–3258, https://doi.org/10.1002/joc.4552, 2016.
Appelhans, T., Mwangomo, E., Otte, I., Detsch, F., Wöllauer, S., Zeuss, D., Nauss, T., and Hemp, A.: Processed climate station data for the southern slopes of Kilimanjaro, Tanzania, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.942822, 2022.
Attignon, S. E., Weibel, D., Lachat, T., Sinsin, B., Nagel, P., and Peveling, R.: Leaf litter breakdown in natural and plantation forests of the Lama forest reserve in Benin, Appl. Soil Ecol., 27, 109–124, https://doi.org/10.1016/j.apsoil.2004.05.003, 2004.
Barlow, J., Gardner, T. A., Ferreira, L. V., and Peres, C. A.: Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon, Forest Ecol. Manag., 247, 91–97, https://doi.org/10.1016/j.foreco.2007.04.017, 2007.
Becker, J., Pabst, H., Mnyonga, J., and Kuzyakov, Y.: Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro, Biogeosciences, 12, 5635–5646, https://doi.org/10.5194/bg-12-5635-2015, 2015.
Becker, J. N. and Kuzyakov, Y.: Teatime on Mount Kilimanjaro: Assessing climate and land-use effects on litter decomposition and stabilization using the Tea Bag Index, Land Degrad. Dev., 29, 2321–2329, https://doi.org/10.1002/ldr.2982, 2018.
Berg, B. and Lönn, M.: Long-term effects of climate and litter chemistry on rates and stable fractions of decomposing Scots pine and Norway spruce needle litter–A synthesis, Forests, 13, 125, https://doi.org/10.3390/f13010125, 2022.
Berg, B. and Staaf, H.: Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition, Ecol. Bull., 373–390, 1980.
Bernhardt, D. C., Ponce, N. M. A., Basanta, M. F., Stortz, C. A., and Rojas, A. M.: Husks of Zea mays as a potential source of biopolymers for food additives and materials' development, Heliyon, 5, e01313, https://doi.org/10.1016/j.heliyon.2019.e01313, 2019.
Bohara, M., Yadav, R. K. P., Dong, W., Cao, J., and Hu, C.: Nutrient and isotopic dynamics of litter decomposition from different land uses in naturally restoring Taihang Mountain, North China, Sustainability, 11, 1752, https://doi.org/10.3390/su11061752, 2019.
Both, S., Elias, D. M. O., Kritzler, U. H., Ostle, N. J., and Johnson, D.: Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest, Ecol. Evol., 7, 9307–9318, https://doi.org/10.1002/ece3.3460, 2017.
Bothwell, L. D., Selmants, P. C., Giardina, C. P., and Litton, C. M.: Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests, PeerJ, 2, e685, https://doi.org/10.7717/peerj.685, 2014.
Burgess, M. S., Mehuys, G. R., and Madramootoo, C. A.: Decomposition of grain-corn residues (Zea mays L.): A litterbag study under three tillage systems, Can. J. Soil Sci., 82, 127–138, https://doi.org/10.4141/S01-013, 2002.
Burghouts, T., Ernsting, G., Korthals, G., and Devries, T.: Litterfall, leaf litter decomposition and litter invertebrates in primary and selectively logged dipterocarp forest in Sabah, Malaysia, Philos. T. R. Soc. B, 335, 407–416, https://doi.org/10.1098/rstb.1992.0032, 1992.
Canessa, R., Brink, L., Saldaña, A., Rios, R. S., Hättenschwiler, S., Mueller, C. W., Prater, I., Tielbörger, K., and Bader, M. Y.: Relative effects of climate and litter traits on decomposition change with time, climate and trait variability, J. Ecol., 109, 447–458, https://doi.org/10.1111/1365-2745.13516, 2021.
Castillo-Figueroa, D.: Carbon cycle in tropical upland ecosystems: a global review, Web Ecol., 21, 109–136, https://doi.org/10.5194/we-21-109-2021, 2021.
Chan, R. Y., Vuille, M., Hardy, D. R., and Bradley, R. S.: Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation, Theor. Appl. Climatol., 93, 149–165, https://doi.org/10.1007/s00704-007-0338-9, 2008.
