Articles | Volume 21, issue 2
https://doi.org/10.5194/we-21-109-2021
https://doi.org/10.5194/we-21-109-2021
Review article
 | 
08 Dec 2021
Review article |  | 08 Dec 2021

Carbon cycle in tropical upland ecosystems: a global review

Dennis Castillo-Figueroa

Related subject area

Global Change Ecology
Ecological niche and potential geographic distributions of Dermacentor marginatus and Dermacentor reticulatus (Acari: Ixodidae) under current and future climate conditions
Abdelghafar Alkishe, Marlon E. Cobos, Luis Osorio-Olvera, and A. Townsend Peterson
Web Ecol., 22, 33–45, https://doi.org/10.5194/we-22-33-2022,https://doi.org/10.5194/we-22-33-2022, 2022
Short summary
Effects of projected climate change on the distribution of Mantis religiosa suggest expansion followed by contraction
Johanna Steger, Alexandra Schneider, Roland Brandl, and Stefan Hotes
Web Ecol., 20, 107–115, https://doi.org/10.5194/we-20-107-2020,https://doi.org/10.5194/we-20-107-2020, 2020
Impacts of land-use intensification on litter decomposition in western Kenya
G. H. Kagezi, M. Kaib, P. Nyeko, C. Bakuneeta, M. Schädler, J. Stadler, and R. Brandl
Web Ecol., 16, 51–58, https://doi.org/10.5194/we-16-51-2016,https://doi.org/10.5194/we-16-51-2016, 2016
Short summary
Demography gone wild in native species: four reasons to avoid the term "native invaders"
M. Méndez, A. Escudero, J. M. Iriondo, and R. M. Viejo
Web Ecol., 14, 85–87, https://doi.org/10.5194/we-14-85-2014,https://doi.org/10.5194/we-14-85-2014, 2014
Short summary

Cited articles

Adachi, M., Bekku, Y. S., Rashidah, W., Okuda, T., and Koizumi, H.: Differences in soil respiration between different tropical ecosystems, Appl. Soil Ecol., 34, 258–265, https://doi.org/10.1016/j.apsoil.2006.01.006, 2006. 
Aerts, R.: Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship, Oikos, 79, 439–449, https://doi.org/10.2307/3546886, 1997. 
Aiba, S., Takyu, M., and Kitayama, K.: Dynamics, productivity and species richness of tropical rainforests along elevational and edaphic gradients on Mount Kinabalu, Borneo, Ecol. Res., 20, 279–286, https://doi.org/10.1007/s11284-005-0043-z, 2005. 
Aiba, S., Hanya, G., Tsujino, R., Takyu, M., Kimura, K., and Kitayama, K.: Comparative study of additive basal area of conifers in forest ecosystems along elevational gradients, Ecol. Res., 22, 439–450, https://doi.org/10.1007/s11284-007-0338-3, 2007. 
Allvarez-Dávila, E., Cayuela, L, González-Caro, S., Aldana A. M., Stevenson, P. R., Phillips, O., Cogollo, A., Peñuela, M. C., von Hildebrand, P., Jiménez, E., Melo, O., Londoño-Vega, A. C., Mendoza, I., Velásquez, O., Fernández, F., Serna, M., Velázquez-Rua, C., Benítez, D., and Rey-Benayas, J. M.: Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature, PLoS ONE, 12, e0171072, https://doi.org/10.1371/journal.pone.0171072, 2017. 
Download
Short summary
Understanding the carbon cycle is critical for designing effective policies to mitigate climate change. Herein, I synthesized the state of knowledge of the carbon cycle in tropical upland ecosystems. From the 135 documents found in databases, estimations of carbon stocks comprised three-fourths of the total studies, while the remaining fraction focused on carbon fluxes. It is necessary to obtain information on the main carbon fluxes and integrate it into climate change mitigation plans.