Articles | Volume 24, issue 2
https://doi.org/10.5194/we-24-97-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-24-97-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low-intensity insect herbivory could have large effects on ecosystem productivity through reduced canopy photosynthesis
Kristiina Visakorpi
CORRESPONDING AUTHOR
Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
Sofia Gripenberg
School of Biological Sciences, University of Reading, Reading, UK
Yadvinder Malhi
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
Terhi Riutta
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
Related authors
No articles found.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, https://doi.org/10.5194/bg-16-4463-2019, 2019
Short summary
Short summary
Across the Amazon rainforest, trees take in carbon through photosynthesis. However, photosynthesis across the basin is threatened by predicted shifts in rainfall patterns. To unpick how changes in rainfall affect photosynthesis, we use a model which combines climate data with our knowledge of photosynthesis and other plant processes. We find that stomatal constraints are less important, and instead shifts in leaf surface area and leaf properties drive changes in photosynthesis with rainfall.
Tommaso Jucker, Gregory P. Asner, Michele Dalponte, Philip G. Brodrick, Christopher D. Philipson, Nicholas R. Vaughn, Yit Arn Teh, Craig Brelsford, David F. R. P. Burslem, Nicolas J. Deere, Robert M. Ewers, Jakub Kvasnica, Simon L. Lewis, Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeifer, Oliver L. Phillips, Lan Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, Matthew J. Struebig, Martin Svátek, Edgar C. Turner, and David A. Coomes
Biogeosciences, 15, 3811–3830, https://doi.org/10.5194/bg-15-3811-2018, https://doi.org/10.5194/bg-15-3811-2018, 2018
Short summary
Short summary
Efforts to protect tropical forests hinge on recognizing the ecosystem services they provide, including their ability to store carbon. Airborne laser scanning (ALS) captures information on the 3-D structure of forests, allowing carbon stocks to be mapped. By combining ALS with data from 173 field plots on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks from the air. Our model underpins ongoing efforts to restore Borneo's unique tropical forests.
Fabien H. Wagner, Bruno Hérault, Damien Bonal, Clément Stahl, Liana O. Anderson, Timothy R. Baker, Gabriel Sebastian Becker, Hans Beeckman, Danilo Boanerges Souza, Paulo Cesar Botosso, David M. J. S. Bowman, Achim Bräuning, Benjamin Brede, Foster Irving Brown, Jesus Julio Camarero, Plínio Barbosa Camargo, Fernanda C. G. Cardoso, Fabrício Alvim Carvalho, Wendeson Castro, Rubens Koloski Chagas, Jérome Chave, Emmanuel N. Chidumayo, Deborah A. Clark, Flavia Regina Capellotto Costa, Camille Couralet, Paulo Henrique da Silva Mauricio, Helmut Dalitz, Vinicius Resende de Castro, Jaçanan Eloisa de Freitas Milani, Edilson Consuelo de Oliveira, Luciano de Souza Arruda, Jean-Louis Devineau, David M. Drew, Oliver Dünisch, Giselda Durigan, Elisha Elifuraha, Marcio Fedele, Ligia Ferreira Fedele, Afonso Figueiredo Filho, César Augusto Guimarães Finger, Augusto César Franco, João Lima Freitas Júnior, Franklin Galvão, Aster Gebrekirstos, Robert Gliniars, Paulo Maurício Lima de Alencastro Graça, Anthony D. Griffiths, James Grogan, Kaiyu Guan, Jürgen Homeier, Maria Raquel Kanieski, Lip Khoon Kho, Jennifer Koenig, Sintia Valerio Kohler, Julia Krepkowski, José Pires Lemos-Filho, Diana Lieberman, Milton Eugene Lieberman, Claudio Sergio Lisi, Tomaz Longhi Santos, José Luis López Ayala, Eduardo Eijji Maeda, Yadvinder Malhi, Vivian R. B. Maria, Marcia C. M. Marques, Renato Marques, Hector Maza Chamba, Lawrence Mbwambo, Karina Liana Lisboa Melgaço, Hooz Angela Mendivelso, Brett P. Murphy, Joseph J. O'Brien, Steven F. Oberbauer, Naoki Okada, Raphaël Pélissier, Lynda D. Prior, Fidel Alejandro Roig, Michael Ross, Davi Rodrigo Rossatto, Vivien Rossi, Lucy Rowland, Ervan Rutishauser, Hellen Santana, Mark Schulze, Diogo Selhorst, Williamar Rodrigues Silva, Marcos Silveira, Susanne Spannl, Michael D. Swaine, José Julio Toledo, Marcos Miranda Toledo, Marisol Toledo, Takeshi Toma, Mario Tomazello Filho, Juan Ignacio Valdez Hernández, Jan Verbesselt, Simone Aparecida Vieira, Grégoire Vincent, Carolina Volkmer de Castilho, Franziska Volland, Martin Worbes, Magda Lea Bolzan Zanon, and Luiz E. O. C. Aragão
Biogeosciences, 13, 2537–2562, https://doi.org/10.5194/bg-13-2537-2016, https://doi.org/10.5194/bg-13-2537-2016, 2016
K. E. Clark, A. J. West, R. G. Hilton, G. P. Asner, C. A. Quesada, M. R. Silman, S. S. Saatchi, W. Farfan-Rios, R. E. Martin, A. B. Horwath, K. Halladay, M. New, and Y. Malhi
Earth Surf. Dynam., 4, 47–70, https://doi.org/10.5194/esurf-4-47-2016, https://doi.org/10.5194/esurf-4-47-2016, 2016
Short summary
Short summary
The key findings of this paper are that landslides in the eastern Andes of Peru in the Kosñipata Valley rapidly turn over the landscape in ~1320 years, with a rate of 0.076% yr-1. Additionally, landslides were concentrated at lower elevations, due to an intense storm in 2010 accounting for ~1/4 of the total landslide area over the 25-year remote sensing study. Valley-wide carbon stocks were determined, and we estimate that 26 tC km-2 yr-1 of soil and biomass are stripped by landslides.
