Articles | Volume 21, issue 2
https://doi.org/10.5194/we-21-109-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-21-109-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon cycle in tropical upland ecosystems: a global review
Dennis Castillo-Figueroa
CORRESPONDING AUTHOR
Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, 111321, Colombia
Related subject area
Global Change Ecology
Ecological niche and potential geographic distributions of Dermacentor marginatus and Dermacentor reticulatus (Acari: Ixodidae) under current and future climate conditions
Effects of projected climate change on the distribution of Mantis religiosa suggest expansion followed by contraction
Impacts of land-use intensification on litter decomposition in western Kenya
Demography gone wild in native species: four reasons to avoid the term "native invaders"
Abdelghafar Alkishe, Marlon E. Cobos, Luis Osorio-Olvera, and A. Townsend Peterson
Web Ecol., 22, 33–45, https://doi.org/10.5194/we-22-33-2022, https://doi.org/10.5194/we-22-33-2022, 2022
Short summary
Short summary
Our work presents a novel set of analyses to understand the geographic distribution of the disease vector ticks Dermacentor marginatus and D. reticulatus and summarize model uncertainties for interpreting results and identifying appropriate public health actions. We estimate the current potential distribution of important disease vectors, D. marginatus and D. reticulatus, and more importantly the future potential distribution of the species in response to global climate change in coming decades.
Johanna Steger, Alexandra Schneider, Roland Brandl, and Stefan Hotes
Web Ecol., 20, 107–115, https://doi.org/10.5194/we-20-107-2020, https://doi.org/10.5194/we-20-107-2020, 2020
G. H. Kagezi, M. Kaib, P. Nyeko, C. Bakuneeta, M. Schädler, J. Stadler, and R. Brandl
Web Ecol., 16, 51–58, https://doi.org/10.5194/we-16-51-2016, https://doi.org/10.5194/we-16-51-2016, 2016
Short summary
Short summary
Tropical forests are faced with a loss of forest cover with effects on ecosystem processes. We quantified decomposition within forest fragments and sites affected by increasing levels of agricultural land-use intensity. Mass loss increased with the area of forest fragments and decreased with land-use intensification. Fragmentation has negative effects on litter decomposition. However, the magnitude of this negative effect was not as large as expected.
M. Méndez, A. Escudero, J. M. Iriondo, and R. M. Viejo
Web Ecol., 14, 85–87, https://doi.org/10.5194/we-14-85-2014, https://doi.org/10.5194/we-14-85-2014, 2014
Short summary
Short summary
Native invaders are species that become ``invasive'' in their own native range to the point of becoming a nuisance. This demographic disregulation presents management challenges, but we question the usefulness of this term on four grounds: it adds nothing to a well-known management problem, can bias the perception of management options, neglects different causes underlying the disregulation of native and non-indigenous species, and excludes species that can become antropogenically disregulated.
Cited articles
Adachi, M., Bekku, Y. S., Rashidah, W., Okuda, T., and Koizumi, H.: Differences in soil respiration between different tropical ecosystems,
Appl. Soil Ecol., 34, 258–265, https://doi.org/10.1016/j.apsoil.2006.01.006, 2006.
Aerts, R.: Climate, leaf litter chemistry and leaf litter decomposition in
terrestrial ecosystems: A triangular relationship, Oikos, 79, 439–449,
https://doi.org/10.2307/3546886, 1997.
Aiba, S., Takyu, M., and Kitayama, K.: Dynamics, productivity and species
richness of tropical rainforests along elevational and edaphic gradients on
Mount Kinabalu, Borneo, Ecol. Res., 20, 279–286,
https://doi.org/10.1007/s11284-005-0043-z, 2005.
Aiba, S., Hanya, G., Tsujino, R., Takyu, M., Kimura, K., and Kitayama, K.:
Comparative study of additive basal area of conifers in forest ecosystems
along elevational gradients, Ecol. Res., 22, 439–450,
https://doi.org/10.1007/s11284-007-0338-3, 2007.
Allvarez-Dávila, E., Cayuela, L, González-Caro, S., Aldana A. M.,
Stevenson, P. R., Phillips, O., Cogollo, A., Peñuela, M. C., von Hildebrand, P., Jiménez, E., Melo, O., Londoño-Vega, A. C., Mendoza, I., Velásquez, O., Fernández, F., Serna, M., Velázquez-Rua, C., Benítez, D., and Rey-Benayas, J. M.: Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature, PLoS ONE, 12, e0171072, https://doi.org/10.1371/journal.pone.0171072, 2017.
Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del
Valle, I., Lema, A., Moreno, F., Orrego, S., and Rodríguez, L.: Tree
above-ground biomass allometries for carbon stocks estimation in the natural
forests of Colombia, Forest. Ecol. Manage., 267, 297–308,
https://doi.org/10.1016/j.foreco.2011.12.013, 2012.
Álvarez-Arteaga, G., García-Calderón, N. E., Krasilnikov, P.,
and García-Oliva, F.: Almacenes de carbono en bosques montanos de niebla de la Sierra Norte de Oaxaca, México, Agrociencia, 47, 171–180, 2013.
Arroyo-Rodríguez, V., Melo, F. P. L., Martínez-Ramos, M., Bongers,
F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, R. I., and
Tabarelli, M.: Multiple successional pathways in human-modified tropical
landscapes: new insights from forest succession, forest fragmentation and
landscape ecology research, Biol. Rev., 92, 326–340, https://doi.org/10.1111/brv.12231, 2017.
Asbjornsen, H., Velázquez-Rosas, N., García-Soriano, R., and Gallardo-Hernández, C.: Deep ground fires cause massive above- and
below-ground biomass losses in tropical montane cloud forests in Oaxaca,
Mexico, J. Trop. Ecol., 21, 427–434, https://doi.org/10.1017/S0266467405002373, 2005.
Asrat, Z., Eid, T., Gobakken, T., and Negash, M.: Aboveground tree biomass
prediction options for the Dry Afromontane forests in south-central Ethiopia, Forest Ecol. Manage., 473, 118335, https://doi.org/10.1016/j.foreco.2020.118335, 2020.
Austin, A. T., Vivanco, L., González-Arzac, A., and Pérez, L. I.:
There's no place like home? An exploration of the mechanisms behind plant
litter-decomposer affinity in terrestrial ecosystems, New Phytol., 204,
307–314, https://doi.org/10.1111/nph.12959, 2014.
Averill, C. and Hawkes, C. V.: Ectomycorrhizal fungi slow soil carbon cycling, Ecol. Lett., 19, 937–947, https://doi.org/10.1111/ele.12631, 2016.
Bahram, M., Peay, K. G., and Tedersoo, L.: Local-scale biogeography and
spatiotemporal variability in communities of mycorrhizal fungi, New Phytol.,
205, 1454–1463, https://doi.org/10.1111/nph.13206, 2015.
Barnes, A., Jochum, M., Mumme, S., Haneda, N. F., Farajallah, A., Widarto, T. H., and Brose, U.: Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning, Nat. Commun., 5, 5351,
https://doi.org/10.1038/ncomms6351, 2014.
Bar-On, Y. M., Phillips, R., and Milo, R.: The biomass distribution on Earth, P. Natl. Acad. Sci. USA, 115, 6506–6511, https://doi.org/10.1073/pnas.1711842115, 2018.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science, 329, 834–838, https://doi.org/10.1126/science, 2010.
Bendix, J., Aguire, N., Beck, E., Bräuning, A., Brandl, R., Breuer, L.,
Böhning-Gaese, K., Dantas de Paula, M., Hicker, T., Homeier, J., Leuschner, C., Neuschulz, E. L., Schleuing, M., Suarez, J. P., Trachte, K.,
Wiclke, W., Windhorst, D., and Farwig, N.: A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems,
Oecologia, 195, 589–600, https://doi.org/10.1007/s00442-021-04852-8, 2021.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Bothwell, L. D., Selmants, P. C., Giardina, C. P., and Litton, C. M.: Leaf
litter decomposition rates increase with rising mean annual temperature in
Hawaiian tropical montane wet forests, Peer J., 2, e685, https://doi.org/10.7717/peerj.685, 2014.
Brinck, K., Fischer, R., Groeneveld, J., Lehmann, S., De Paula, M. D., Pütz, S., Sexton, J. O., Song, D., and Huth, A.: High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle, Nat Commun., 8, 14855, https://doi.org/10.1038/ncomms14855, 2017.
Brown, S. and Lugo, A. E.: Tropical secondary forests, J. Trop. Ecol., 6, 1–32, https://doi.org/10.1017/S0266467400003989, 1990.
Brujinzeel, L. A., Kappelle, M., Mulligan, M., and Scatena, F. N.: Tropical
montane cloud forests: state of knowledge and sustainability perspectives in
a changing world, in: Tropical Montane Cloud Forests, edited by: Brujinzeel,
L. A., Scatena, F. N., and Hamilton, L. S., Cambridge University Press,
Cambridge, UK, 691–739, https://doi.org/10.1017/CBO9780511778384.074, 2011.
