Articles | Volume 25, issue 2
https://doi.org/10.5194/we-25-201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-25-201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
User interface design principles for peer-to-peer distributed databases for ecological citizen science projects
Julien Jean Malard-Adam
CORRESPONDING AUTHOR
G-Eau, Institut de recherche pour le développement – IRD, Université de Montpellier, Montpellier, France
Institut français de Pondichéry – IFP, Puducherry, India
Directorate of Extension Education, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, India
The original author and affiliation names can be found at the end of the paper.
Wietske Medema
University of California, Berkeley, California, USA
Nallusamy Anandaraja
Directorate of Extension Education, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, India
The original author and affiliation names can be found at the end of the paper.
Joel Harms
Department of Bioresource Engineering, McGill University, Montréal, Québec, Canada
Johanna Dipple
Department of Bioresource Engineering, McGill University, Montréal, Québec, Canada
Sheeja
Department of Bioresource Engineering, McGill University, Montréal, Québec, Canada
The original author and affiliation names can be found at the end of the paper.
Palanivelan Jaisridhar
ICAR – Krishi Vigyan Kendra, Tamil Nadu Agricultural University, the Nilgiris, Tamil Nadu, Doddabetta, India
The original author and affiliation names can be found at the end of the paper.
Related authors
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Jessica A. Bou Nassar, Julien J. Malard, Jan F. Adamowski, Marco Ramírez Ramírez, Wietske Medema, and Héctor Tuy
Hydrol. Earth Syst. Sci., 25, 1283–1306, https://doi.org/10.5194/hess-25-1283-2021, https://doi.org/10.5194/hess-25-1283-2021, 2021
Short summary
Short summary
Our research suggests a method that facilitates the inclusion of marginalized stakeholders in model-building activities to address problems in water resources. Our case study showed that knowledge produced by typically excluded stakeholders had significant and unique contributions to the outcome of the process. Moreover, our method facilitated the identification of relationships between societal, economic, and hydrological factors, and it fostered collaborations across different communities.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Jessica A. Bou Nassar, Julien J. Malard, Jan F. Adamowski, Marco Ramírez Ramírez, Wietske Medema, and Héctor Tuy
Hydrol. Earth Syst. Sci., 25, 1283–1306, https://doi.org/10.5194/hess-25-1283-2021, https://doi.org/10.5194/hess-25-1283-2021, 2021
Short summary
Short summary
Our research suggests a method that facilitates the inclusion of marginalized stakeholders in model-building activities to address problems in water resources. Our case study showed that knowledge produced by typically excluded stakeholders had significant and unique contributions to the outcome of the process. Moreover, our method facilitated the identification of relationships between societal, economic, and hydrological factors, and it fostered collaborations across different communities.
Cited articles
Árvai, M., Takáts, T., Kovács, Z. A., Takács, K., Balog, K., László, P., Imréné Takács, T., Mészáros, J., and Pásztor, L.: Az'Alsóban az élet” című hazai talajállapotot célzó közösségi tudomány program első tapasztalatai és eredményei – The First experiences and results of the Hungarian citizen science program (“Life in Undies”) aimed at soil properties, Agrokem. Talajtan, 72, 25–43, https://doi.org/10.1556/0088.2022.00136, 2023.
Avellaneda, P. M., Ficklin, D. L., Lowry, C. S., Knouft, J. H., and Hall, D. M.: Improving Hydrological Models With the Assimilation of Crowdsourced Data, Water Resour. Res., 56, https://doi.org/10.1029/2019WR026325, 2020.
Baumgart, I. and Mies, S.: “S/Kademlia: A practicable approach towards secure key-based routing”, 2007 International Conference on Parallel and Distributed Systems, Hsinchu, Taiwan, 1–8 pp., https://doi.org/10.1109/ICPADS.2007.4447808, 2007.
Bonnet, P., Joly, A., and Munoz, F.: Complementarity of Big Data and Citizen Participation in Monitoring Plant Biodiversity, in: Linking with Nature in the Digital Age, 1, 151–159, https://doi.org/10.1002/9781394297580.ch8, 2024.