L. Rowland, A. Harper, B. O. Christoffersen, D. R. Galbraith, H. M. A. Imbuzeiro, T. L. Powell, C. Doughty, N. M. Levine, Y. Malhi, S. R. Saleska, P. R. Moorcroft, P. Meir, and M. Williams
Geosci. Model Dev., 8, 1097–1110, https://doi.org/10.5194/gmd-8-1097-2015, https://doi.org/10.5194/gmd-8-1097-2015, 2015
Short summary
Short summary
This study evaluates the capability of five vegetation models to simulate the response of forest productivity to changes in temperature and drought, using data collected from an Amazonian forest. This study concludes that model consistencies in the responses of net canopy carbon production to temperature and precipitation change were the result of inconsistently modelled leaf-scale process responses and substantial variation in modelled leaf area responses.
K. E. Clark, M. A. Torres, A. J. West, R. G. Hilton, M. New, A. B. Horwath, J. B. Fisher, J. M. Rapp, A. Robles Caceres, and Y. Malhi
Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, https://doi.org/10.5194/hess-18-5377-2014, 2014
Short summary
Short summary
This paper presents measurements of the balance of water inputs and outputs over 1 year for a river basin in the Andes of Peru. Our results show that the annual water budget is balanced within a few percent uncertainty; that is to say, the amount of water entering the basin was the same as the amount leaving, providing important information for understanding the water cycle. We also show that seasonal storage of water is important in sustaining the flow of water during the dry season.
M. Réjou-Méchain, H. C. Muller-Landau, M. Detto, S. C. Thomas, T. Le Toan, S. S. Saatchi, J. S. Barreto-Silva, N. A. Bourg, S. Bunyavejchewin, N. Butt, W. Y. Brockelman, M. Cao, D. Cárdenas, J.-M. Chiang, G. B. Chuyong, K. Clay, R. Condit, H. S. Dattaraja, S. J. Davies, A. Duque, S. Esufali, C. Ewango, R. H. S. Fernando, C. D. Fletcher, I. A. U. N. Gunatilleke, Z. Hao, K. E. Harms, T. B. Hart, B. Hérault, R. W. Howe, S. P. Hubbell, D. J. Johnson, D. Kenfack, A. J. Larson, L. Lin, Y. Lin, J. A. Lutz, J.-R. Makana, Y. Malhi, T. R. Marthews, R. W. McEwan, S. M. McMahon, W. J. McShea, R. Muscarella, A. Nathalang, N. S. M. Noor, C. J. Nytch, A. A. Oliveira, R. P. Phillips, N. Pongpattananurak, R. Punchi-Manage, R. Salim, J. Schurman, R. Sukumar, H. S. Suresh, U. Suwanvecho, D. W. Thomas, J. Thompson, M. Uríarte, R. Valencia, A. Vicentini, A. T. Wolf, S. Yap, Z. Yuan, C. E. Zartman, J. K. Zimmerman, and J. Chave
Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, https://doi.org/10.5194/bg-11-6827-2014, 2014
Short summary
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
N. M. Fyllas, E. Gloor, L. M. Mercado, S. Sitch, C. A. Quesada, T. F. Domingues, D. R. Galbraith, A. Torre-Lezama, E. Vilanova, H. Ramírez-Angulo, N. Higuchi, D. A. Neill, M. Silveira, L. Ferreira, G. A. Aymard C., Y. Malhi, O. L. Phillips, and J. Lloyd
Geosci. Model Dev., 7, 1251–1269, https://doi.org/10.5194/gmd-7-1251-2014, https://doi.org/10.5194/gmd-7-1251-2014, 2014
T. R. Marthews, C. A. Quesada, D. R. Galbraith, Y. Malhi, C. E. Mullins, M. G. Hodnett, and I. Dharssi
Geosci. Model Dev., 7, 711–723, https://doi.org/10.5194/gmd-7-711-2014, https://doi.org/10.5194/gmd-7-711-2014, 2014
G. P. Asner, C. B. Anderson, R. E. Martin, D. E. Knapp, R. Tupayachi, F. Sinca, and Y. Malhi
Biogeosciences, 11, 843–856, https://doi.org/10.5194/bg-11-843-2014, https://doi.org/10.5194/bg-11-843-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
A. D. A. Castanho, M. T. Coe, M. H. Costa, Y. Malhi, D. Galbraith, and C. A. Quesada
Biogeosciences, 10, 2255–2272, https://doi.org/10.5194/bg-10-2255-2013, https://doi.org/10.5194/bg-10-2255-2013, 2013
Related subject area
Ecosystem Ecology
Towards spatial predictions of disease transmission risk: classical scrapie spill-over from domestic small ruminants to wild cervids
Disturbance can slow down litter decomposition, depending on severity of disturbance and season: an example from Mount Kilimanjaro
Little evidence for land-use filters on intraspecific trait variation in three arthropod groups
The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands
Co-varying effects of vegetation structure and terrain attributes are responsible for soil respiration spatial patterns in a sandy forest–steppe transition zone