Cizungu, L., Staelens, J., Huygens, D., Walangululu, J., Muhindo, D., Van Cleemput, O., and Boeckx, P.: Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation, Forest Ecol. Manag., 326, 109–116, https://doi.org/10.1016/j.foreco.2014.04.015, 2014.
Classen, A., Peters, M. K., Ferger, S. W., Helbig-Bonitz, M., Schmack, J. M., Maassen, G., Schleuning, M., Kalko, E. K. V., Böhning-Gaese, K., and Steffan-Dewenter, I.: Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields, P. R. Soc. B, 281, 20133148, https://doi.org/10.1098/rspb.2013.3148, 2014.
Classen, A., Peters, M. K., Kindeketa, W. J., Appelhans, T., Eardley, C. D., Gikungu, M. W., Hemp, A., Nauss, T., and Steffan-Dewenter, I.: Temperature versus resource constraints: which factors determine bee diversity on Mount Kilimanjaro, Tanzania?, Global Ecol. Biogeogr., 24, 642–652, https://doi.org/10.1111/geb.12286, 2015.
Coûteaux, M. M., Sarmiento, L., Bottner, P., Acevedo, D., and Thiéry, J. M.: Decomposition of standard plant material along an altitudinal transect (65–3968m) in the tropical Andes, Soil Biol. Biochem., 34, 69–78, https://doi.org/10.1016/S0038-0717(01)00155-9, 2002.
Cuke, M. and Srivastava, D. S.: Divergent effects of tropical forest fragmentation and conversion on leaf litter decomposition, Landscape Ecol., 31, 1037–1050, https://doi.org/10.1007/s10980-015-0316-z, 2016.
Currie, W. S., Harmon, M. E., Burke, I. C., Hart, S. C., Parton, W. J., and Silver, W.: Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale, Glob. Change Biol., 16, 1744–1761, https://doi.org/10.1111/j.1365-2486.2009.02086.x, 2009.
Cusack, D. F., Chou, W. W., Yang, W. H., Harmon, M. E., Silver, W. L., and The LIDET Team: Controls on long-term root and leaf litter decomposition in neotropical forests, Glob. Change Biol., 15, 1339–1355, https://doi.org/10.1111/j.1365-2486.2008.01781.x, 2009.
Dawoe, E. K., Isaac, M. E., and Quashie-Sam, J.: Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana, Plant Soil, 330, 55–64, https://doi.org/10.1007/s11104-009-0173-0, 2010.
Detsch, F., Otte, I., Appelhans, T., Hemp, A., and Nauss, T.: Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania, Remote Sens. Environ., 178, 70–83, https://doi.org/10.1016/j.rse.2016.03.007, 2016.
Dillon, M. E., Frazier, M. R., and Dudley, R.: Into thin air: Physiology and evolution of alpine insects, Integr. Comp. Biol., 46, 49–61, https://doi.org/10.1093/icb/icj007, 2006.
Don, A., Schumacher, J., A. Freibauer, A. Freibauer, Freibauer, A., and Freibauer, A.: Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis, Glob. Change Biol., 17, 1658–1670, https://doi.org/10.1111/j.1365-2486.2010.02336.x, 2011.
Downie, C., Humphries, D. W., Wilcockson, W. H., and Wilkinson, P.: Geology of Kilimanjaro, Nature, 178, 828–830, 1956.
Duboc, O., Dignac, M.-F., Djukic, I., Zehetner, F., Gerzabek, M. H., and Rumpel, C.: Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters, Glob. Change Biol., 20, 2272–2285, https://doi.org/10.1111/gcb.12497, 2014.
Ensslin, A., Rutten, G., Pommer, U., Zimmermann, R., Hemp, A., and Fischer, M.: Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro, Ecosphere, 6, 45, https://doi.org/10.1890/ES14-00492.1, 2015.
Esquivel, J., Park, B. B., Casanoves, F., Delgado, D., Park, G., and Finegan, B.: Altitude and species identity drive leaf litter decomposition rates of ten species on a 2950 m altitudinal gradient in Neotropical rain forests, Biotropica, 52, 11–21, https://doi.org/10.1111/btp.12730, 2020.
Fanin, N., Bezaud, S., Sarneel, J. M., Cecchini, S., Nicolas, M., and Augusto, L.: Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter, Ecosystems, 23, 1004–1018, https://doi.org/10.1007/s10021-019-00452-z, 2020.