Butenschoen, O., Krashevska, V., Maraun, M., Marian, F., Sandmann, D., and
Scheu, S.: Litter mixture effects on decomposition in tropical montane
rainforests vary strongly with time and turn negative at later stages of
decay, Soil Biol. Biochem., 77, 121–128, https://doi.org/10.1016/j.soilbio.2014.06.019, 2014.
Cárdenas, R., Donos, D. A., Argoti A., and Dangles O.: Functional
consequences of realistic extinction scenarios in Amazonian soil food webs,
Ecosphere, 8, e01692, https://doi.org/10.1002/ecs2.1692, 2017.
Calbi, M., Fajardo-Gutiérrez, F., Posada, J., Lücking, R., Brokamp,
G., and Borsch T.: Seeing the wood despite the trees: Exploring human disturbance impact on plant diversity, community structure, and standing
biomass in fragmented high Andean forests, Ecol. Evol., 11, 2110–2172,
https://doi.org/10.1002/ece3.7182, 2021.
Calderón-Loor, M., Cuesta, F., Pinto, E., and Gosling, W. D.: Carbon
sequestration rates indicate ecosystem recovery following human disturbance
in the equatorial Andes. PLoS ONE, 15, e0230612, https://doi.org/10.1371/journal.pone.0230612, 2020.
Canessa, R., van den Brink, L., Saldaña, A., Rios, R. S., Hättenschwiler, S., Mueller, C. W., Prater, I., Tielbörger, J., and
Bader, M. Y.: Relative effects of climate and litter traits on decomposition
change with time, climate and trait variability, J. Ecol., 109, 447–458,
https://doi.org/10.1111/1365-2745.13516, 2021.
Cebrian, J.: Patterns in the fate of production in plant communities, Am.
Nat., 154, 449–468, https://doi.org/10.1086/303244, 1999.
Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V., and Melack, J. M.: Decomposition and carbon cycling of dead trees in tropical forests of
the central Amazon, Oecologia, 122, 380–388, https://doi.org/10.1007/s004420050044, 2000.
Chimner, R. A.: Soil respiration rates of tropical peatlands in Micronesia and Hawaii, Wetlands, 24, 51–56, 2004.
Chimner, R. A. and Karberg, J. M.: Long-term carbon accumulation in two
tropical mountain peatlands, Andes Mountains, Ecuador, Mires Peat, 3, 1–10, 2008.
Chiti, T., Díaz-Pinés, E., Butterbach-Bahl, K., Marzaioli, F., and
Valentini, R.: Soil organic carbon changes following degradation and
conversion to cypress and tea plantations in a tropical mountain forest in
Kenya, Plant Soil, 422, 527–539, https://doi.org/10.1007/s11104-017-3489-1, 2018.
Cizungu, L., Staelens, J., Huygens, D., Walangululu, J., Muhindo, D., Van Cleemput, O., and Boeckx, P.: Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation, Forest
Ecol. Manage., 326, 109–116, https://doi.org/10.1016/j.foreco.2014.04.015, 2014.
Clark, K. E., West, A. J., Hilton, R. G., Asner, G. P., Quesada, C. A.,
Silman, M. R., Saatchi, S. S., Farfan-Rios, W., Martin, R. E., Horwath, A.
B., Halladay, K., New, M., and Malhi, Y.: Storm-triggered landslides in the
Peruvian Andes and implications for topography, carbon cycles, and
biodiversity, Earth Surf. Dynam., 4, 47–70, https://doi.org/10.5194/esurf-4-47-2016, 2016.
Clark, K. E., Hilton, R. G., West, A. J., Robles Caceres, A., Gröcke, D.
R., Marthews, T. R., Ferguson, R. I., Asner, G. P., New, M., and Malhi, Y.:
Erosion of organic carbon from the Andes and its effects on ecosystem carbon
dioxide balance, J. Geophys. Res.-Biogeo., 122, 449–469,
https://doi.org/10.1002/2016JG003615, 2017.
Clark, D. B., Hurtado, J., and Saatchi, S. S.: Tropical Rain Forest Structure, Tree growth and dynamics along a 2700-m elevational transect in
Costa Rica, PLoS ONE, 10, e0122905, https://doi.org/10.1371/journal.pone.0122905, 2015.
Clerici, N., Rubiano, K., Abd-Elrahman, A., Posada Hoestettler, J. M., and
Escobedo, F. J.: Estimating aboveground biomass and carbon stocks in
periurban andean secondary forests using very high resolution imagery,
Forests, 7, 138, https://doi.org/10.3390/f7070138, 2016.
Coûteaux, M. M., Sarmiento, L., Bottner, P., Acevedo, D., and Thiéry, J. M.: Decomposition of standard plant material along an altitudinal transect
(65–3968 m) in the tropical Andes, Soil Biol. Biochem., 34, 69–78,
https://doi.org/10.1016/S0038-0717(01)00155-9, 2002.
Cuervo-Robayo, A. P., Ureta, C., Gómez-Albores, M. A., Meneses-Mosquera,
A. K., Téllez-Valdés, O., and Martínez-Meyer, E.: One hundred
years of climate change in Mexico, PLoS ONE, 15, e0209808,
https://doi.org/10.1371/journal.pone.0209808, 2020.
Culmsee, H., Leuschner, C., Moser, G., and Pitopang, R.: Forest aboveground
biomass along an elevational transect in Sulawesi, Indonesia, and the role
of Fagaceae in tropical montane rain forests, J. Biogeogr., 37, 960–974,
https://doi.org/10.1111/j.1365-2699.2009.02269.x, 2010.
Cuni-Sanchez, A., Pfeifer, M., Marchant, R., Calders, K., Sørensen, C.
L., Pompeu, P. L., Lewis, S. L., and Burgess, N. D.: New insights on above
ground biomass and forest attributes in tropical montane forests, Forest
Ecol. Manage., 399, 235–246, https://doi.org/10.1016/j.foreco.2017.05.030, 2017.
Dalling, J., Heineman, K., González, G., and Ostertag, R.: Geographic,
environmental and biotic sources of variation in the nutrient relations of
tropical montane forests, J. Trop. Ecol., 32, 368–383,
https://doi.org/10.1017/S0266467415000619, 2016.
de la Cruz-Amo, L., Bañares-de-Dios, G., Cala, V., Granzow-de la Cerda,
I., Espinosa, C. I., Ledo, A., Salinas, N., Macía, M. J., and Cayuela, L.: Trade-offs among aboveground, belowground, and soil organic carbon stocks along altitudinal gradients in andean tropical montane Forests, Front. Plant Sci., 11, 106, https://doi.org/10.3389/fpls.2020.00106, 2020.
Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K., and
Bird, M. I.: Soil carbon stocks vary predictably with altitude in tropical
forests: Implications for soil carbon storage, Geoderma, 204–205, 59–67,
https://doi.org/10.1016/j.geoderma.2013.04.005, 2013.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L.. Baillie, J. E. M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., Souza, N., Pintea, L., Brito, J. C., Llewellyn, J. A., Miller, A. G., Patzelt, A., Ghazanfar, S. A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Barnekow Lillesø, J. P., van Breugel, P., Graudal, L., Voge, M., Al-Al-Shammari, K. F., and Saleem, M.: An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm, Bioscience, 67, 534–545, https://doi.org/10.1093/biosci/bix014, 2017.
Duque, A., Peña, M. A., Cuesta, F., González-Caro, S., Kennedy, P.,
Phillips, O. L., Calderón-Loor, M., Blundo, C., Carilla, J., Cayola, L.,
Farfán-Ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-Rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-Villa, J. A., Myers, J. A., Osinaga-Acosta, O., Peralvo, M., Pinto, E., Saatchi, S., Silman, M., Tello, J. S., Terán-Valdez, A., and Feeley, K. J.: Mature Andean forests as globally important carbon sinks and future carbon refuges, Nat. Commun., 12, 2138, https://doi.org/10.1038/s41467-021-22459-8, 2021.
Ebeling, A., Meyer, S. T., Abbas, M., Eisenhauer, N., Hillebrand, H., Lange,
M., Scherber, C., Voogel, A., Weigelt, A., and Weisser, W. W.: Plant diversity impacts decomposition and herbivory via changes in aboveground
arthropods, PLoS ONE, 9, e106529, https://doi.org/10.1371/journal.pone.0106529, 2014.
Eisenhauer, N., Dobies, T. Cesarz, S., Hobbie, S. Meyer, R. Worm, K., and
Reich, P.: Plant diversity effects on soil food webs are stronger than those
of elevated CO2 and N deposition in a long-term grassland experiment, P. Natl. Acad. Sci. USA, 110, 6889–6894, https://doi.org/10.1073/pnas.1217382110, 2013.