Morphometric traits of shells determine external attack and internal utilization marks in the Roman snail in eastern Germany
Unassisted establishment of biological soil crusts on dryland road slopes
Effects of agricultural practices on soil and microbial biomass carbon, nitrogen and phosphorus content: a preliminary case study
The rise of ecosystem ecology and its applications to environmental challenges
The effect of mixtures on colonisation of leaf litter decomposing in a stream and at its riparian zone
The "four-color issue" in ecology for considering ecosystem boundaries
The ecosystem: research and practice in North America
Millipede and centipede (Myriapoda: Diplopoda, Chilopoda) assemblages in secondary succession: variance and abundance in Western German beech and coniferous forests as compared to fallow ground
Nuno Mouta, Leonor Orge, Joana Vicente, João Alexandre Cabral, José Aranha, João Carvalho, Rita Tinoco Torres, Jorge Pereira, Renata Carvalho, Maria Anjos Pires, and Madalena Vieira-Pinto
Web Ecol., 24, 47–57, https://doi.org/10.5194/we-24-47-2024, https://doi.org/10.5194/we-24-47-2024, 2024
Short summary
Short summary
This study investigates classical scrapie (CS) and the risk of interspecies prion transmission by using presence data from wild cervids and infected small ruminant flocks. Employing remote sensing technologies, it derives vegetative and biophysical satellite indices to represent habitat features. A species distribution model integrates these data to identify suitable areas for CS and its hosts. The resultant consensus map and overlapping suitable areas create a detailed infection risk matrix.
Juliane Röder, Tim Appelhans, Marcell K. Peters, Thomas Nauss, and Roland Brandl
Web Ecol., 24, 11–33, https://doi.org/10.5194/we-24-11-2024, https://doi.org/10.5194/we-24-11-2024, 2024
Short summary
Short summary
We studied rates of litter decomposition in natural and disturbed vegetation on elevation gradients of Mount Kilimanjaro to disentangle effects of climate and disturbance. Decomposition was slower in disturbed than in natural forests, but we did not find a negative effect of disturbance for non-forest vegetation. Decomposition slowed down with increasing land-use intensity, but only in the warm wet season. Temperature and humidity were the most important drivers of decomposition in all analyses.
Katja Wehner, Matthias Brandt, Andrea Hilpert, Nadja K. Simons, and Nico Blüthgen
Web Ecol., 23, 35–49, https://doi.org/10.5194/we-23-35-2023, https://doi.org/10.5194/we-23-35-2023, 2023
Short summary
Short summary
We focus on the consequences of land-use intensity on functional trait variation within species. In general, only few effects on intraspecific trait variation were found showing a decreasing variation with increasing land-use intensity in forests but an increasing variation in grasslands. Although many studies confirmed strong land-use impacts on arthropod communities, we were not able to confirm similar effects at the intraspecific level.
Fernando T. Maestre, David J. Eldridge, Nicolas Gross, Yoann Le Bagousse-Pinguet, Hugo Saiz, Beatriz Gozalo, Victoria Ochoa, and Juan J. Gaitán
Web Ecol., 22, 75–96, https://doi.org/10.5194/we-22-75-2022, https://doi.org/10.5194/we-22-75-2022, 2022
Short summary
Short summary
Here we introduce the BIODESERT survey, the first systematic field survey devoted to evaluating the joint impacts of grazing by domestic livestock and climate on the structure and functioning of dryland ecosystems worldwide. We describe the major characteristics and the field protocols used in this survey and the organizational aspects followed to carry it out succesfully.
Gabriella Süle, Szilvia Fóti, László Körmöczi, Dóra Petrás, Levente Kardos, and János Balogh
Web Ecol., 21, 95–107, https://doi.org/10.5194/we-21-95-2021, https://doi.org/10.5194/we-21-95-2021, 2021
Short summary
Short summary
Forest–steppe habitats have contrasting canopy structure with strong influence on the spatio-temporal variability of ecosystem functions. In our study, environmental and functional variables were evaluated in this transition zone. We found that topography and vegetation structure have co-varying effects on abiotic–biotic factors. Our observations are valuable for assessing the dynamics of functional and driving variables in this natural transition zone of the temperate vegetation.