Carpenter, J. and Hewitt, E.: CASSANDRA: The Definitive Guide, (revised) Third Edition, O'Reilly Media, Inc., 433 pp., ISBN 9781098115159, 2022.
Cieslik, K., Shakya, P., Uprety, M., Dewulf, A., Russell, C., Clark, J., Dhital, M. R., and Dhakal, A.: Building Resilience to Chronic Landslide Hazard Through Citizen Science, Front. Earth Sci., 7, 278, https://doi.org/10.3389/feart.2019.00278, 2019.
Constellation: Constellation, https://docu.réseau-constellation.ca/, last access: 8 July 2025.
Faria, N. and Pereira, J.: CRDV: Conflict-free replicated data views, Proceedings of the ACM on Management of Data, Vol. 3, 25, 1–27 pp., https://doi.org/10.1145/3709675, 2025.
Fraisl, D., Hager, G., Bedessem, B., Gold, M., Hsing, P.-Y., Danielsen, F., Hitchcock, C. B., Hulbert, J. M., Piera, J., Spiers, H., Thiel, M., and Haklay, M.: Citizen science in environmental and ecological sciences, Nat. Rev. Methods Primers, 2, 1–20, https://doi.org/10.1038/s43586-022-00144-4, 2022.
Freitas, H. and Gouveia, A. C.: Biodiversity futures: digital approaches to knowledge and conservation of biological diversity, Web Ecol., 25, 29–37, https://doi.org/10.5194/we-25-29-2025, 2025.
Giuliana, D.: Designing an interface for citizen science platforms ensuring a good user experience, Munich: Ludwig-Maximilians-Universität München, Institut für Informatik, https://api.semanticscholar.org/CorpusID:32496628 (last access: 1 October 2025), 2017.
Gomes, V. B. F., Kleppmann, M., Mulligan, D. P., and Beresford, A. R.: Verifying strong eventual consistency in distributed systems, Proc. ACM Program. Lang., 1, 109:1–109:28, https://doi.org/10.1145/3133933, 2017.
Haklay, M., Dörler, D., Heigl, F., Manzoni, M., Hecker, S., and Vohland, K.: What Is Citizen Science? The Challenges of Definition, in: The Science of Citizen Science, edited by: Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., and Wagenknecht, K., Springer International Publishing, Cham, 13–33, https://doi.org/10.1007/978-3-030-58278-4_2, 2021.
Hall, D. M., Avellaneda-Lopez, P. M., Ficklin, D. L., Knouft, J. H., and Lowry, C.: How to close the loop with citizen scientists to advance meaningful science, Sustain. Sci., 19, 1527–1542, https://doi.org/10.1007/s11625-024-01532-3, 2024.
Hicks, A., Barclay, J., Chilvers, J., Armijos, M. T., Oven, K., Simmons, P., and Haklay, M.: Global Mapping of Citizen Science Projects for Disaster Risk Reduction, Front. Earth Sci., 7, 226, https://doi.org/10.3389/feart.2019.00226, 2019.
Howard, L., Van Rees, C. B., Dahlquist, Z., Luikart, G., and Hand, B. K.: A review of invasive species reporting apps for citizen science and opportunities for innovation, NeoBiota, 71, 165–188, https://doi.org/10.3897/neobiota.71.79597, 2022.
Joly, A.,Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., Dufour-Kowalski, S., Affouard, A., Carré, J., Molino, J.-F., Boujemaa, N., and Barthélémy, D.: A look inside the Pl@ntNet experience, Multimedia Systems, 22, 751–766, https://doi.org/10.1007/s00530-015-0462-9, 2016.
Khu, S. T., Wang, J., and Wang, M.: Application Status and Future of Citizen Science in Hydrology, Advanced Engineering Sciences, 55, 141–148, https://doi.org/10.15961/j.jsuese.202200369, 2023.
Kosem, J. and Dietrich, A.: IPFS Mobile Guidelines, https://blog.ipfs.tech/2020-06-25-IPFS-mobile-design-guidelines/ (last access: 1 October 2025), 2020.
