Blaauw, B. R. and Isaacs, R.: Larger patches of diverse floral resources
increase insect pollinator density, diversity, and their pollination of
native wildflowers, Basic Appl. Ecol., 15, 701–711,
https://doi.org/10.1016/j.baae.2014.10.001, 2014.
Bollen, K. A.: Total, direct, and indirect effects in structural equation
models, Sociol. Methodol., 17, 37–69, https://doi.org/10.2307/271028, 1987.
Bruninga-Socolar, B. and Branam, E.: Co-Flowering Plant Densities Affect
Bee Visitation to a Focal Plant Species, but Bee Genera Differ in Their
Response, Nat. Areas J., 42, 98–104, https://doi.org/10.3375/20-49, 2022.
Bruninga-Socolar, B., Winfree, R., and Crone, E. E.: The contribution of plant spatial arrangement to bumble bee flower constancy, Oecologia, 198, 471–481, https://doi.org/10.1007/s00442-022-05114-x, 2022.
Chase, J. M. and Leibold, M. A.: Spatial scale dictates the
productivity–biodiversity relationship, Nature, 416, 427–430,
https://doi.org/10.1038/416427a, 2002.
Craine, J. M. and Dybzinski, R.: Mechanisms of plant competition for
nutrients, water and light, Funct. Ecol., 27, 833–840,
https://doi.org/10.1111/1365-2435.12081, 2013.
Dauber, J., Biesmeijer, J. C., Gabriel, D., Kunin, W. E., Lamborn, E.,
Meyer, B., Nielsen, A., Potts, S. G, Roberts, S. P. M., Sõber, V., Settele, J., Steffan-Dewenter, I., Stout, J. C., Teder, T., Tscheulin, T., Vivarelli, D., and Petanidou, T.: Effects of patch size and density on flower visitation
and seed set of wild plants: a pan-European approach, J. Ecol., 98, 188–196,
https://doi.org/10.1111/j.1365-2745.2009.01590.x, 2010.
de Jager, M. L., Ellis, A. G., and Anderson, B.: Colour similarity to
flowering neighbours promotes pollinator visits, pollen receipt and maternal
fitness, S. Afr. J. Bot., 147, 568–575, https://doi.org/10.1016/j.sajb.2022.02.018, 2022.
Duflot, R., Georges, R., Ernoult, A., Aviron, S., and Burel, F.: Landscape
heterogeneity as an ecological filter of species traits, Acta Oecol., 56,
19–26, https://doi.org/10.1016/j.actao.2014.01.004, 2014.
Gámez-Virués, S., Perović, D. J., Gossner, M. M., Börschig,
C., Blüthgen, N., De Jong, H., Simons, N. K., Klein, A., Krauss, J.,
Maier, G., Scherber, C., Steckel, J., Rothenwöhrer, C.,
Steffan-Dewenter, I., Weiner, C. N., Weisser, W., Werner, M., Tscharntke,
T., and Westphal, C.: Landscape simplification filters species traits and
drives biotic homogenization, Nat. Commun, 6, 8568,
https://doi.org/10.1038/ncomms9568, 2015.
Ghazoul, J.: Floral diversity and the facilitation of pollination, J. Ecol., 94, 295–304, https://doi.org/10.1111/j.1365-2745.2006.01098.x, 2006.
Grace, J. B.: Structural equation modeling and natural systems,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511617799, 2006.
Hacker, S. D. and Gaines, S. D.: Some implications of direct positive
interactions for community species diversity, Ecology, 78, 1990–2003,
https://doi.org/10.1890/0012-9658(1997)078[1990:SIODPI]2.0.CO;2, 1997.
Hegland, S. J. and Totland, O.: Relationships between species' floral traits
and pollinator visitation in temperate grassland, Oecologia, 145, 586–594,
https://doi.org/10.1007/s00442-005-0165-6, 2005.
Howe, H. F., and Smallwood, J.: Ecology of seed dispersal, Annu. Rev. Ecol.
Syst., 13, 201–228, https://doi.org/10.1146/annurev.es.13.110182.001221, 1982.
Hulme, P. E.: Herbivory, plant regeneration, and species coexistence, J.