García-Palacios, P., Maestre, F. T., Kattge, J., and Wall, D. H.: Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes, Ecol. Lett., 16, 1045–1053, https://doi.org/10.1111/ele.12137, 2013.
Gerschlauer, F., Saiz, G., Schellenberger Costa, D., Kleyer, M., Dannenmann, M., and Kiese, R.: Stable carbon and nitrogen isotopic composition of leaves, litter, and soils of various ecosystems along an elevational and land-use gradient at Mount Kilimanjaro, Tanzania, Biogeosciences, 16, 409–424, https://doi.org/10.5194/bg-16-409-2019, 2019.
Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E., and Parton, W. J.: Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition, Glob. Change Biol., 6, 751–765, https://doi.org/10.1046/j.1365-2486.2000.00349.x, 2000.
Gill, A. L., Schilling, J., and Hobbie, S. E.: Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter, Ecol. Lett., 24, 802–811, https://doi.org/10.1111/ele.13700, 2021.
González, G. and Seastedt, T. R.: Soil fauna and plant litter decomposition in tropical and subalpine forests, Ecology, 82, 955–964, https://doi.org/10.1890/0012-9658(2001)082[0955:sfapld]2.0.co;2, 2001.
Guarderas, P., Smith, F., and Dufrene, M.: Land use and land cover change in a tropical mountain landscape of northern Ecuador: Altitudinal patterns and driving forces, PLoS ONE, 17, e0260191, https://doi.org/10.1371/journal.pone.0260191, 2022.
Hemp, A.: Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro, Plant Ecol., 184, 27–42, https://doi.org/10.1007/s11258-005-9049-4, 2006.
Hemp, A.: Climate change and its impact on the forests of Kilimanjaro, Afr. J. Ecol., 47, 3–10, https://doi.org/10.1111/j.1365-2028.2008.01043.x, 2009.
Hunt, H. W., Ingham, E. R., Coleman, D. C., Elliott, E. T., and Reid, C. P. P.: Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest, Ecology, 69, 1009–1016, https://doi.org/10.2307/1941256, 1988.
Idol, T. W., Holzbaur, K. A., Pope, P. E., and Ponder, F.: Control-bag correction for forest floor litterbag contamination, Soil Science Society of America Journal, 66, 620–623, 2002.
Johansson, M.-B., Berg, B., and Meentemeyer, V.: Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. IX., Can. J. Botany, 73, 1509–1521, https://doi.org/10.1139/b95-163, 1995.
Kagezi, G. H., Kaib, M., Nyeko, P., Bakuneeta, C., Schädler, M., and Brandl, R.: Decomposition of tissue baits and termite density along a gradient of human land-use intensification in Western Kenya, Afr. J. Ecol., 49, 267–276, https://doi.org/10.1111/j.1365-2028.2011.01263.x, 2011.
Kagezi, G. H., Kaib, M., Nyeko, P., Bakuneeta, C., Schädler, M., Stadler, J., and Brandl, R.: Impacts of land-use intensification on litter decomposition in western Kenya, Web Ecol., 16, 51–58, https://doi.org/10.5194/we-16-51-2016, 2016.
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M.: Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems, Methods Ecol. Evol., 4, 1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Kimaro, J. G., Scharsich, V., Kolb, A., Huwe, B., and Bogner, C.: Distribution of traditional irrigation canals and their discharge dynamics at the Southern slopes of Mount Kilimanjaro, Front. Environ. Sci., 7, 24, https://doi.org/10.3389/fenvs.2019.00024, 2019.
Komposch, A., Ensslin, A., Fischer, M., and Hemp, A.: Aboveground deadwood biomass and composition along elevation and land-use gradients at Mount Kilimanjaro, Front. Ecol. Evol., 9, 732092, https://doi.org/10.3389/fevo.2021.732092, 2022.
Lambrechts, C., Woodley, B., Hemp, A., Hemp, C., and Nnyiti, P.: Aerial survey of the threats to Mt. Kilimanjaro forests, United Nations Development Programme (UNDP), Dar Es Salaam, Tanzania, https://www.unep.org/resources/report/aerial-survey-threats-mt-kilimanjaro-forests (last access: 9 February 2024), 2002.