Esquivel, J., Park, B. B., Casanoves, F., Delgado, D., Park, G. E., and
Finegan, B.: Altitude and species identity drive leaf litter decomposition
rates of ten species on a 2950 m altitudinal gradient in Neotropical rain
forests, Biotropica, 52, 11–21, https://doi.org/10.1111/btp.12730, 2020.
Etter, A. and van Wyngaarden, W.: Patterns of landscape transformation in
Colombia, with emphasis in the Andean region, Ambio, 29, 432–439,
https://doi.org/10.1579/0044-7447-29.7.432, 2000.
Fahey, T., Sherman, R., and Tanner, E.: Tropical montane cloud forest:
Environmental drivers of vegetation structure and ecosystem function, J.
Trop. Ecol., 32, 355–367, https://doi.org/10.1017/S0266467415000176, 2016.
Farley, K. A., Kelly E. F., and Hofstede R. G. M.: Soil organic carbon and
water retention following conversion of grasslands to pine plantations in
the Ecuadorian Andes, Ecosystems, 7, 729–739, https://doi.org/10.1007/s10021-004-0047-5, 2004.
Farley, K. A., Bremer, L. L., Harden, C. P., and Hartsig, J.: Changes in
carbon storage under alternative land uses in biodiverse Andean grasslands:
implications for payment for ecosystem services, Conserv. Lett., 6, 21–27,
https://doi.org/10.1111/j.1755-263X.2012.00267.x, 2013.
Fehse, J., Hofstede, R., Aguirre, N., Paladines, C., Koijman, A., and Svink,
J.: High altitude tropical secondary forests: a competitive carbon sink?,
Forest Ecol. Manage., 163, 9–25, https://doi.org/10.1016/S0378-1127(01)00535-7, 2002.
Fernandez, C. W. and Kennedy, P. G.: Revisiting the `Gadgil effect': do
interguild fungal interactions control carbon cycling in forest soils?, New
Phytol., 209, 1382–1394, https://doi.org/10.1111/nph.13648, 2015.
Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J.,
Meir, P., Silva-Espejo, J. E., and Huasco, W. H.: Nutrient limitation in
rainforests and cloud forests along a 3,000-m elevation gradient in the
Peruvian Andes, Oecologia, 172, 889–902, https://doi.org/10.1007/s00442-012-2522-6, 2013.
Flenley, J. R.: Nature and dynamics of forest savannah boundaries, ultraviolet-B isolation and the altitudinal forest limit, edited by: Furley,
P., Ratter, J., and Proctor, J., Chapman and Hall, London, UK, 273–282,
ISBN 0412443708 9780412443701, 1992.
Four, B., Cárdenas, R. E., and Dangles, O.: Traits or habitat? Disentangling predictors of leaf-litter decomposition in Amazonian soils and
streams, Ecosphere, 10, e02691, https://doi.org/10.1002/ecs2.2691, 2019.
Fox, J. C., Yosi, C. K., Nimiago, P., Oavika, F., Pokana J. N., Lavong, K.,
and Keenan R. J.: Assessment of Aboveground Carbon in Primary and
Selectively Harvested Tropical Forest in Papua New Guinea, Biotropica, 42,
410–319, https://doi.org/10.1111/j.1744-7429.2009.00617.x, 2010.
Freschet, G. T., Aerts, R., and Cornelissen, J. H. C.: Multiple mechanisms
for trait effects on litter decomposition: moving beyond home-field
advantage with a new hypothesis, J. Ecol., 100, 619–630,
https://doi.org/10.1111/j.1365-2745.2011.01943.x, 2012.
Freschet, G. T., Roumet, C., Comas, L. H., Weemstra, M., Bengough, A. G.,
Rewald, B., Bardgett, R. D., De Deynm G. B., Johnson, D., Klimešová,
J., Lukac, M., McCormack, M. L., Meier, I. C., Pagès, L., Poorter, H.,
Prieto, I., Wurzburger, N., Zadworny, M., Bagniewska-Zadworna, A., Blancaflor, E. B., Brunner, I., Gessler, A., Hobbie, S. E., Iversen, C. M.,
Mommer, L., Picon-Cochard, C., Postma, J. A., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N. A., Sun, T., Valverde-Barrantes, O.
J., Weigelt, A., and York, L. M., and Stokes, A.: Root traits as drivers of
plant and ecosystem functioning: current understanding, pitfalls and future
research needs, New Phytol., 232, 1123–1158, https://doi.org/10.1111/nph.17072, 2021.
Gebeyehu, G., Soromessa, T., Bekele, T., and Teketay, D.: Carbon stocks and
factors affecting their storage in dry Afromontane forests of Awi Zone,
northwestern Ethiopia, J. Ecol. Environ., 43, 7, https://doi.org/10.1186/s41610-019-0105-8, 2019.
Geisen, S., Wall, D., and van der Putten, W. H.: Challenges and Opportunities
for Soil Biodiversity in the Anthropocene, Curr. Biol., 29, R1036–R1044,
https://doi.org/10.1016/j.cub.2019.08.007, 2019.
Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., and Hättenschwiler, S.: Diversity meets decomposition, Trends Ecol. Evol., 5, 372–380, https://doi.org/10.1016/j.tree.2010.01.010, 2010.
Giardina, C. P., Litton, C. M., Crow, S. E., and Asner G. P.: Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux, Nat. Clim. Change, 4, 822–827, https://doi.org/10.1038/NCLIMATE2322, 2014.
Gibbon, A., Silman, M. R., Malhi, Y., Fisher, J. B., Meir, P., Zimmermann,
M., Dargie, G. C., Farfan-Rios, W. R., and Garcia, K. C.: Ecosystem carbon
storage across the grassland–forest transition in the high Andes of Manu
National Park, Peru, Ecosystems, 13, 1097–1111, https://doi.org/10.1007/s10021-010-9376-8, 2010.
Girardin, C. A. J., Malhi, Y., Aragao, L. E. O. C., Mamani, M., Huaraca-Huasco, W., Durand, L., Feeley, K. J., Rapp, J., Silva-Espejo, J. E., Silman, M., Salinas, N., and Whittaker, R. J.: Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes, Global Change Biol., 16, 3176–3192, https://doi.org/10.1111/j.1365-2486.2010.02235.x, 2010.
Girardin, C. A. J., Aragão, L. E. O. C., Malhi, Y., Huaraca-Huasco, W.,
Metcalfe, D. B., Durand, L., Mamani, M., Silva-Espejo, J. E., and Whittaker,
R. J.: Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests, Global Biogeochem. Cy., 27, 252–264,
https://doi.org/10.1029/2011GB004082, 2013a.
Girardin, C. A. J., Farfan-Rios, W., Garcia, K., Feeley, K. J., Jørgensen,
P. M., Araujo Murakami, A., Cayola Pérez, L., Seidel, R., Paniagua, N.,
Fuentes Claros, A. F., Maldonado, C., Silman, M., Salinas, N., Reynel, C.,
Neill, D. A., Serrano, M., Caballero, C. J., La Torre Cuadros, M. A.,
Macía, M. J., Killeen, T. J., and Malhi, Y.: Spatial patterns of
above-ground structure, biomass and composition in a network of six Andean
elevation transects, Plant. Ecol. Divers., 7, 161–171,
https://doi.org/10.1080/17550874.2013.820806, 2013b.
Girardin, C., Malhi, Y., Feeley, K., Rapp, J., Silman, M., Meir, P., Huaraca-Huasco, W., Salinas, N., Mamani, M., Silva-Espejo, J. E.,
García-Cabrera, K., Farfan-Rios, W., Metcalfe, D. B., Doughty, C. E., and Aragao, L. E. O. C.: Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru, J. Trop. Ecol., 30, 503–519, https://doi.org/10.1017/S0266467414000443, 2014a.
Girardin, C. A. J., Silva-Espejo, J. E., Doughty, C. E., Huaraca-Huasco, W.,
Metcalfe, D. B., Durand-Baca, L., Marthews, T. R., Aragao, L. E. O. C.,
Farfán-Rios, W., García-Cabrera, K., Halladay, K., Fisher, J. B.,
Galiano-Cabrera, D. F., Huaraca-Quispe, L. P., Alzamora-Taype, I.,
Eguiluz-Mora, L., Salinas-Revilla, N., Silman, M. R., Meir, P., and Malhi,
Y.: Productivity and carbon allocation in a tropical montane cloud forest in
the Peruvian Andes, Plant. Ecol. Divers., 7, 107–123,
https://doi.org/10.1080/17550874.2013.820222, 2014b.
Giweta, M.: Role of litter production and its decomposition, and factors
affecting the processes in a tropical forest ecosystem: a review, J. Ecol.
Environ., 44, 11, https://doi.org/10.1186/s41610-020-0151-2, 2020.