Claudia Tluste, Udo Bröring, Tomáš Němec, and Klaus Birkhofer
Web Ecol., 20, 87–94, https://doi.org/10.5194/we-20-87-2020, https://doi.org/10.5194/we-20-87-2020, 2020
Short summary
Short summary
The Roman snail has a high conservation status in Germany, and it is important to study the impact of predators and parasites on local populations. Morphometric traits and signs of external attack and internal utilization were studied in eight subpopulations. External attacks by predators were more frequently recorded on larger shells, while internal utilization depended on body density and local soil pH values. This highlights the value of abiotic habitat conditions and trophic interactions.
Laura Concostrina-Zubiri, Juan M. Arenas, Isabel Martínez, and Adrián Escudero
Web Ecol., 19, 39–51, https://doi.org/10.5194/we-19-39-2019, https://doi.org/10.5194/we-19-39-2019, 2019
Short summary
Short summary
Can organisms other than vascular plants establish and develop on road slopes? Yes, biological soil crusts (or biocrusts) can. Here, we found that lichen biocrusts are common and relatively abundant in road slopes after ~20 years of construction with no assistance needed. These findings are of critical importance for dryland restoration because biocrusts can speed up ecosystem recovery by stabilizing soil surface, improving soil fertility and facilitating vascular plant establishment.
F. Amaral and M. Abelho
Web Ecol., 16, 3–5, https://doi.org/10.5194/we-16-3-2016, https://doi.org/10.5194/we-16-3-2016, 2016
Short summary
Short summary
In this study we assessed carbon, nitrogen and phosphorus in soil and soil microbial biomass subject to conventional farming and three different organic farming practices. The results showed that microbial biomass was P-limited in soils subject to conventional farming and to organic farming with alfalfa green manure. Organic farming with compost amendment showed the best results in terms of microbial performance.
R. G. Woodmansee and S. R. Woodmansee
Web Ecol., 15, 43–44, https://doi.org/10.5194/we-15-43-2015, https://doi.org/10.5194/we-15-43-2015, 2015
Short summary
Short summary
The state of “ecosystem” ecology before 1970 is discussed briefly with emphasis on development of a new paradigm – systems ecology. The philosophy and theory embedded in ecosystem science, the methodologies introduced for conducting research, and the development of a vast warehouse of knowledge as they developed after 1970 are explored. The discussion ends with the contributions of the new paradigm to current and future local- to global-scale environmental and societal problems and solutions.
M. Abelho
Web Ecol., 14, 13–22, https://doi.org/10.5194/we-14-13-2014, https://doi.org/10.5194/we-14-13-2014, 2014
H. Doi
Web Ecol., 13, 91–93, https://doi.org/10.5194/we-13-91-2013, https://doi.org/10.5194/we-13-91-2013, 2013
S. Bocking
Web Ecol., 13, 43–47, https://doi.org/10.5194/we-13-43-2013, https://doi.org/10.5194/we-13-43-2013, 2013
A. Schreiner, P. Decker, K. Hannig, and A. Schwerk
Web Ecol., 12, 9–17, https://doi.org/10.5194/we-12-9-2012, https://doi.org/10.5194/we-12-9-2012, 2012
Cited articles
Aldea, M., Hamilton, J. G., Resti, J. P., Zangerl, A. R., Berenbaum, M. R., and DeLucia, E. H.: Indirect effects of insect herbivory on leaf gas exchange in soybean, Plant Cell Environ., 28, 402–411, https://doi.org/10.1111/j.1365-3040.2005.01279.x, 2005.
Anten, N. P. R. and Ackerly, D. D.: Canopy-level photosynthetic compensation after defoliation in a tropical understorey palm, Funct. Ecol., 15, 252–262, 2001.
Auguie, B.: gridExtra: Miscellaneous Functions for “Grid” Graphics, Version 2.3, CRAN, https://doi.org/10.32614/CRAN.package.gridExtra, 2017.
Avanesyan, A., Snook, K. A., Follett, P. A., and Lamp, W. O.: Short-term physiological response of a native Hawaiian plant, Hibiscus arnottianus, to injury by the exotic leafhopper, Sophonia orientalis (Hemiptera: Cicadellidae), Environ. Entomol., 48, 363–369, https://doi.org/10.1093/ee/nvy193, 2019.
Ayres, M. P. and Lombardero, M. J.: Assessing the consequences of global change for forest disturbance from herbivores and pathogens, Sci. Total Environ., 262, 263–286, https://doi.org/10.1016/S0048-9697(00)00528-3, 2000.
Balduzzi, S., Rücker, G., and Schwarzer, G.: How to perform a meta-analysis with R: a practical tutorial, BMJ Ment. Health, 22, 153–160, https://doi.org/10.1136/ebmental-2019-300117, 2019.
Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., and Whittaker, J. B.: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores, Glob. Change Biol., 8, 1–16, https://doi.org/10.1046/j.1365-2486.2002.00451.x, 2002.
Bezemer, T. M., Wagenaar, R., Van Dam, N. M., and Wäckers, F. L.: Interactions between above- and belowground insect herbivores as mediated by the plant defense system, Oikos, 101, 555–562, https://doi.org/10.1034/j.1600-0706.2003.12424.x, 2003.
Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R., and DeLucia, E. H.: Biotic stress globally downregulates photosynthesis genes, Plant Cell Environ., 33, 1597–1613, https://doi.org/10.1111/j.1365-3040.2010.02167.x, 2010.