Lasway, J. V., Peters, M. K., Njovu, H. K., Eardley, C., Pauly, A., and Steffan-Dewenter, I.: Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands, J. Appl. Ecol., 59, 3014–3026, https://doi.org/10.1111/1365-2664.14296, 2022.
Lavelle, P., Blanchart, E., Martin, A., Martin, S., and Spain, A.: A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics, Biotropica, 25, 130–150, https://doi.org/10.2307/2389178, 1993.
Linnaeus, C.: Zea mays, in: Species plantarum, Vol. 2, Laurentius Salvius, Stockholm, Sweden, p. 971, https://doi.org/10.5962/bhl.title.669, 1753.
Lomolino, M. V.: Elevation gradients of species-density: historical and prospective views, Global Ecol. Biogeogr., 10, 3-13, https://doi.org/10.1046/j.1466-822x.2001.00229.x, 2001.
Lorenzo, L., Pérez-Harguindeguy, N., Casanoves, F., and De Oliveira, A. A.: Recovering from forest-to-pasture conversion: leaf decomposition in Central Amazonia, Brazil, Journal of Tropical Ecology, 30, 93–96, https://doi.org/10.1017/S0266467413000771, 2014.
Makkonen, M., Berg, M. P., Handa, I. T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P. M., and Aerts, R.: Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient, Ecol. Lett., 15, 1033–1041, https://doi.org/10.1111/j.1461-0248.2012.01826.x, 2012.
Marian, F., Sandmann, D., Krashevska, V., Maraun, M., and Scheu, S.: Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration, Ecol. Evol., 7, 6432–6443, https://doi.org/10.1002/ece3.3189, 2017.
Martínez-Falcón, A. P., Moreno, C. E., and Pavón, N. P.: Litter fauna communities and litter decomposition in a selectively logged and an unmanaged pine-oak forest in Mexico, Bosque (Valdivia), 36, 81–93, https://doi.org/10.4067/S0717-92002015000100009, 2015.
Martius, C., Höfer, H., Garcia, M. V., Garcia, M., Römbke, J., and Hanagarth, W.: Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia, Nutr. Cycl. Agroecosys., 68, 137–154, https://doi.org/10.1023/b:fres.0000017468.76807.50, 2004.
Mganga, K. Z. and Kuzyakov, Y.: Glucose decomposition and its incorporation into soil microbial biomass depending on land use in Mt. Kilimanjaro ecosystems, Eur. J. Soil Biol., 62, 74–82, https://doi.org/10.1016/j.ejsobi.2014.02.015, 2014.
Mugendi, D. N. and Nair, P. K. R.: Predicting the decomposition patterns of tree biomass in tropical highland microregions of Kenya, Agroforest. Syst., 35, 187–201, https://doi.org/10.1007/BF00122779, 1996.
Negash, M. and Starr, M.: Litter decomposition of six tree species on indigenous agroforestry farms in south-eastern Ethiopia in relation to litterfall carbon inputs and modelled soil respiration, Agroforest. Syst., 95, 755–766, https://doi.org/10.1007/s10457-021-00630-w, 2021.
Nonnotte, P., Guillou, H., Le Gall, B., Benoit, M., Cotten, J., and Scaillet, S.: New K–Ar age determinations of Kilimanjaro volcano in the North Tanzanian diverging rift, East Africa, J. Volcanol. Geoth. Res., 173, 99–112, https://doi.org/10.1016/j.jvolgeores.2007.12.042, 2008.
Olson, J. S.: Energy-storage and balance of producers and decomposers in ecological systems, Ecology, 44, 322–331, https://doi.org/10.2307/1932179, 1963.
Ostertag, R., Restrepo, C., Dalling, J. W., Martin, P. H., Abiem, I., Aiba, S., Alvarez-Dávila, E., Aragón, R., Ataroff, M., Chapman, H., Cueva-Agila, A. Y., Fadrique, B., Fernández, R. D., González, G., Gotsch, S. G., Häger, A., Homeier, J., Iñiguez-Armijos, C., Llambí, L. D., Moore, G. W., Næsborg, R. R., Poma López, L. N., Pompeu, P. V., Powell, J. R., Ramírez Correa, J. A., Scharnagl, K., Tobón, C., and Williams, C. B.: Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate, Biotropica, 54, 309–326, https://doi.org/10.1111/btp.13044, 2022.