González-Jaramillo, V., Fries, A., Zeilinger, J., Homeier, J.,
Paladines-Benitez, J., and Bendix, J.: Estimation of Above Ground Biomass in
a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data,
Remote Sens., 10, 660, https://doi.org/10.3390/rs10050660, 2018.
Graefe, S., Hertel, D., and Leuschner, C.: Fine root dynamics along a
2,000-m elevation transect in South Ecuadorian mountain rainforests, Plant
Soil, 313, 155–166, https://doi.org/10.1007/s11104-008-9688-z, 2008a.
Graefe, S., Hertel, D., and Leuschner, C.: Estimating Fine Root Turnover in
Tropical Forests along an Elevational Transect using Minirhizotrons, Biotropica, 40, 536–542, https://doi.org/10.1111/j.1744-7429.2008.00419.x, 2008b.
Guillozet, K., Bliss, J. C., and Kelecha, T. S.: Degradation in an
Afromontane Forest in Highland Ethiopia, 1969–2010, Small-Scale For., 14,
121–137, https://doi.org/10.1007/s11842-014-9277-3, 2015.
Gurdak, D. J., Aragao, L. E. O. C., Rozas-Dávila, A., Huasco, W. H.,
Cabrera, K. G., Doughty, C. E., Farfan-Rios, W., Silva-Espejo, J. E., Metcalfe, D. B., Silman, M. R., and Malhi, Y.: Assessing above-ground woody
debris dynamics along a gradient of elevation in Amazonian cloud forests in
Peru: balancing above-ground inputs and respiration outputs, Plant. Ecol.
Divers., 7, 143–160, https://doi.org/10.1080/17550874.2013.818073, 2014.
Hawlena D., Strickland, M. S., Bradford, M. A., and Schmitz, O. J.: Fear of
predation slows plant-litter decomposition, Science, 336, 1434–1438,
https://doi.org/10.1126/science.1220097, 2012.
Hobbie, S.: Interactions between Litter Lignin and Nitrogenitter Lignin and
Soil Nitrogen Availability during Leaf Litter Decomposition in a Hawaiian
Montane Forest, Ecosystems, 3, 484–494, https://doi.org/10.1007/s100210000042, 2000.
Homeier, J. and Leuschner, C.: Factors controlling the productivity of tropical Andean forests: Climate and soil are more important than tree diversity, Biogeosciences, 18, 1525–1541, https://doi.org/10.5194/bg-18-1525-2021, 2020.
Homeier, J., Breckle, S. W., Günter, S., Rollenbeck, R. T., and
Leuschner, C.: Tree Diversity, Forest Structure and Productivity along
Altitudinal and Topographical Gradients in a Species-Rich Ecuadorian Montane
Rain Forest, Biotropica, 42, 1405–148, https://doi.org/10.1111/j.1744-7429.2009.00547.x, 2010.
Homeier, J., Hertel, D., Camenzind, T., Cumbicus, N. L., Maraun, Guntars,
M., Martinson, O., Nohemy-Poma, L., Rillig, M. C., Sandmann, D., Scheu, S.,
Veldkamp, E., Wilcke, W. Wullaert, H., and Leuschner, C.: Tropical Andean
Forests Are Highly Susceptible to Nutrient Inputs – Rapid Effects of
Experimental N and P Addition to an Ecuadorian Montane Forest, PLoS ONE, 7,
e47128, https://doi.org/10.1371/journal.pone.0047128, 2012.
Hurtado-Martilleti, A. B., Echeverry-Galvis, M. A., Salgado-Negret, B.,
Muñoz, J. C., Posada, J. M., and Norden, N.: Little trace of floristic
homogenization in peri-urban Andean secondary forests despite high anthropogenic transformation, J. Ecol., 109, 1468–1478, 2021.
Illig, J., Schatz, H., Scheu, S., and Maraun, M.: Decomposition and
colonization by micro-arthropods of two litter types in a tropical montane
rain forest in southern Ecuador, J. Trop. Ecol., 24, 157–167,
https://doi.org/10.1017/S0266467407004750, 2008.
IPCC: Climate change: Impacts, adaptation and vulnerability. Summary for
policy makers, Cambridge University Press, Cambridge, UK and New York, USA,
34 pp., https://doi.org/10.1016/j.renene.2009.11.012, 2014.
Juntahum, S., Jongrungklang, N., Kaewpradit, W., Lumyong, S., and Boonlue, S.: Impact of Arbuscular Mycorrhizal Fungi on Growth and Productivity of
Sugarcane Under Field Conditions, Sugar Tech., 22, 451–459,
https://doi.org/10.1007/s12355-019-00784-z, 2020.
Kitayama, K. and Aiba, S.: Ecosystem structure and productivity of tropical
rain forests along altitudinal gradients with contrasting soil phosphorus
pools on Mount Kinabalu, Borneo, J. Ecol., 90, 37–51, https://doi.org/10.1046/j.0022-0477.2001.00634.x, 2002.
Kitayama, K., Majalap-Lee, N., and Aiba, S.: Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal
gradients of Mount Kinabalu, Borneo, Oecologia, 123, 342–349,
https://doi.org/10.1007/s004420051020, 2000.
Koide, R. T. and Wu, T.: Ectomycorrhizas and retarded decomposition in a
Pinus resinosa plantation, New Phytol., 158, 401–407,
https://doi.org/10.1046/j.1469-8137.2003.00732.x, 2003.
Körner, C.: The use of `altitude' in ecological research, Trends Ecol.
Evol., 22, 569–574, https://doi.org/10.1016/j.tree.2007.09.006, 2007.
Körner, C. and Sphen, E.: A Humboldtian view of mountains, Science,
365, 1061, https://doi.org/10.1126/science.aaz4161, 2019.
Körner, C., Paulsen, J., and Spehn, E. M.: A definition of mountains and
their bioclimatic belts for global comparisons of biodiversity data, Alp.
Bot., 121, 73, https://doi.org/10.1007/s00035-011-0094-4, 2011.
Kübler, D., Hildebrandt, P., Günter, S., Stimm, B., Weber, M.,
Muñoz, J., Cabrera, O., Zeilinger, J., Silva, B., and Mosandl, R.:
Effects of silvicultural treatments and topography on individual tree growth
in a tropical mountain forest in Ecuador, Forest Ecol. Manage., 457, 117726,
https://doi.org/10.1016/j.foreco.2019.117726, 2020.
Lemenih, M. and Itanna, F.: Soil carbon stocks and turnovers in various
vegetation types and arable lands along an elevation gradient in southern
Ethiopia, Geoderma, 123, 177–188, https://doi.org/10.1016/j.geoderma.2004.02.004, 2004.
León, J. D., González, M. I., and Gallardo, J. F.: Ciclos
biogeoquímicos en bosques naturales y plantaciones de coníferas en
ecosistemas de alta montaña de Colombia, Rev. Biol. Trop., 59,
1883–1894, 2011.
Leuschner, C., Moser, G., Bertsch, c., Röderstein, M., and Hertel, D.:
Large altitudinal increase in tree root/shoot ratio in tropical mountain
forests of Ecuador, Basic Appl. Ecol., 8, 219–230, https://doi.org/10.1016/j.baae.2006.02.004, 2007.
Leuschner, C., Zach, A., Moser, G., Homeier, J., Graefe, S., Hertel, D.,
Wittich, B., Soethe, N., Iost, S., Röderstein, M., Horna, V., and Wolf,
K.,:The Carbon Balance of Tropical Mountain Forests Along an Altitudinal
Transect, in: Ecosystem Services, Biodiversity and Environmental Change in a
Tropical Mountain Ecosystem of South Ecuador, edited by: Bendix, J., Beck,
E., Bräuning, A., Makeschin, F., Mosandl, R., and Scheu, S., Springer,
Berlin, Heidelberg, Germany, 117–139, https://doi.org/10.1007/978-3-642-38137-9_10, 2013.
Lin, G., McCormack, L., Ma, C., and Guo, D.: Similar below-ground carbon
cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests, New Phytol., 213, 1440–1451, https://doi.org/10.1111/nph.14206, 2017.
Litton, C. M., Giardina, C. P., Albano, J. K., Long, M. S., and Asner, G. P.:
The magnitude and variability of soil-surface CO2 efflux increase with temperature in Hawaiian tropical montane wet forests, Soil Biol. Biochem., 43, 2315–2323, https://doi.org/10.1016/j.soilbio.2011.08.004, 2011.
Litton, C. M., Giardina, C. P., Freeman, K. R., Selmants, P. C., and Sparks, J. P.: Impact of Mean Annual Temperature on Nutrient Availability in a Tropical Montane Wet Forest, Front. Plant Sci., 11, 784, https://doi.org/10.3389/fpls.2020.00784, 2020.