Ecol., 84, 609–615, https://doi.org/10.2307/2261482, 1996.
Hurtado, M., Godoy, O., and Bartomeus, I.: Plant spatial aggregation modulates the interplay between plant competition and pollinator attraction with contrasting outcomes of plant fitness, Zenodo [data set], https://doi.org/10.5281/zenodo.7696118, 2023.
Inouye, D. W., Larson, B. M., Ssymank, A., and Kevan, P. G.: Flies and
flowers III: ecology of foraging and pollination, J. Pollinat. Ecol., 16,
115–133, https://doi.org/10.26786/1920-7603(2015)15, 2015.
Kendall, L. K., Mola, J. M., Portman, Z. M., Cariveau, D. P., Smith, H. G.,
and Bartomeus, I.: The potential and realized foraging movements of bees are
differentially determined by body size and sociality, Ecology, 103,
e3809, https://doi.org/10.1002/ecy.3809, 2022.
Kline, R. B.: Principles and practice of structural equation modeling,
Guilford publications, ISBN 1462523358, 2015.
Lander, T. A., Bebber, D. P., Choy, C. T., Harris, S. A., and Boshier, D.
H.: The Circe principle explains how resource-rich land can waylay
pollinators in fragmented landscapes, Curr. Biol., 21, 1302–1307,
https://doi.org/10.1016/j.cub.2011.06.045, 2011.
Lanuza, J. B., Bartomeus, I., and Godoy, O.: Opposing effects of floral
visitors and soil conditions on the determinants of competitive outcomes
maintain species diversity in heterogeneous landscapes, Ecol. Lett., 21,
865–874, https://doi.org/10.1111/ele.12954, 2018.
Lázaro, A. and Totland, Ø.: Local floral composition and the
behaviour of pollinators: attraction to and foraging within experimental
patches, Ecol. Entomol., 35, 652–661, https://doi.org/10.1111/j.1365-2311.2010.01223.x, 2010.
Lázaro, A., Lundgren, R., and Totland, Ø.: Experimental reduction of
pollinator visitation modifies plant–plant interactions for pollination,
Oikos, 123, 1037–1048, https://doi.org/10.1111/oik.01268, 2014.
López-Uribe, M. M., Cane, J. H., Minckley, R. L., and Danforth, B. N.:
Crop domestication facilitated rapid geographical expansion of a specialist
pollinator, the squash be
e Peponapis pruinose, Proc. Royal Soc. B,
283, 20160443, https://doi.org/10.1098/rspb.2016.0443, 2016.
Lyberger, K., Schoener, T. W., and Schreiber, S. J.: Effects of size
selection versus density dependence on life histories: A first experimental
probe, Ecol. Lett., 24, 1467–1473, https://doi.org/10.1111/ele.13767, 2021.
Martinović, T., Odriozola, I., Mašínová, T., Doreen
Bahnmann, B., Kohout, P., Sedlák, P., Merunková, K.,
Větrovský,T., Tomšovský, M., Ovaskainen, O., and Baldrian,
P.: Temporal turnover of the soil microbiome composition is guild-specific,
Ecol. Lett., 24, 2726–2738, https://doi.org/10.1111/ele.13896, 2021.
Mayfield, M. M. and Stouffer, D. B.: Higher-order interactions capture
unexplained complexity in diverse communities, Nat. Ecol. Evol, 1, 1–7,
https://doi.org/10.1038/s41559-016-0062, 2017.
Mesgaran, M. B., Bouhours, J., Lewis, M. A., and Cousens, R. D.: How to be a
good neighbour: facilitation and competition between two co-flowering
species, J. Theor. Biol., 422, 72–83, https://doi.org/10.1016/j.jtbi.2017.04.011, 2017.
Muñoz, A. A. and Cavieres, L. A.: The presence of a showy invasive
plant disrupts pollinator service and reproductive output in native alpine
species only at high densities, J. Ecol., 96, 459–467,
https://doi.org/10.1111/j.1365-2745.2008.01361.x, 2008.