Pabst, H., Kühnel, A., and Kuzyakov, Y.: Effect of land-use and elevation on microbial biomass and water extractable carbon in soils of Mt. Kilimanjaro ecosystems, Appl. Soil Ecol., 67, 10–19, https://doi.org/10.1016/j.apsoil.2013.02.006, 2013.
Pabst, H., Gerschlauer, F., Kiese, R., and Kuzyakov, Y.: Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania, Land Degrad. Dev., 27, 592–602, https://doi.org/10.1002/ldr.2406, 2016.
Paudel, E., Dossa, G. G. O., de Blécourt, M., Beckschäfer, P., Xu, J., and Harrison, R. D.: Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient, Ecosphere, 6, 267, https://doi.org/10.1890/es15-00112.1, 2015a.
Paudel, E., Dossa, G. G. O., Xu, J., and Harrison, R. D.: Litterfall and nutrient return along a disturbance gradient in a tropical montane forest, Forest Ecol. Manag., 353, 97–106, https://doi.org/10.1016/j.foreco.2015.05.028, 2015b.
Peña-Peña, K. and Irmler, U.: Moisture seasonality, soil fauna, litter quality and land use as drivers of decomposition in Cerrado soils in SE-Mato Grosso, Brazil, Appl. Soil Ecol., 107, 124–133, https://doi.org/10.1016/j.apsoil.2016.05.007, 2016.
Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., Ngereza, C., Njovu, H. K., Otte, I., Pabst, H., Renner, M., Röder, J., Rutten, G., Schellenberger Costa, D., Sierra-Cornejo, N., Vollstädt, M. G. R., Dulle, H. I., Eardley, C. D., Howell, K. M., Keller, A., Peters, R. S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Böhning-Gaese, K., Brandl, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M., and Steffan-Dewenter, I.: Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions, Nature, 568, 88–92, https://doi.org/10.1038/s41586-019-1048-z, 2019.
Potthoff, M. and Loftfield, N.: How to quantify contamination of organic litter bag material with soil?, Pedobiologia, 42, 147–153, 1998.
Powers, J. S., Montgomery, R. A., Adair, E. C., Brearley, F. Q., DeWalt, S. J., Castanho, C. T., Chave, J., Deinert, E., Ganzhorn, J. U., Gilbert, M. E., González-Iturbe, J. A., Bunyavejchewin, S., Grau, H. R., Harms, K. E., Hiremath, A., Iriarte-Vivar, S., Manzane, E., de Oliveira, A. A., Poorter, L., Ramanamanjato, J.-B., Salk, C., Varela, A., Weiblen, G. D., and Lerdau, M. T.: Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient, J. Ecol., 97, 801–811, https://doi.org/10.1111/j.1365-2745.2009.01515.x, 2009.
Röder, J. and Brandl, R.: Raw litter decomposition data from five elevational transects on the southern slopes of Mount Kilimanjaro, Tanzania, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.964727, 2024.
Röder, J., Detsch, F., Otte, I., Appelhans, T., Nauss, T., Peters, M. K., and Brandl, R.: Heterogeneous patterns of abundance of epigeic arthropod taxa along a major elevation gradient, Biotropica, 49, 217–228, https://doi.org/10.1111/btp.12403, 2017.
Røhr, P. C. and Killingtveit, Å.: Rainfall distribution on the slopes of Mt Kilimanjaro, Hydrol. Sci. J., 48, 65–77, https://doi.org/10.1623/hysj.48.1.65.43483, 2003.
Rutten, G., Ensslin, A., Hemp, A., and Fischer, M.: Vertical and horizontal vegetation structure across natural and modified habitat types at Mount Kilimanjaro, PLoS ONE, 10, e0138822, https://doi.org/10.1371/journal.pone.0138822, 2015.
Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman Cuesta, R., Huaman, J., Salinas, D., Huaman, V., Gibaja, A., Mamani, M., and Farfan, F.: The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests, New Phytol., 189, 967–977, https://doi.org/10.1111/j.1469-8137.2010.03521.x, 2011.