Liu, H., Li, L., Han, X., Huang, J., Sun, J., and Wang, H: Respiratory substrate availability plays a crucial role in the response of soil
respiration to environmental factors, Appl. Soil Ecol., 32, 284–292,
https://doi.org/10.1016/j.apsoil.2005.08.001, 2006.
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D., and
Wardle, D. A.: Biodiversity and ecosystem functioning: current knowledge and
future challenges, Science, 294, 5543, https://doi.org/10.1126/science.1064088, 2001.
Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., and Saatchi, S.:
Introduction: elevation gradients in the tropics: laboratories for ecosystem
ecology and global change research, Global Change Biol., 16, 3171–3175,
https://doi.org/10.1111/j.1365-2486.2010.02323.x, 2010.
Malhi, Y., Doughty, C., and Galbraith, D.: The allocation of ecosystem net
primary productivity in tropical forests, Philos. T. Roy. Soc. Lond. B, 366, 3225–3245, https://doi.org/10.1098/rstb.2011.0062, 2011.
Malhi, Y., Girardin, C. A., Goldsmith, G. R., Doughty, C. E., Salinas, N.,
Metcalfe, D. B., Huaraca-Huasco, W., Silva-Espejo, J. E., Del Aguilla-Pasquell, J., Farfán-Amézquita, F., Aragão, L. E. O. C., Guerrieri, R., Ishida, F. Y., Bahar, N. H., Farfan-Rios, W., Phillips, O.
L., Meir, P., and Silman, M.: The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget
perspective, New Phytol., 214, 1019–1032, https://doi.org/10.1111/nph.14189, 2017.
Marian, F., Sandmann, D., Krashevska, V., Maraun, M., and Scheu, S.: Leaf and
root litter decomposition is discontinued at high altitude tropical montane
rainforests contributing to carbon sequestration, Ecol. Evol., 7, 6432–6443, https://doi.org/10.1002/ece3.3189, 2017.
Marian, F., Sandmann, D., Krashevska, V., Maraun, M., and Scheu, S.: Altitude
and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests, Soil Biol. Biochem., 125, 263–274, https://doi.org/10.1016/j.soilbio.2018.07.017, 2018.
Marthews, T. R., Malhi, Y., Girardin, C. A., Silva-Espejo, J. E., Aragão, L. E. O. C., Metcalfe D. B., Rapp, J. M., Mercado, L. M., Fisher, R. A., Galbraith, D. R., Fisher, J. B., Salinas-Revilla, N., Friend, A. D., Restrepo-Coupe, N., and Williams, R. J.: Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency, Global Change Biol., 18, 2882–2898,
https://doi.org/10.1111/j.1365-2486.2012.02728.x, 2012.
McNaughton, S., Oesterheld, M., Frank, D., and Williams, K. J.: Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats, Nature, 341, 142–144, https://doi.org/10.1038/341142a0, 1989.
Melo, F. P., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M.,
and Tabarelli, M.: On the hope for biodiversity-friendly tropical landscapes, Trends Ecol. Evol., 28, 462–468, https://doi.org/10.1016/j.tree.2013.01.001, 2013.
Metcalfe, D. B., Asner, G. P., Martin, R. E., Silva-Espejo, J. E., Huasco, W. H., Farfán-Amézquita, F. F., Carranza-Jimenez, L., Galiano-Cabrera, D. F., Baca, L. D., Sinca, F., Huaraca-Quispe, L. P., Taype, I. A., Mora, L. E., Dávila, A. R., Solórzano, M. M., Puma-Vilca, B. L., Laupa-Román, J. M., Guerra-Bustios, P. C,, Revilla, N. S., Tupayachi, R., Girardin. C. A., Doughty, C. E., and Malhi, Y.: Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests, Ecol. Lett., 17, 324–332, https://doi.org/10.1111/ele.12233, 2014.
Moser, G., Hertel, D., and Leuschner, C.: Altitudinal Change in LAI and
Stand Leaf Biomass in Tropical Montane Forests: a Transect Study in Ecuador
and a Pan-Tropical Meta-Analysis, Ecosystems, 10, 924–935,
https://doi.org/10.1007/s10021-007-9063-6, 2007.
Moser, G., Röderstein, M., Soethe, N., Hertel, D., and Leuschner C.:
Altitudinal Changes in Stand Structure and Biomass Allocation of Tropical
Mountain Forests in Relation to Microclimate and Soil Chemistry, in:
Gradients in a Tropical Mountain Ecosystem of Ecuador, edited by: Beck, E.,
Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., Springer, Berlin,
Heidelberg, Germany, 229–242, https://doi.org/10.1007/978-3-540-73526-7_22, 2008.
Moser, G., Leuschner, C., Röderstein, M., Graefe, S., Soethe, N., and Hertel, D.: Biomass and productivity of fine and coarse roots in five tropical mountain forests stands along an altitudinal transect in southern Ecuador, Plant Ecol. Divers., 3, 151–164, https://doi.org/10.1080/17550874.2010.517788, 2010.
Moser, G., Leuschner, C., Hertel, D., Graefe, S., Soethe, N., and Iost, S.:
Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment, Global Change Biol., 17, 2211–2226, https://doi.org/10.1111/j.1365-2486.2010.02367.x, 2011.
Murcia-Rodríguez, M. A. and Ochoa-Reyes, M. P.: Respiración del suelo en una comunidad sucesional de pastizal del bosque altoandino en la
cuenca del río Pamplonita, Colombia, Caldasia, 30, 337–353, 2008.
Murcia-Rodríguez, M. A., Ochoa-Reyes, M. P., and Poveda-Gómez, F. E.: Respiración del suelo y caída de hojarasca en el matorral del bosque altoandino (cuenca del río Pamplonita, Colombia), Caldasia, 34, 165–185, 2012.
Nierop, K. G. J., Tonneijck, F. H., Jansen, B., and Verstraten, J. M.: Organic Matter in Volcanic Ash Soils under Forest and Páramo along an Ecuadorian Altitudinal Transect, Soil Sci. Soc. Am. J., 71, 1119–1127, https://doi.org/10.2136/sssaj2006.0322, 2007.
NOAA: National Centers for Environmental Information, State of the Climate:
Global Climate Report for Annual 2019, available at:
https://www.ncdc.noaa.gov/sotc/global/201913, last access: 16 January 2021.
Nottingham, A. T., Ccahuana, A. J. Q., and Meir, P.: Soil properties in tropical montane cloud forests influence estimates of soil CO2 efflux, Agr. Forest Meteorol., 166–167, 215–220,
https://doi.org/10.1016/j.agrformet.2012.08.008, 2012.
Nottingham, A. T., Fierer N., Turner, B. L., Whitaker, K., Ostle, N. J.,
McNamara, N. P., Bardgett, R. D., Leff, J. W., Salinas, N., Silman, M. R.,
Kruuk, L. E. B., and Mei, P.: Microbes follow Humboldt: temperature drives
plant and soil microbial diversity patterns from the Amazon to the Andes,
Ecology, 99, 2455–2466, https://doi.org/10.1002/ecy.2482, 2018.
Nyirambangutse, B., Zibera, E., Uwizeye, F. K., Nsabimana, D., Bizuru, E.,
Pleijel, H., Uddling, J., and Wallin, G.: Carbon stocks and dynamics at
different successional stages in an Afromontane tropical forest,
Biogeosciences, 14, 1285–1303, https://doi.org/10.5194/bg-14-1285-2017, 2017.
Oliveras, I., Girardin, C., Doughty, C. E., Cahuana, N., Arenas, C. E.,
Oliver, V., Huasco, W. H., and Malhi, Y.: Andean grasslands are as productive
as tropical cloud forests, Environ. Res. Lett., 9, 115011,
https://doi.org/10.1088/1748-9326/9/11/115011, 2014.
Olson, D. M. and Dinerstein, E.: The Global 200: Priority ecoregions for
global conservation, Ann. Missouri Bot. Gard., 89, 199–224,
https://doi.org/10.2307/3298564, 2002.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, J. C. Allnutt, T. F., Ricketts, T. H., Kura, Y.,
Lamoreux, J. F.,. Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity, BioScience, 51, 11, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Palace, M., Keller, M., Asner, G. P., Silva, J. N. M., and Passos, C.: Necromass in undisturbed and logged forests in the Brazilian Amazon, Forest Ecol. Manage., 238, 309–318, https://doi.org/10.1016/j.foreco.2006.10.026, 2007.
Pearse, I. S., Cobb, R. C., and Karban, R.: The phenology-substrate-match
hypothesis explains decomposition rates of evergreen and deciduous oak leaves, J. Ecol., 102, 28–35, https://doi.org/10.1111/1365-2745.12182, 2014.
Peña, E. J., Sandoval, H., Zuñiga, O., and Torres, M.: Estimates of
Carbon Reservoirs in High-Altitude Wetlands in the Colombian Andes, J. Agricult. Rural Dev. Trop. Subtrop., 110, 115–126, 2010.