Cebrian, J.: Role of first-order consumers in ecosystem carbon flow, Ecol. Lett., 7, 232–240, https://doi.org/10.1111/j.1461-0248.2004.00574.x, 2004.
Charmantier, A., McCleery, R. H., Cole, L. R., Perrins, C., Kruuk, L. E. B., and Sheldon, B. C.: Adaptive phenotypic plasticity in response to climate change in a wild bird population, Science, 320, 800–803, https://doi.org/10.1126/science.1157174, 2008.
Chen, Z., Kolb, T. E., and Clancy, K. M.: Mechanisms of Douglas-fir resistance to western spruce budworm defoliation: bud burst phenology, photosynthetic compensation and growth rate, Tree Physiol., 21, 1159–1169, https://doi.org/10.1093/treephys/21.16.1159, 2001.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Clark, K. L., Skowronski, N., and Hom, J.: Invasive insects impact forest carbon dynamics: defoliation and forest carbon dynamics, Glob. Change Biol., 16, 88–101, https://doi.org/10.1111/j.1365-2486.2009.01983.x, 2010.
Cook, B. D., Bolstad, P. V., Martin, J. G., Heinsch, F. A., Davis, K. J., Wang, W., Desai, A. R., and Teclaw, R. M.: Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance, Ecosystems, 11, 26–44, https://doi.org/10.1007/s10021-007-9105-0, 2008.
Copolovici, L., Kännaste, A., Remmel, T., Vislap, V., and Niinemets, Ü.: Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage, J. Chem. Ecol., 37, 18–28, https://doi.org/10.1007/s10886-010-9897-9, 2011.
Costilow, K. C., Knight, K. S., and Flower, C. E.: Disturbance severity and canopy position control the radial growth response of maple trees (Acer spp.) in forests of northwest Ohio impacted by emerald ash borer (Agrilus planipennis), Ann. Forest Sci., 74, 10, https://doi.org/10.1007/s13595-016-0602-1, 2017.
Daud, R. D., De Cássia Conforto, E., and Feres, R. J. F.: Changes in leaf physiology caused by Calacarus heveae (Acari, Eriophyidae) on rubber tree, Exp. Appl. Acarol., 57, 127–137, https://doi.org/10.1007/s10493-012-9552-y, 2012.
Delaney, K. J.: Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: High sensitivity to injury, Plant Sci., 185–186, 218–226, https://doi.org/10.1016/j.plantsci.2011.10.012, 2012.
Diaz, A. P., Mannion, C., and Schaffer, B.: Effect of root feeding by Diaprepes abbreviatus (Coleoptera: Curculionidae) larvae on leaf gas exchange and growth of three ornamental tree species, J. Econ. Entomol., 99, 811–821, https://doi.org/10.1093/jee/99.3.811, 2006.
Dyer, M. I., Acra, M. A., Wang, G. M., Coleman, D. C., Freckman, D. W., McNaughton, S. J., and Strain, B. R.: Source-sink carbon relations in two Panicum coloratum ecotypes in response to herbivory, Ecology, 72, 1472–1483, https://doi.org/10.2307/1941120, 1991.
Edburg, S. L., Hicke, J. A., Brooks, P. D., Pendall, E. G., Ewers, B. E., Norton, U., Gochis, D., Gutmann, E. D., and Meddens, A. J.: Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes, Front. Ecol. Environ., 10, 416–424, https://doi.org/10.1890/110173, 2012.
Edwards, P. J. and Wratten, S. D.: Wound induced defences in plants and their consequences for patterns of insect grazing, Oecologia, 59, 88–93, https://doi.org/10.1007/BF00388079, 1983.
Egger, M., Smith, G. D., Schneider, M., and Minder, C.: Bias in meta-analysis detected by a simple, graphical test, BMJ, 315, 629–634, https://doi.org/10.1136/bmj.315.7109.629, 1997.
Ellsworth, D. S., Tyree, M. T., Parker, B. L., and Skinner, M.: Photosynthesis and water-use efficiency of sugar maple (Acer saccharum) in relation to pear thrips defoliation, Tree Physiol., 14, 619–632, https://doi.org/10.1093/treephys/14.6.619, 1994.
Fenn, K., Malhi, Y., Morecroft, M., Lloyd, C., and Thomas, M.: The carbon cycle of a maritime ancient temperate broadleaved woodland at seasonal and annual scales, Ecosystems, 18, 1–15, https://doi.org/10.1007/s10021-014-9793-1, 2015.
Fenn, K. M.: Carbon cycling in British deciduous woodland: processes, budgets, climate & phenology, DPhil, University of Oxford, 2010.
Flower, C. E. and Gonzalez-Meler, M. A.: Responses of temperate forest productivity to insect and pathogen disturbances, Annu. Rev. Plant Biol., 66, 547–569, https://doi.org/10.1146/annurev-arplant-043014-115540, 2015.
Flower, C. E., Knight, K. S., and Gonzalez-Meler, M. A.: Impacts of the emerald ash borer (Agrilus planipennis Fairmaire) induced ash (Fraxinus spp.) mortality on forest carbon cycling and successional dynamics in the eastern United States, Biol. Invasions, 15, 931–944, https://doi.org/10.1007/s10530-012-0341-7, 2013.