Krath, J., Altmeyer, M., Tondello, G. F., and Nacke, L. E.: Hexad-12: Developing and Validating a Short Version of the Gamification User Types Hexad Scale, in: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 1–18, https://doi.org/10.1145/3544548.3580968, 2023.
Lakshminarasimhappa, M. C.: Web-Based and Smart Mobile App for Data Collection: Kobo Toolbox / Kobo Collect, Journal of Indian Library Association, 57, 72–79, 2022.
Lansana, A. S., Migisha, C., Minjire, D., Juma, L., Adan, S., and Alemu, W.: Drivers of Data for Development, https://www.developlocal.org/wp-content/uploads/2020/07/D4D-report-2020.pdf (last access: 1 October 2025), 2020.
Lee, K. A., Lee, J. R., and Bell, P.: A review of Citizen Science within the Earth Sciences: potential benefits and obstacles, P. Geologist. Assoc., 131, 605–617, https://doi.org/10.1016/j.pgeola.2020.07.010, 2020.
Lefort, T., Affouard, A., Charlier, B., Lombardo, J.-C., Chouet, M., Goëau, H., Salmon, J., Bonnet, P., and Joly, A.: Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: How does it work and how can we improve it?, Methods Ecol. Evol., https://doi.org/10.1111/2041-210X.14486, 2025.
Lemmens, R., Antoniou, V., Hummer, P., and Potsiou, C.: Citizen Science in the Digital World of Apps, in: The Science of Citizen Science, edited by: Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., and Wagenknecht, K., Springer International Publishing, Cham, 461–474, https://doi.org/10.1007/978-3-030-58278-4_23, 2021.
Liebenberg, L., Steventon, J., Brahman, N., Benadie, K., Minye, J., Langwane, H. K., and Xhukwe, Q. U.: Smartphone Icon User Interface design for non-literate trackers and its implications for an inclusive citizen science, Biol. Conserv., 208, 155–162, https://doi.org/10.1016/j.biocon.2016.04.033, 2017.
Liu, H.-Y., Dörler, D., Heigl, F., and Grossberndt, S.: Citizen Science Platforms, in: The Science of Citizen Science, edited by: Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., and Wagenknecht, K., Springer International Publishing, Cham, 439–459, https://doi.org/10.1007/978-3-030-58278-4_22, 2021.
Lowry, C. S., Fienen, M. N., Hall, D. M., and Stepenuck, K. F.: Growing Pains of Crowdsourced Stream Stage Monitoring Using Mobile Phones: The Development of CrowdHydrology, Front. Earth Sci., 7, 128, https://doi.org/10.3389/feart.2019.00128, 2019.
Lumbrazo, C., Bennett, A., Currier, W. R., Nijssen, B., and Lundquist, J.: Evaluating Multiple Canopy-Snow Unloading Parameterizations in SUMMA With Time-Lapse Photography Characterized by Citizen Scientists, Water Resour. Res., 58, https://doi.org/10.1029/2021WR030852, 2022.
Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N.: The BUGS project: Evolution, critique and future directions, Stat. Med., 28, 3049–3067, https://doi.org/10.1002/sim.3680, 2009.
Malard-Adam, J.: Données scientifiques distribuées et science citoyenne – Le réseau Constellation, in review, 2025.
Malard-Adam J. and Sheeja, K.: IUG Constellation, v1.0.3, Zenodo [code], https://doi.org/10.5281/zenodo.17252582, 2025.
Malard-Adam, J., (Kumar), Medema, W., (Anandaraja), Harms, J., and Dipple, J.: Distributed databases to improve data sovereignty in citizen science, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12726, https://doi.org/10.5194/egusphere-egu24-12726, 2024.
Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J. H., Müllmann, D., Hohlfeld, O., and Wehrle, K.: A Quantitative Analysis of the Impact of Arbitrary Blockchain Content on Bitcoin, in: Financial Cryptography and Data Security, Berlin, Heidelberg, 420–438, https://doi.org/10.1007/978-3-662-58387-6_23, 2018.