Phillips, J., Duque, A. Scott, C., Wayson, C., Galindo, G., Cabrera, E.,
Chave, J., Peña, M., Álvarez, E., Cárdenas, D., Duivenvoorden,
J., Hildebrand, P., Stevenson, P., Ramírez, S., and Yepes, A.: Live
aboveground carbon stocks in natural forests of Colombia, Forest Ecol.
Manage., 374, 119–128, https://doi.org/10.1016/j.foreco.2016.05.009, 2016.
Phillips, J., Ramirez, S., Wayson, C., and Duque, A.: Differences in carbon
stocks along an elevational gradient in tropical mountain forests of Colombia, Biotropica, 51, 490–499, https://doi.org/10.1111/btp.12675, 2019.
Pierick, K., Leuschner, C., and Homeier, J.: Topography as a factor driving
small-scale variation in tree fine root traits and root functional diversity
in a species-rich tropical montane forest, New Phytol., 30, 129–138,
https://doi.org/10.1111/nph.17136, 2021.
Pinos, J., Studholme, A., Carabajo, A., and Gracia, C.: Leaf Litterfall and
Decomposition of Polylepis reticulata in the Treeline of the Ecuadorian Andes, Mount. Res. Dev., 37, 87–96, https://doi.org/10.1659/MRD-JOURNAL-D-16-00004.1, 2017.
Pizano, C., Kitajima, K., Graham, J. H., and Mangan, S. A.: Negative plant–soil feedbacks are stronger in agricultural habitats than in forest
fragments in the tropical Andes, Ecology, 100, e02850, https://doi.org/10.1002/ecy.2850, 2019.
Ponette-González, A. G., Ewing, H. A., Fry, M., and Young, K. R.: Soil and fine root chemistry at a tropical Andean timberline, Catena, 137, 350–359, https://doi.org/10.1016/j.catena.2015.10.014, 2016.
Poorter, L., van der Sande, M. T., Thompson, J., Arets, E. J. M. M.,
Alarcón, A., Álvarez-Sánchez, J., Ascarrunz, N., Balvanera, P.,
Barajas-Guzmán, G., Boit, A., Bongers, F., Carvalho, F. A., Casanoves,
F., Cornejo-Tenorio, G., Costa, F. R. C., de Castilho, C. V., Duivenvoorden,
J. F., Dutrieux, L. P., Enquist, B. J., Fernández-Méndez, F., Finegan, B., Gormley, L. H. L., Healey, J. R., Hoosbeek, M. R., Ibarra-Manríquez, G., Junqueira, A. B., Levis, C., Licona, J. C.,
Lisboa, L. S., Magnusson, W. E., Martínez-Ramos, M., Martínez-Yrizar, A., Martorano, L. G., Maskell, L. Mazzei C. L., Meave, J. A., Mora, F., Muñoz, R., Nytch, C., Pansonato, M. P., Parr, T. W., Paz, H., Pérez-García, E. A., Rentería, L. Y., Rodríguez-Velazquez, J., Rozendaal, D. M. A., Ruschel, A. R., Sakschewski, B., Salgado-Negret, B., Schietti, J., Simões, M., Sinclair, F. L., Souza, P. F., Souza, F. C., Stropp, J., ter Steege, H., Swenson, N. G., Thonicke, K., Toledo, M., Uriarte, M., van der Hout, P., Walker, P., Zamora, N., and Peña-Claros, M.: Diversity enhances carbon storage in tropical forests, Global Ecol. Biogeogr., 24, 1314–1328, https://doi.org/10.1111/geb.12364, 2015.
Powers, J. S., Montgomery, R. M., Adair, C. E., Brealey, F. Q., De Walt, S.
J., Saarah, J., Castanho, C. T., Chave, J., Deiniert, E., Ganzhonr, J. U.,
Gilbert, M. E., Gonzalez-Iturbe, J. A., Bunyavejchewin, S., Grau, H. R.,
Harms, K. E., Hiremath, A., Iriarte-Vivar, S., Manzane, E., De Oliveira, A.
A., Poorter, L., Ramanamanjato, J. B., Salk, C., Varela, A., Weiblen, G. D.,
and Lerday, M. T.: Decomposition in tropical forests: A pan-tropical study of
the effects of litter type, litter placement and mesofaunal exclusion across
a precipitation gradient, J. Ecol., 97, 801–811,
https://doi.org/10.1111/j.1365-2745.2009.01515.x, 2009.
Quichimbo, P., Jiménez, L., Veintimilla, D., Tischer, A., Günter,
S., Mosandl, R., and Hamer, U.: Forest Site Classification in the Southern
Andean Region of Ecuador: A Case Study of Pine Plantations to Collect a Base
of Soil Attributes, Forests, 8, 473, https://doi.org/10.3390/f8120473, 2017.
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G.,
Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., and Fjeldså, J.:
Humboldt's enigma: What causes global patterns of mountain biodiversity?,
Science, 365, 1108–1113, https://doi.org/10.1126/science.aax0149, 2019.
Román-Cuesta, R. M., Salinas, N., Asbjornsen, H., Oliveras, I., Huaman, V., Gutiérrez, Y., Puelles, L., Kala, J., Yabar, D., Rojas, M., Astete,
R., Jordán, D. Y., Silman, M., Mosandl, R., Weber, M., Stimm, B., Günter, S., Knoke, T., and Malhi, Y.: Implications of fires on carbon
budgets in Andean cloud montane forest: The importance of peat soils and
tree resprouting, Forest Ecol. Manage., 261, 1987–1997,
https://doi.org/10.1016/j.foreco.2011.02.025, 2011.
Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. J., and Vitousek, P.
M.: Temperature influences carbon accumulation in moist tropical forests,
Ecology, 87, 76–87, https://doi.org/10.1890/05-0023, 2006.
Ramírez-Correa, J. A., Zapata-Duque, C. M., León-Peláez, J. D.,
and González-Hernández, M. I.: Caída de hojarasca y retorno de
nutrientes en bosques montanos andinos de piedras blancas, Antioquia,
Colombia, Interciencia, 32, 303–311, 2007.
Ramos Scharrón, C. E., Castellanos, E. J., and Restrepo, C.: The
transfer of modern organic carbon by landslide activity in tropical montane
ecosystems, J. Geophys. Res., 117, G03016, https://doi.org/10.1029/2011JG001838, 2012.
Rapp, J. M., Silman, M. R., Clark, J. S., Girardin, C. A., Galiano, D., and
Tito, R.: Intra- and interspecific tree growth across a long altitudinal
gradient in the Peruvian Andes, Ecology, 93, 2061–2072,
https://doi.org/10.1890/11-1725.1, 2012.
Rawat, M., Arunachalam, K., and Arunachalam, A.: Plant functional traits and
carbon accumulation in forest, Clim. Change Environ. Sustainabil., 3, 1–12, https://doi.org/10.5958/2320-642X.2015.00001.0, 2015.
Ristok, C., Leppert, K. N., Scherer-Lorenzen, M., Niklaus, P. A., and Bruelheide, H.: Soil macrofauna and leaf functional traits drive the
decomposition of secondary metabolites in leaf litter, Soil Biol. Biochem.,
135, 429–437, https://doi.org/10.1016/j.soilbio.2019.06.007, 2019.
Röderstein, M., Hertel, D., and Leuschner, C.: Above- and below-ground
litter production in three tropical montane forests in southern Ecuador, J.
Trop. Ecol., 21, 483–492, https://doi.org/10.1017/S026646740500249X, 2005.
Rodríguez-Alarcón, S., Rodríguez-Eraso, N., Pineda-Rincón,
I., and López-Camacho, R.: Effects of fragmentation on functional
diversity associated with aboveground biomass in a high Andean forest in
Colombia, Landscape Ecol., 33, 1851–1864, https://doi.org/10.1007/s10980-018-0719-8, 2018.
Román-Cuesta, R. M., Salinas, N., Asbjornsen, H., Oliveras, I., Huaman,
V., Gutiérrez, Y., Puelles, L., Kala, J., Yabar, D., Rojas, M., Astete,
R., Jordán, D. Y., Silman, M., Mosandl, R., Weber, M., Stimm, B.,
Günter, S., Knoke, T., and Malhi, Y.: Implications of fires on carbon
budgets in Andean cloud montane forest: The importance of peat soils and
tree resprouting, Forest Ecol. Manage., 261, 1987–1997,
https://doi.org/10.1016/j.foreco.2011.02.025, 2011.
Romero-Torres, M. and Varela-Ramírez, A.: Efecto de borde sobre el
proceso de descomposición de hojarasca en bosque nublado, Acta Biol.
Colomb., 16, 155–174, 2011.
Rosero, J., Vélez, J., Burbano, H., and Ordóñez, H.:
Cuantificación de la respiración y biomasa microbiana en Andisoles
del sur de Colombia, Agro Sur, 47, 15–25, https://doi.org/10.4206/agrosur.2019.v47n3-03, 2020.