Fyllas, N. M., Chrysafi, D., Avtzis, D. N., and Moreira, X.: Photosynthetic and defensive responses of two Mediterranean oaks to insect leaf herbivory, Tree Physiol., 42, 2282–2293, https://doi.org/10.1093/treephys/tpac067, 2022.
Gaylord, M. L., Kolb, T. E., Pockman, W. T., Plaut, J. A., Yepez, E. A., Macalady, A. K., Pangle, R. E., and McDowell, N. G.: Drought predisposes piñon-juniper woodlands to insect attacks and mortality, New Phytol., 198, 567–578, https://doi.org/10.1111/nph.12174, 2013.
González-Zurdo, P., Escudero, A., Nuñez, R., and Mediavilla, S.: Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient, Int. J. Biometeorol., 60, 1661–1674, https://doi.org/10.1007/s00484-016-1156-5, 2016.
Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S.: Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest, Ecol. Appl., 23, 1202–1215, https://doi.org/10.1890/12-1554.1, 2013.
Hackathon, R.: phylobase: base package for phylogenetic structures and comparative data, Version 0.8.12, CRAN, https://doi.org/10.32614/CRAN.package.phylobase, 2020.
Heijari, J., Blande, J. D., and Holopainen, J. K.: Feeding of large pine weevil on Scots pine stem triggers localised bark and systemic shoot emission of volatile organic compounds, Environ. Exp. Bot., 71, 390–398, https://doi.org/10.1016/j.envexpbot.2011.02.008, 2011.
Heliasz, M., Johansson, T., Lindroth, A., Mölder, M., Mastepanov, M., Friborg, T., Callaghan, T. V., and Christensen, T. R.: Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak: carbon uptake setback by insect outbreak, Geophys. Res. Lett., 38, L01704, https://doi.org/10.1029/2010GL044733, 2011.
Holland, J. N., Cheng, W., and Crossley, D. A.: Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14, Oecologia, 107, 87–94, https://doi.org/10.1007/BF00582238, 1996.
Jin, Y. and Qian, H.: V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants, Ecography, 42, 1353–1359, https://doi.org/10.1111/ecog.04434, 2019.
Kassambara, A.: ggpubr: 'ggplot2' Based Publication Ready Plots, Version 0.6.0, CRAN, https://doi.org/10.32614/CRAN.package.ggpubr, 2019.
Keck, F., Rimet, F., Bouchez, A., and Franc, A.: phylosignal: an R package to measure, test, and explore the phylogenetic signal, Ecol. Evol., 6, 2774–2780, https://doi.org/10.1002/ece3.2051, 2016.
Kivimäenpää, M., Ghimire, R. P., Sutinen, S., Häikiö, E., Kasurinen, A., Holopainen, T., and Holopainen, J. K.: Increases in volatile organic compound emissions of Scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availability, Eur. J. For. Res., 135, 343–360, https://doi.org/10.1007/s10342-016-0939-x, 2016.
Kok, B.: On the inhibition of photosynthesis by intense light, Biochim. Biophys. Acta, 21, 234–244, https://doi.org/10.1016/0006-3002(56)90003-8, 1956.
Kolb, T. E., Dodds, K. A., and Clancy, K. M.: Effect of Western spruce budworm defoliation on the physiology and growth of potted Douglas-fir seedlings, Forest Sci., 45, 280–291, https://doi.org/10.1093/forestscience/45.2.280, 1999.
Kozlov, M. V.: Losses of birch foliage due to insect herbivory along geographical gradients in Europe: a climate-driven pattern?, Climatic Change, 87, 107–117, https://doi.org/10.1007/s10584-007-9348-y, 2008.
Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T., and Safranyik, L.: Mountain pine beetle and forest carbon feedback to climate change, Nature, 452, 987–990, https://doi.org/10.1038/nature06777, 2008.
Lei, T. T. and Wilson, L. J.: Recovery of leaf area through accelerated shoot ontogeny in thrips-damaged cotton seedlings, Annals of Botany, 94, 179–186, https://doi.org/10.1093/aob/mch125, 2004.
Lund, M., Raundrup, K., Westergaard-Nielsen, A., López-Blanco, E., Nymand, J., and Aastrup, P.: Larval outbreaks in West Greenland: Instant and subsequent effects on tundra ecosystem productivity and CO2 exchange, Ambio, 46, 26–38, https://doi.org/10.1007/s13280-016-0863-9, 2017.
Mäntylä, E., Alessio, G. A., Blande, J. D., Heijari, J., Holopainen, J. K., Laaksonen, T., Piirtola, P., and Klemola, T.: From plants to birds: higher avian predation rates in trees responding to insect herbivory, PLoS ONE, 3, e2832, https://doi.org/10.1371/journal.pone.0002832, 2008.
Martin, C. G., Mannion, C., and Schaffer, B.: Effects of herbivory by Diaprepes abbreviatus (Coleoptera: Curculionidae) larvae on four woody ornamental plant species, J. Econ. Entomol., 102, 1141–1150, https://doi.org/10.1603/029.102.0336, 2009.