Mazzoleni, M., Verlaan, M., Alfonso, L., Monego, M., Norbiato, D., Ferri, M., and Solomatine, D. P.: Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?, Hydrol. Earth Syst. Sci., 21, 839–861, https://doi.org/10.5194/hess-21-839-2017, 2017.
Medema, W., Dipple, J., and Malard-Adam, J.: The role of communities in integrated water resource management, in: Handbook on the Governance and Politics of Water Resources, edited by: Benson, D. and Fristch, O., Edward Elgar, 83–101, ISBN 9781800887893, ISBN 9781800887909, https://doi.org/10.4337/9781800887909.00015, 2024.
Mengistie, G. K., Haile, A. T., O'Donnell, G., Negash, E. D., Bekele, T. W., and Tedla, H. Z.: Citizen science data to improve rainfall-runoff model performance in urbanizing Akaki catchment, Awash Basin, Ethiopia, J. Hydrol., 53, https://doi.org/10.1016/j.ejrh.2024.101822, 2024.
Minkman, E., van der Sanden, M., and Rutten, M.: Practitioners' viewpoints on citizen science in water management: a case study in Dutch regional water resource management, Hydrol. Earth Syst. Sci., 21, 153–167, https://doi.org/10.5194/hess-21-153-2017, 2017.
Moshi, H. A., Shilla, D. A., Kimirei, I. A., O'Reilly, C., Clymans, W., Bishop, I., and Loiselle, S. A.: Community monitoring of coliform pollution in Lake Tanganyika, PLoS ONE, 17, https://doi.org/10.1371/journal.pone.0262881, 2022.
Parmar, J. K. and Vaghani, K. G.: A conceptual study on Holochain and blockchain technology, in: Artificial Intelligence and Communication Technologies, edited by: Hiranwal, S. and Mathur, G., 331–341. Computing & Intelligent Systems, SCRS, India, https://doi.org/10.52458/978-81-955020-5-9-33, 2023.
Parsons, M. A., Duerr, R. E., and Jones, M. B.: The History and Future of Data Citation in Practice, Data Science Journal, 18, 1–10, https://doi.org/10.5334/dsj-2019-052, 2019.
PeerBit development team: dao-xyz/peerbit, GitHub [code], https://github.com/dao-xyz/peerbit/ (last access: 1 October 2025), 2025.
Pernat, N., Memedemin, D., August, T., Preda, C., Reyserhove, L., Schirmel, J., and Groom, Q.: Extracting secondary data from citizen science images reveals host flower preferences of the Mexican grass-carrying wasp Isodontia mexicana in its native and introduced ranges, Ecol. Evol., 14, https://doi.org/10.1002/ece3.11537, 2024.
Perry, M. L.: The Art of Immutable Architecture: Theory and Practice of Data Management in Distributed Systems, https://doi.org/10.1007/978-1-4842-5955-9, 2020.
Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.: Probabilistic programming in Python using PyMC3, PeerJ Comput. Sci., 2, e55, https://doi.org/10.7717/peerj-cs.55, 2016.
See, L.: A Review of Citizen Science and Crowdsourcing in Applications of Pluvial Flooding, Front. Earth Sci., 7, 44, https://doi.org/10.3389/feart.2019.00044, 2019.
Seibert, J., Strobl, B., Etter, S., Vis, M., and van Meerveld, H. J.: CrowdWater: a new smartphone app for crowd-based data collection in hydrology, 11647, 19th EGU General Assembly, EGU2017, proceedings from the conference held 23–28 April, 2017 in Vienna, Austria, p. 11647, https://ui.adsabs.harvard.edu/abs/2017EGUGA..1911647S (last access: 1 October 2025), 2017.
Songchon, C., Wright, G., and Beevers, L.: The use of crowdsourced social media data to improve flood forecasting, J. Hydrol., 622, 129703, https://doi.org/10.1016/j.jhydrol.2023.129703, 2023.