Rubiano, K., Clerici, N., Norden, N., and Etter, A.: Secondary forest and
shrubland dynamics in a highly transformed landscape in the Northern Andes
of Colombia (1985–2015), Forests, 8, 1–17, https://doi.org/10.3390/f8060216, 2017.
Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A.,
Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes,
M. T., Walker, B. H., Walker, M., and Wall, D. H.: Global biodiversity
scenarios for the year 2100, Science, 287, 1770–1774,
https://doi.org/10.1126/science.287.5459.1770, 2000.
Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman-Cuesta, R., Huaman, J.,
Salinas, D., Huaman, V., Gibaja, A., Mamani, M., and Farfan, F.: The
sensitivity of tropical leaf litter decomposition to temperature: results
from a large-scale leaf translocation experiment along an elevation gradient
in Peruvian forests, New Phytol., 189, 967–977, https://doi.org/10.1111/j.1469-8137.2010.03521.x, 2011.
Schawe, M., Glatzel, S., and Gerold, G.: Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: Podzolization vs. hydromorphy, Catena, 69, 83–90, https://doi.org/10.1016/j.catena.2006.04.023, 2007.
Schuur, E.: The Effect of Water on Decomposition Dynamics in Mesic to Wet
Hawaiian Montane Forests, Ecosystems, 4, 259–273,
https://doi.org/10.1007/s10021-001-0008-1, 2001.
Schuur, E. A. and Matson, P. A.: Net primary productivity and nutrient
cycling across a mesic to wet precipitation gradient in Hawaiian montane
forest, Oecologia, 128, 431–442, https://doi.org/10.1007/s004420100671, 2001.
Scowcroft, P. G., Turner, D. R., and Vitousek, P. M.: Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii, Global Change Biol., 6, 73–85, https://doi.org/10.1046/j.1365-2486.2000.00282.x, 2000.
Segnini, A., Posadas, A., Quiroz, R., Milori, D. M. B. P., Vaz, C. M. P.,
and Martin-Neto, L.: Soil carbon stocks and stability across an altitudinal
gradient in southern Perú, J. Soil Water Conserv., 66, 213–220, https://doi.org/10.2489/jswc.66.4.213, 2011.
Selmants, P. C., Litton, C. M., Giardina, C. P., and Asner, G. P.: Ecosystem
carbon storage does not vary with mean annual temperature in Hawaiian
tropical montane wet forests, Global Change Biol., 20, 2927–2937,
https://doi.org/10.1111/gcb.12636, 2014.
Selmants, P. C., Adair, K. L., Litton, C. M., Giardina, C. P., and Schwartz,
E.: Increases in mean annual temperature do not alter soil bacterial
community structure in tropical montane wet forests, Ecosphere, 7, e01296,
https://doi.org/10.1002/ecs2.1296, 2016.
Seyfried, H., Worrier, G., Uhlig, D., Kohler, I., and Calvo, C.: Introducción a la geología y morfología de los andes en el
norte de Chile, Chungará (Arica), 30, 7–39,
https://doi.org/10.4067/S0717-73561998000100002, 1998.
Shirima, D. D. M., Totland, O., Munishi, P. K. T., and Moe, S. R.: Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania, Basic Appl. Ecol., 16, 239–249, https://doi.org/10.1016/j.baae.2014.11.008, 2015.
Simegn, T. Y. and Soromessa, T.: Carbon Stock Variations Along Altitudinal
and Slope Gradient in the Forest Belt of Simen Mountains National Park,
Ethiopia, Am. J. Environ. Prot., 4, 199–201, https://doi.org/10.11648/j.ajep.20150404.15, 2015.
Soethe, N., Lehmann, J., and Engels, C.: The Vertical Pattern of Rooting and
Nutrient Uptake at Different Altitudes of a South Ecuadorian Montane Forest,
Plant Soil, 286, 287–299, https://doi.org/10.1007/s11104-006-9044-0, 2006.
Soethe, N., Lehmann, J., and Engels, C.: Carbon and nutrient stocks in roots of forests at different altitudes in the Ecuadorian Andes, J. Trop. Ecol., 23, 319–328, https://doi.org/10.1017/S0266467407004002, 2007.
Soethe, N., Lehmann, J., and Engels, C.: Nutrient availability at different
altitudes in a tropical montane forest in Ecuador, J. Trop. Ecol., 24,
397–406, https://doi.org/10.1017/S026646740800504X, 2008.
Spracklen, D. V. and Righelato, R.: Tropical montane forests are a larger
than expected global carbon store, Biogeosciences, 11, 2741–2754,
https://doi.org/10.5194/bg-11-2741-2014, 2014.
Spracklen, D. V. and Righelato, R.: Carbon storage and sequestration of
re-growing montane forests in southern Ecuador, Forest Ecol. Manage., 364,
139–144, https://doi.org/10.1016/j.foreco.2016.01.001, 2016.
Suárez, R. E. and Medina, G.: Vegetation Structure and Soil Properties
in Ecuadorian Páramo Grasslands with Different Histories of Burning and
Grazing, Arct. Antarct. Alp. Res., 33, 158–164, https://doi.org/10.2307/1552216, 2001.
Sugden, A.: The montane vegetation and flora of margarita island, Venezuela,
J. Arnold Arbor., 67, 187–232, 1986.
Taddese, F. H., Asrat, Z., Burud, I., Gobakken, T., Ørka, H. O., Dick,
Ø. B., and Næsset, E.: Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sens., 12, 3335, https://doi.org/10.3390/rs12203335, 2020.
Thakur, M. P. and Geisen, S.: Trophic Regulations of the Soil Microbiome,
Trends Microbiol., 9, 771–780, https://doi.org/10.1016/j.tim.2019.04.008, 2019.
Tilman, D., Reich, P. B., and Isbell, F.: Biodiversity impacts ecosystem
productivity as much as resources, disturbance, or herbivory, P. Natl. Acad. Sci. USA, 109, 10394–10397, https://doi.org/10.1073/pnas.1208240109, 2012.
Tonneijck, F. H. and Jongmans, A. G.: The influence of bioturbation on the
vertical distribution of soil organic matter in volcanic ash soils: a case
study in northern Ecuador, Eur. J. Soil Sci., 59, 1063–1075,
https://doi.org/10.1111/j.1365-2389.2008.01061.x, 2008.
Tonneijck, F. H., Jansen, B., Nierop, K. G. J., Verstraten, J. M., Sevink,
J., and De Lange, L.: Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador, Eur. J. Soil Sci., 61, 392–405, https://doi.org/10.1111/j.1365-2389.2010.01241.x, 2010.
Unger, M., Homeier, J., and Leuschner, C.: Effects of soil chemistry on
tropical forest biomass and productivity at different elevations in the
equatorial Andes, Oecologia, 170, 263–274, https://doi.org/10.1007/s00442-012-2295-y, 2012.
Urgiles, N., Loján, P., Aguirre, N., Blaschke, H., Günter, B., and
Kottke, I.: Application of mycorrhizal roots improves growth of tropical
tree seedlings in the nursery: a step towards reforestation with native
species in the Andes of Ecuador, New Forests, 38, 229–239,
https://doi.org/10.1007/s11056-009-9143-x, 2009.
Varela, A., Barriga, P., and Ahumada, J.: Comparación de factores
abióticos relacionados con la descomposición de hojarasca entre
fragmentos y no fragmentos de bosque altoandino nublado (Sabana de
Bogotá, Colombia), Ecotropicos, 15, 185–193, 2003.
Varela, A., Cortés, C., and Cotes, C.: Cambios en edafofauna asociada a
descomposición de hojarasca en un bosque nublado, Rev. Colomb. Entomol.,
33, 45–53, 2007.
Vásquez, E., Ladd, B., and Borchard, N.: Carbon storage in a
high-altitude Polylepis woodland in the Peruvian Andes, Alp. Bot., 124, 71–75, https://doi.org/10.1007/s00035-014-0126-y, 2014.
Veen, G. F., Freschet, G. T., Ordonez, A., and Wardle, D. A.: Litter quality and environmental controls of home-field advantage effects on litter
decomposition, Oikos, 124, 187–195, https://doi.org/10.1111/oik.01374, 2015.
Velescu, A., Valarezo, C., and Wilcke, W.: Response of Dissolved Carbon and
Nitrogen Concentrations to Moderate Nutrient Additions in a Tropical Montane
Forest of South Ecuador, Front. Earth Sci., 4, 58,
https://doi.org/10.3389/feart.2016.00058, 2016.
Vivanco, L. and Austin, A. T.: Tree species identity alters forest litter decomposition through long-term plant and soil interaction in Patagonia, Argentina, J. Ecol., 96, 727–736, https://doi.org/10.1111/j.1365-2745.2008.01393.x, 2008.