Soini, E.: Land use change patterns and livelihood dynamics on the slopes of Mt. Kilimanjaro, Tanzania, Agr. Syst., 85, 306–323, https://doi.org/10.1016/j.agsy.2005.06.013, 2005.
Thom, D., Sommerfeld, A., Sebald, J., Hagge, J., Müller, J., and Seidl, R.: Effects of disturbance patterns and deadwood on the microclimate in European beech forests, Agr. Forest Meteorol., 291, 108066, https://doi.org/10.1016/j.agrformet.2020.108066, 2020.
van der Plas, G. W., Rucina, S. M., Hemp, A., Marchant, R. A., Hooghiemstra, H., Schüler, L., and Verschuren, D.: Climate-human-landscape interaction in the eastern foothills of Mt. Kilimanjaro (equatorial East Africa) during the last two millennia, Holocene, 31, 556–569, https://doi.org/10.1177/0959683620981694, 2021.
Vasconcelos, H. L. and Laurance, W. F.: Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape, Oecologia, 144, 456–462, https://doi.org/10.1007/s00442-005-0117-1, 2005.
Wall, D. H., Bradford, M. A., St. John, M. G., Trofymow, J. A., Behan-Pelletier, V., Bignell, D. E., Dangerfield, J. M., Parton, W. J., Rusek, J., Voigt, W., Wolters, V., Gardel, H. Z., Ayuke, F. O., Bashford, R., Beljakova, O. I., Bohlen, P. J., Brauman, A., Flemming, S., Henschel, J. R., Johnson, D. L., Jones, T. H., Kovarova, M., Kranabetter, J. M., Kutny, L., Lin, K.-C., Maryati, M., Masse, D., Pokarzhevskii, A., Rahman, H., Sabar, M. G., Salamon, J.-A., Swift, M. J., Varela, A., Vasconcelos, H. L., White, D., and Zou, X.: Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent, Glob. Change Biol., 14, 2661–2677, https://doi.org/10.1111/j.1365-2486.2008.01672.x, 2008.
Wood, S. N.: Thin plate regression splines, J. R. Stat. Soc. B, 65, 95–114, https://doi.org/10.1111/1467-9868.00374, 2003.
Wood, S. N.: Low-rank scale-invariant tensor product smooths for generalized additive mixed models, Biometrics, 62, 1025–1036, https://doi.org/10.1111/j.1541-0420.2006.00574.x, 2006.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Stat. Soc. B, 73, 3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011.
Wood, S. N.: Generalized additive models: an introduction with R, 2nd edn., CRC Press/Taylor & Francis Group, Boca Raton, 476 pp., ISBN 978-1-4987-2833-1, 2017.
Zech, M.: Evidence for Late Pleistocene climate changes from buried soils on the southern slopes of Mt. Kilimanjaro, Tanzania, Palaeogeogr. Palaeocl., 242, 303–312, https://doi.org/10.1016/j.palaeo.2006.06.008, 2006.
Zech, M., Leiber, K., Zech, W., Poetsch, T., and Hemp, A.: Late Quaternary soil genesis and vegetation history on the northern slopes of Mt. Kilimanjaro, East Africa, Quatern. Int., 243, 327–336, https://doi.org/10.1016/j.quaint.2011.05.020, 2011.
Zech, M., Hörold, C., Leiber-Sauheitl, K., Kühnel, A., Hemp, A., and Zech, W.: Buried black soils on the slopes of Mt. Kilimanjaro as a regional carbon storage hotspot, Catena, 112, 125–130, https://doi.org/10.1016/j.catena.2013.05.015, 2014.
Zhang, D., Hui, D., Luo, Y., and Zhou, G.: Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, J. Plant Ecol., 1, 85–93, https://doi.org/10.1093/jpe/rtn002, 2008.
Short summary
We studied rates of litter decomposition in natural and disturbed vegetation on elevation gradients of Mount Kilimanjaro to disentangle effects of climate and disturbance. Decomposition was slower in disturbed than in natural forests, but we did not find a negative effect of disturbance for non-forest vegetation. Decomposition slowed down with increasing land-use intensity, but only in the warm wet season. Temperature and humidity were the most important drivers of decomposition in all analyses.
We studied rates of litter decomposition in natural and disturbed vegetation on elevation...