Nathan, R. and Muller-Landau, H. C.: Spatial patterns of seed dispersal,
their determinants and consequences for recruitment, Trends Ecol. Evol.,
15, 278–285, https://doi.org/10.1016/S0169-5347(00)01874-7, 2000.
Ollerton, J., Winfree, R., and Tarrant, S.: How many flowering plants are
pollinated by animals?, Oikos, 120, 321–326,
https://doi.org/10.1111/j.1600-0706.2010.18644.x, 2011.
R Core Team: R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 28 March 2023), 2022.
Reverté, S., Bosch, J., Arnan, X., Roslin, T., Stefanescu, C., Calleja,
J. A., Molowny-Horas, R., Hernández-Castellano, C., and Rodrigo, A.:
Spatial variability in a plant–pollinator community across a continuous
habitat: high heterogeneity in the face of apparent uniformity, Ecography, 42, 1558–1568, https://doi.org/10.1111/ecog.04498, 2019.
Rogers, H. S., Donoso, I., Traveset, A., and Fricke, E. C.: Cascading
impacts of seed disperser loss on plant communities and ecosystems, Annu. Rev. Ecol. Evol. Syst., 52, 641–666,
https://doi.org/10.1146/annurev-ecolsys-012221-111742, 2021.
Rosseel, Y.: lavaan: An R package for structural equation modeling, J. Stat.
Softw., 48, 1–36, https://doi.org/10.18637/jss.v048.i02, 2012.
Schmidtke, A., Rottstock, T., Gaedke, U., and Fischer, M.: Plant community
diversity and composition affect individual plant performance, Oecologia,
164, 665–677, https://doi.org/10.1007/s00442-010-1688-z, 2010.
Seifan, M., Hoch, E. M., Hanoteaux, S., and Tielbörger, K.: The outcome
of shared pollination services is affected by the density and spatial
pattern of an attractive neighbour, J. Ecol., 102, 953–962,
https://doi.org/10.1111/1365-2745.12256, 2014.
Sowig, P.: Effects of flowering plant's patch size on species composition of
pollinator communities, foraging strategies, and resource partitioning in
bumblebees (Hymenoptera: Apidae), Oecologia, 78, 550–558,
https://doi.org/10.1007/BF00378747, 1989.
Stoll, P. and Prati, D.: Intraspecific aggregation alters competitive
interactions in experimental plant communities, Ecology, 82, 319–327,
https://doi.org/10.1890/0012-9658(2001)082[0319:IAACII]2.0.CO;2, 2001.
Suárez-Mariño, A., Arceo-Gómez, G., Albor, C., and Parra-Tabla,
V.: Flowering overlap and floral trait similarity help explain the structure
of pollination network, J. Ecol., 110, 1790–1801,
https://doi.org/10.1111/1365-2745.13905, 2022.
Thompson, J. N.: Mutualistic webs of species, Science, 312, 372–373,
https://doi.org/10.1126/science.1126904, 2006.
Thomson, J. D.: Effects of stand composition on insect visitation in
two-species mixtures of Hieracium, Am. Midl. Nat., 100, 431–440,
https://doi.org/10.2307/2424843, 1978.
Tilman, D.: Mechanisms of plant competition for nutrients: the elements of a
predictive theory of competition, Mechanisms of plant competition for
nutrients: the elements of a predictive theory of competition, Academic Press, Inc., 117–141, ISBN 0122944526, 1990.
Underwood, N., Hambäck, P. A., and Inouye, B. D.: Pollinators,
herbivores, and plant neighborhood effects, Q. Rev. Biol., 95, 37–57,
https://doi.org/10.1086/707863, 2020.
Venable, D. L. and Levin, D. A.: Morphological dispersal structures in
relation to growth habit in theCompositae, Pl. Syst. Evol., 143, 1–16,
https://doi.org/10.1007/BF00984109, 1983.
Whalley, B.: Just Enough R (for psychologists) (0.1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3666150, 2019.
Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., and Dorn,
S.: Maximum foraging ranges in solitary bees: only few individuals have the
capability to cover long foraging distances, Biol. Conserv., 143,
669–676, https://doi.org/10.1016/j.biocon.2009.12.003, 2010.