Wall, D. H., Bradford, M. A., St John, M. G., Trofymow, J. A., Behan-Pelletier, V., Bignell de, Dangerfield, J. M., Parton, W. J., Rusek,
J., Voigt, W., Wolters, V., Gardel, H. Z., Ayuke, F. O., Bashford, R.,
Beljakova, O. I., Bohlen, P. J., Brauman, A, Flemming, S., Henschel, J. O.
H. R., Johnson, D. A. N. L., Jones, T. H., Kovarova, M., Kranabetter, J. M.,
Kutny, L. E. S., Lin, K. U. O. C., Maryati, M., Masse, D., Pokarzhevskii,
A., Rahman, H., Sabará, M. G., Salamon, J. A., Swift, M. J., Varela, A.,
Vasconcelos, H. L., White, D. O. N., and Zou, X: Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent, Global Change Biol., 14, 2661–2677, https://doi.org/10.1111/j.1365-2486.2008.01672.x, 2008.
Wanyama, I., Pelster, D. E., Butterbach-Bahl, K., Verchot, L. V., Martius,
C., and Rufino, M. C.: Soil carbon dioxide and methane fluxes from forests and other land use types in an African tropical montane region, Biogeochemistry, 143, 171–190, https://doi.org/10.1007/s10533-019-00555-8, 2019.
Weigelt, A., Mommer, L., Andraczek, K., Iversen, C. M., Bergmann, J., Bruelheide, H., Fan, Y., Freschet, G. T., Guerrero-Ramírez, N. R.,
Kattge, J., Kuyper, T. W., Laughlin, D. C., Meier, I. C., van der Plas, F.,
Poorter, H., Roumet, C., van Ruijven, J., Sabatini, F. M., Semchenko, M.,
Sweeney, C. J., Valverde-Barrantes, O. J., York, L. M., and McCormack, M. L.: An integrated framework of plant form and function: the belowground
perspective, New Phytol., 232, 42–59, https://doi.org/10.1111/nph.17590, 2021.
Werner, F. and Homeier, J.: Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient, Funct. Ecol., 29, 430–440, https://doi.org/10.1111/1365-2435.12351, 2015.
Whitaker, J., Ostle, N., Nottingham, A., Ccahuana, A., Salinas, N., Bardgett, R., Meir, P., and McNamara, N.: Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient, J. Ecol., 102, 1058–1071, 2014.
Wilcke, W., Yasin, S., Abramowski, U., Valarezo, C., and Zech, W.: Nutrient
storage and turnover in organic layers under tropical montane rain forest in
Ecuador, Eur. J. Soil Sci., 53, 15–27, https://doi.org/10.1046/j.1365-2389.2002.00411.x, 2002.
Wilcke, W., Hess, T., Bengel, C., Homeier, J., Valarezo, C., and Zech, W.:
Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient
stock, and turnover, Forest Ecol. Manage., 205, 139–147,
https://doi.org/10.1016/j.foreco.2004.10.044, 2005.
Wilcke, W., Oelmann, Y., Schmitt, A., Valarezo, C., Zech, W., and Homeier, J.: Soil properties and tree growth along an altitudinal transect in
Ecuadorian tropical montane forest, J. Soil Sci. Plant Nutr., 171, 220–230,
https://doi.org/10.1002/jpln.200625210, 2008.
Wittich, B., Horna, V., Homeier, J., and Leuschner, C.: Altitudinal Change in
the Photosynthetic Capacity of Tropical Trees: A Case Study from Ecuador and
a Pantropical Literature Analysis, Ecosystems, 15, 958–973,
https://doi.org/10.1007/s10021-012-9556-9, 2012.
Wolf, K., Veldkamp, E., Homeier, J., and Martinson, G. O.: Nitrogen
availability links forest productivity, soil nitrous oxide and nitric oxide
fluxes of a tropical montane forest in southern Ecuador, Global Biogeochem.,
Cy., 25, GB4009, https://doi.org/10.1029/2010GB003876, 2011.
Yepes, A., Herrera, J., Phillips, J., Cabrera, E., Galindo, G., Granados,
E., Duque, A., Barbosa, A., Olarte, C., and Cardona, M.: Contribución de
los bosques tropicales de montaña en el almacenamiento de carbono en
Colombia, Rev. Biol. Trop., 63, 69–82, https://doi.org/10.15517/rbt.v63i1.14679, 2015.
Yepes, A., Sierra, A., Niño, L. M., López, M., Garay, C., Vargas, D., Cabrera, E., and Barbosa, A.: Biomasa y carbono total almacenado en robledales del sur de los Andes Colombianos: aportes para el enfoque REDD+
a escala de proyectos, Rev. Biol. Trop., 64, 399–412,
https://doi.org/10.15517/rbt.v64i1.18221, 2016.
Yimer, F., Ledin, S., and Abdelkadir, A.: Soil organic carbon and total
nitrogen stocks as affected by topographic aspect and vegetation in the Bale
Mountains, Ethiopia, Geoderma, 135, 335–344, https://doi.org/10.1016/j.geoderma.2006.01.005, 2006.
Zach, A., Horna, V., and Leuschner, C.: Elevational change in woody tissue
CO2 efflux in a tropical mountain rain forest in southern Ecuador, Tree Physiol., 28, 67–74, https://doi.org/10.1093/treephys/28.1.67, 2008.
Zach, A., Horna, V., Leuschner, C., and Zimmermann, R.: Patterns of wood
carbon dioxide efflux across a 2,000-m elevation transect in an Andean moist
forest, Oecologia, 162, 127–137, https://doi.org/10.1007/s00442-009-1438-2, 2010.
Zapata-Duque, C. M., Ramírez, J. A., León-Peláez, J. D., and
González-Hernández, M. I.: Producción de hojarasca fina en
bosques alto andinos de Antioquia, Colombia, Rev. Fac. Nac. Agron.
Medellín, 60, 3771–3784, 2007.
Zimmermann, M., Meir, P., Bird, M. I., Malhi, Y., and Ccahuana, A. J. Q.:
Climate dependence of heterotrophic soil respiration from a
soil-translocation experiment along a 3000 m tropical forest altitudinal
gradient, Eur. J. Soil Sci., 60, 895–906,
https://doi.org/10.1111/j.1365-2389.2009.01175.x, 2009a.
Zimmermann, M., Meir, P., Bird, M., Malhi, Y., and Ccahuana, A.: Litter
contribution to diurnal and annual soil respiration in a tropical montane
cloud forest, Soil Biol. Biochem., 41, 1338–1340,
https://doi.org/10.1016/j.soilbio.2009.02.023, 2009b.
Zimmermann, M., Meir, P., Silman, M. R., Fedders, A., Gibbon, A. Malhi, Y.,
Urrego, D. H., Busch, M. B., Feelye, K. J., Garcia, K. C., Dargie, G. C., Farfan, W. R., Goetz, B. P., Johnson, W. T., Kline, K. M., Modi, A. T.,
Rurau, N. M. Q., Staudt, B. T., and Zamora, F.: No Differences in Soil
Carbon Stocks Across the Tree Line in the Peruvian Andes, Ecosystems, 13,
62–74, https://doi.org/10.1007/s10021-009-9300-2, 2010a.
Zimmermann, M., Meir, P., Bird, M. I., Malhi, Y., and Ccahuana, A. J. Q.: Temporal variation and climate dependence of soil respiration and its
components along a 3000 m altitudinal tropical forest gradient, Global
Biogeochem. Cy., 24, GB4012, https://doi.org/10.1029/2010GB003787, 2010b.
Zimmermann, M., Leifeld, J., Conen, F., Bird, M. I., and Meir, P.: Can
composition and physical protection of soil organic matter explain soil
respiration temperature sensitivity?. Biogeochemistry, 107, 423–436,
https://doi.org/10.1007/s10533-010-9562-y, 2012.
Ziter, C., Bennett, E., and Gonzalez, A.: Functional diversity and management mediate aboveground carbon stocks in small forest fragments, Ecosphere, 4, 1–21, 2013.
Zúñiga-Escobar, O., Uribe, V. A., Torres-González, A. M.,
Cuero-Guependo, R., and Peña-Óspina, J. A.: Assessment of the impact
of anthropic activities on carbon storage in soils of high montane
ecosystems in Colombia, Agron. Colomb., 31, 112–119, 2013.
Short summary
Understanding the carbon cycle is critical for designing effective policies to mitigate climate change. Herein, I synthesized the state of knowledge of the carbon cycle in tropical upland ecosystems. From the 135 documents found in databases, estimations of carbon stocks comprised three-fourths of the total studies, while the remaining fraction focused on carbon fluxes. It is necessary to obtain information on the main carbon fluxes and integrate it into climate change mitigation plans.
Understanding the carbon cycle is critical for designing effective policies to mitigate climate...