Sormunen, J. J., Kulha, N., Alale, T. Y., Klemola, T., Sääksjärvi, I. E., and Vesterinen, E. J.: For the people by the people: Citizen science web interface for real-time monitoring of tick risk areas in Finland, Ecological Solutions and Evidence, 4, https://doi.org/10.1002/2688-8319.12294, 2023.
Sprinks, J., Houghton, R., Bamford, S., Morley, J., and Wardlaw, J.: Is that a crater? Designing citizen science platforms for the volunteer and to improve results, in: European Planetary Science Congress, 2015, EPSC Abstracts, 10, EPSC2015-694 , 2015.
Stan Development Team: rstan: R Interface to Stan, https://mc-stan.org/rstan (last access: 1 October 2025), 2025.
Strobl, B., Etter, S., Meerveld, I. van, and Seibert, J.: The CrowdWater game: A playful way to improve the accuracy of crowdsourced water level class data, PLOS ONE, 14, e0222579, https://doi.org/10.1371/journal.pone.0222579, 2019.
Teacher, A. G. F., Griffiths, D. J., Hodgson, D. J., and Inger, R.: Smartphones in ecology and evolution: a guide for the app-rehensive, Ecol. Evol., 3, 5268–5278, https://doi.org/10.1002/ece3.888, 2013.
Tondello, G. F., Wehbe, R. R., Diamond, L., Busch, M., Marczewski, A., and Nacke, L. E.: The Gamification User Types Hexad Scale, in: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, New York, NY, USA, 229–243, https://doi.org/10.1145/2967934.2968082, 2016.
Torre, M., Nakayama, S., Tolbert, T. J., and Porfiri, M.: Producing knowledge by admitting ignorance: Enhancing data quality through an “I don't know” option in citizen science, PLoS ONE, 14, e0211907, https://doi.org/10.1371/journal.pone.0211907, 2019.
Trautwein, D., Raman, A., Tyson, G., Castro, I., Scott, W., Schubotz, M., Gipp, B., and Psaras, Y.: Design and evaluation of IPFS: a storage layer for the decentralized web, in: Proceedings of the ACM SIGCOMM 2022 Conference, New York, NY, USA, 739–752, https://doi.org/10.1145/3544216.3544232, 2022.
Uelmen, J. A., Jr., Clark, A., Palmer, J., Kohler, J., Van Dyke, L. C., Low, R., Mapes, C. D., and Carney, R. M.: Global mosquito observations dashboard (GMOD): creating a user-friendly web interface fueled by citizen science to monitor invasive and vector mosquitoes, Int. J. Health Geogr., 22, https://doi.org/10.1186/s12942-023-00350-7, 2023.
von Gönner, J., Gröning, J., Grescho, V., Neuer, L., Gottfried, B., Hänsch, V. G., Molsberger-Lange, E., Wilharm, E., Liess, M., and Bonn, A.: Citizen science shows that small agricultural streams in Germany are in a poor ecological status, Sci. Total Environ., 922, https://doi.org/10.1016/j.scitotenv.2024.171183, 2024.
Vyzovitis, D., Napora, Y., McCormick, D., Dias, D., and Psaras, Y.: GossipSub: Attack-Resilient Message Propagation in the Filecoin and ETH2.0 Networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2007.02754, 2020.
Weaver, N.: The Web3 Fraud, USENIX, 2021.
What is libp2p: What is libp2p, https://docs.libp2p.io/concepts/introduction/overview/, last access: 1 October 2025.
Wood, C. M., Kahl, S., Rahaman, A., and Klinck, H.: The machine learning–powered BirdNET App reduces barriers to global bird research by enabling citizen science participation, PLOS Biol., 20, e3001670, https://doi.org/10.1371/journal.pbio.3001670, 2022.
Short summary
Citizen science involves people from outside of academia in data collection and research, for example, taking photographs of insects or birds that are then shared with other users and used for biodiversity and conservation purposes. However, these apps require large servers to function, which can be very costly. In this paper, we present serverless peer-to-peer alternatives and suggest best practices for user interface design so that these apps remain easy to adopt.
Citizen science involves people from outside of academia in data collection and research, for...