Martin, C. G., Mannion, C., and Schaffer, B.: Leaf gas exchange and growth responses of Green Buttonwood and Swingle Citrumelo to Diaprepes abbreviatus (Coleoptera: Curculionidae) larval feeding and flooding, Fla. Entomol., 94, 279–289, https://doi.org/10.1653/024.094.0222, 2011.
Metcalfe, D. B., Asner, G. P., Martin, R. E., Silva Espejo, J. E., Huasco, W. H., Farfán Amézquita, F. F., Carranza-Jimenez, L., Galiano Cabrera, D. F., Baca, L. D., Sinca, F., Huaraca Quispe, L. P., Taype, I. A., Mora, L. E., Dávila, A. R., Solórzano, M. M., Puma Vilca, B. L., Laupa Román, J. M., Guerra Bustios, P. C., Revilla, N. S., Tupayachi, R., Girardin, C. A. J., Doughty, C. E., and Malhi, Y.: Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests, Ecol. Lett., 17, 324–332, https://doi.org/10.1111/ele.12233, 2014.
Meza-Canales, I. D., Meldau, S., Zavala, J. A., and Baldwin, I. T.: Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception, Plant Cell Environ., 40, 1039–1056, https://doi.org/10.1111/pce.12874, 2017.
Monsi, M. and Saeki, T.: Ueber den Lichtfaktor in den Planzengesellschaften und seine Bedeutung fuer die Stoffproduktion, Journal of Japanese Botany, 14, 22–52, 1953 (in German).
Nabity, P. D., Zavala, J. A., and DeLucia, E. H.: Indirect suppression of photosynthesis on individual leaves by arthropod herbivory, Annals of Botany, 103, 655–663, https://doi.org/10.1093/aob/mcn127, 2009.
Nykänen, H. and Koricheva, J.: Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis, Oikos, 104, 247–268, 2004.
Pick, J. L., Nakagawa, S., and Noble, D. W. A.: Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package, Methods Ecol. Evol., 10, 426–431, https://doi.org/10.1111/2041-210X.13118, 2019.
Pilipović, A., Drekić, M., Stojnić, S., Nikolić, N., Trudić, B., Milović, M., Poljaković-Pajnik, L., Borišev, M., and Orlović, S.: Physiological responses of two pedunculate oak (Quercus robur L.) families to combined stress conditions – drought and herbivore attack, Šumarski list, 144, 582–583, https://doi.org/10.31298/sl.144.11-12.5, 2020.
Pincebourde, S. and Ngao, J.: The impact of phloem feeding insects on leaf ecophysiology varies with leaf age, Front. Plant Sci., 12, 625689, https://doi.org/10.3389/fpls.2021.625689, 2021.
Pustejovsky, J. E. and Rodgers, M. A.: Testing for funnel plot asymmetry of standardized mean differences, Res. Synth. Methods, 10, 57–71, https://doi.org/10.1002/jrsm.1332, 2019.
Quentin, A. G., Pinkard, E. A., Beadle, C. L., Wardlaw, T. J., O'Grady, A. P., Paterson, S., and Mohammed, C. L.: Do artificial and natural defoliation have similar effects on physiology of Eucalyptus globulus Labill. seedlings?, Ann. For. Sci., 67, 203–203, https://doi.org/10.1051/forest/2009096, 2010.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 19 November 2024), 2022.
Retuerto, R., Fernandez-Lema, B., Rodriguez-Roiloa, and Obeso, J. R.: Increased photosynthetic performance in holly trees infested by scale insects, Funct. Ecol., 18, 664–669, https://doi.org/10.1111/j.0269-8463.2004.00889.x, 2004.
Schäfer, K. V. R., Clark, K. L., Skowronski, N., and Hamerlynck, E. P.: Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model, Glob. Change Biol., 16, 546–560, https://doi.org/10.1111/j.1365-2486.2009.02037.x, 2010.
Schaffer, B. and Mason, L. J.: Effects of scale insect herbivory and shading on net gas exchange and growth of a subtropical tree species (Guaiacum sanctum L.), Oecologia, 84, 468–473, https://doi.org/10.1007/BF00328162, 1990.
Schmitz, O. J., Raymond, P. A., Estes, J. A., Kurz, W. A., Holtgrieve, G. W., Ritchie, M. E., Schindler, D. E., Spivak, A. C., Wilson, R. W., Bradford, M. A., Christensen, V., Deegan, L., Smetacek, V., Vanni, M. J., and Wilmers, C. C.: Animating the carbon cycle, Ecosystems, 17, 344–359, https://doi.org/10.1007/s10021-013-9715-7, 2014.
Schwachtje, J. and Baldwin, I. T.: Why does herbivore attack reconfigure primary metabolism?, Plant Physiol., 146, 845–851, https://doi.org/10.1104/pp.107.112490, 2008.
Shestakov, A. L., Filippov, B. Yu., Zubrii, N. A., Klemola, T., Zezin, I., Zverev, V., Zvereva, E. L., and Kozlov, M. V.: Doubling of biomass production in European boreal forest trees by a four-year suppression of background insect herbivory, Forest Ecol. Manag., 462, 117992, https://doi.org/10.1016/j.foreco.2020.117992, 2020.
Snyder, K. A.: Night-time conductance in C3 and C4 species: do plants lose water at night?, J. Exp. Bot., 54, 861–865, https://doi.org/10.1093/jxb/erg082, 2003.
Stevens, M. T., Kruger, E. L., and Lindroth, R. L.: Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen, Funct. Ecol., 22, 40–47, https://doi.org/10.1111/j.1365-2435.2007.01356.x, 2008.
Stiling, P., Moon, D., Rossi, A., Hungate, B. A., and Drake, B.: Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densities, Glob. Change Biol., 15, 1895–1902, https://doi.org/10.1111/j.1365-2486.2009.01902.x, 2009.
Strickland, M. S., Hawlena, D., Reese, A., Bradford, M. A., and Schmitz, O. J.: Trophic cascade alters ecosystem carbon exchange, P. Natl. Acad. Sci. USA, 110, 11035–11038, https://doi.org/10.1073/pnas.1305191110, 2013.
Thomas, M. V., Malhi, Y., Fenn, K. M., Fisher, J. B., Morecroft, M. D., Lloyd, C. R., Taylor, M. E., and McNeil, D. D.: Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England, Biogeosciences, 8, 1595–1613, https://doi.org/10.5194/bg-8-1595-2011, 2011.
Visakorpi, K.: Low-intensity insect herbivory could have large effects on ecosystem productivity through reduced canopy photosynthesis. R code and data, Version v1, Zenodo [data set/code], https://doi.org/10.5281/zenodo.13886133, 2024.
Visakorpi, K., Gripenberg, S., Malhi, Y., Bolas, C., Oliveras, I., Harris, N., Rifai, S., and Riutta, T.: Small-scale indirect plant responses to insect herbivory could have major impacts on canopy photosynthesis and isoprene emission, New Phytol., 220, 799–810, https://doi.org/10.1111/nph.15338, 2018.
Visakorpi, K., Riutta, T., Malhi, Y., Salminen, J.-P., Salinas, N., and Gripenberg, S.: Changes in oak (Quercus robur) photosynthesis after winter moth (Operophtera brumata) herbivory are not explained by changes in chemical or structural leaf traits, PLoS ONE, 15, e0228157, https://doi.org/10.1371/journal.pone.0228157, 2020.
Wagner, D., Wheeler, J. M., and Burr, S. J.: The leaf miner Phyllocnistis populiella negatively impacts water relations in aspen, Tree Physiol., 40, 580–590, https://doi.org/10.1093/treephys/tpz109, 2020.
Warrington, S., Cottam, D. A., and Whittaker, J. B.: Effects of insect damage on photosynthesis, transpiration and SO2 uptake by sycamore, Oecologia, 80, 136–139, https://doi.org/10.1007/BF00789943, 1989.
Whitehead, D., Griffin, K. L., Turnbull, M. H., Tissue, D. T., Engel, V. C., Brown, K. J., Schuster, W. S. F., and Walcroft, A. S.: Response of total night-time respiration to differences in total daily photosynthesis for leaves in a Quercus rubra L. canopy: implications for modelling canopy CO2 exchange, Glob. Change Biol., 10, 925–938, https://doi.org/10.1111/j.1529-8817.2003.00739.x, 2004.
Wickham, H.: Ggplot2: elegant graphics for data analysis, Springer, New York, 212 pp., https://doi.org/10.32614/CRAN.package.ggplot2, 2009.
Wilmers, C. C. and Schmitz, O. J.: Effects of gray wolf-induced trophic cascades on ecosystem carbon cycling, Ecosphere, 7, e01501, https://doi.org/10.1002/ecs2.1501, 2016.
Zangerl, A. R., Hamilton, J. G., Miller, T. J., Crofts, A. R., Oxborough, K., Berenbaum, M. R., and DeLucia, E. H.: Impact of folivory on photosynthesis is greater than the sum of its holes, P. Natl. Acad. Sci. USA, 99, 1088–1091, https://doi.org/10.1073/pnas.022647099, 2002.
Zimov, N. S., Zimov, S. A., Zimova, A. E., Zimova, G. M., Chuprynin, V. I., and Chapin III, F. S.: Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: Role in the global carbon budget, Geophys. Res. Lett., 36, L02502, https://doi.org/10.1029/2008GL036332, 2009.
Zvereva, E. L., Zverev, V., and Kozlov, M. V.: Little strokes fell great oaks: minor but chronic herbivory substantially reduces birch growth, Oikos, 121, 2036–2043, https://doi.org/10.1111/j.1600-0706.2012.20688.x, 2012.
Short summary
Plant-feeding insects can have large impacts on the photosynthetic rate of their host plants. Through reducing photosynthesis, and thus carbon assimilation by the plant, these impacts might have large-scale influences on ecosystem carbon cycling. Nevertheless, these effects are rarely considered in ecosystem-level studies. Here we propose an approach to incorporating these changes in plant physiology into estimates of ecosystem productivity.
Plant-feeding insects can have large impacts on the photosynthetic rate of their host plants....