Articles | Volume 25, issue 2
https://doi.org/10.5194/we-25-241-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-25-241-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil nematode communities in extreme environments: adaptations, biogeography, and climate change responses
Sichuan Wanhao Consulting Co., Ltd, Chengdu, 610075, Sichuan, China
Tairan Zhang
College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Wanyanhan Jiang
CORRESPONDING AUTHOR
School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
Cited articles
Araujo, A. S. F., De Medeiros, E. V., Da Costa, D. P., Pereira, A. P. D. A., and Mendes, L. W.: From desertification to restoration in the Brazilian semiarid region: Unveiling the potential of land restoration on soil microbial properties, J. Environ. Manage., 351, 119746, https://doi.org/10.1016/j.jenvman.2023.119746, 2024.
Barrett, J. E., Virginia, R. A., Wall, D. H., and Adams, B. J.: Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem, Glob. Change Biol., 14, 1734–1744, https://doi.org/10.1111/j.1365-2486.2008.01611.x, 2008.
Bertolani, R., Guidetti, R., Jönsson, I. K., Altiero, T., Boschini, D., and Rebecchi, L.: Experiences with dormancy in tardigrades, J. Limnol., 63, 16, https://doi.org/10.4081/jlimnol.2004.s1.16, 2004.
Birrell, J. H., Shah, A. A., Hotaling, S., Giersch, J. J., Williamson, C. E., Jacobsen, D., and Woods, H. A.: Insects in high-elevation streams: Life in extreme environments imperiled by climate change, Glob. Change Biol., 26, 6667–6684, https://doi.org/10.1111/gcb.15356, 2020.
Bongers, T. and Bongers, M.: Functional diversity of nematodes, Appl. Soil Ecol., 10, 239–251, https://doi.org/10.1016/S0929-1393(98)00123-1, 1998.
Bongiorno, G., Bodenhausen, N., Bünemann, E. K., Brussaard, L., Geisen, S., Mäder, P., Quist, C. W., Walser, J., and De Goede, R. G. M.: Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long-term field experiments, Mol. Ecol., 28, 4987–5005, https://doi.org/10.1111/mec.15270, 2019.
Cesarz, S., Peter Reich, B., Scheu, S., Ruess, L., Schaefer, M., and Eisenhauer, N.: Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors, Pedobiologia, 58, 23–32, https://doi.org/10.1016/j.pedobi.2015.01.001, 2015.
Chen, D., Cheng, J., Chu, P., Hu, S., Xie, Y., Tuvshintogtokh, I., and Bai, Y.: Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: Relationships with climate, soil, and plants, Ecography, 38, 622–631, https://doi.org/10.1111/ecog.01226, 2015.
Chen, H., Luo, S., Li, G., Jiang, W., Qi, W., Hu, J., Ma, M., and Du, G.: Large-Scale Patterns of Soil Nematodes across Grasslands on the Tibetan Plateau: Relationships with Climate, Soil and Plants, Diversity, 13, 369, https://doi.org/10.3390/d13080369, 2021.
Chen, J., Zhang, Y., Liu, C., and Huang, L.: Distribution pattern of soil nematode communities along an elevational gradient in arid and semi-arid mountains of Northwest China, Front. Plant Sci., 15, 1466079, https://doi.org/10.3389/fpls.2024.1466079, 2024.
Christiansen, C. T., Engel, K., Hall, M., Neufeld, J. D., Walker, V. K., and Grogan, P.: Arctic tundra soil depth, more than seasonality, determines active layer bacterial community variation down to the permafrost transition, Soil Biol. Biochem., 200, 109624, https://doi.org/10.1016/j.soilbio.2024.109624, 2025.
Clitherow, L. R., Carrivick, J. L., and Brown, L. E.: Food Web Structure in a Harsh Glacier-Fed River, PLoS ONE, 8, e60899, https://doi.org/10.1371/journal.pone.0060899, 2013.
Cockell, C. S., Brown, S., Landenmark, H., Samuels, T., Siddall, R., and Wadsworth, J.: Liquid Water Restricts Habitability in Extreme Deserts, Astrobiology, 17, 309–318, https://doi.org/10.1089/ast.2016.1580, 2017.
Devetter, M., Háněl, L., Řeháková, K., and Doležal, J.: Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts, PLOS ONE, 12, e0187646, https://doi.org/10.1371/journal.pone.0187646, 2017.
Dutta, T. K. and Phani, V.: The pervasive impact of global climate change on plant-nematode interaction continuum, Front. Plant Sci., 14, 1143889, https://doi.org/10.3389/fpls.2023.1143889, 2023.
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., and Wallenstein, M. D.: Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change, Glob. Change Biol., 20, 3256–3269, https://doi.org/10.1111/gcb.12568, 2014.
Faist, A. M., Antoninka, A. J., Barger, N. N., Bowker, M. A., Chaudhary, V. B., Havrilla, C. A., Huber-Sannwald, E., Reed, S. C., and Weber, B.: Broader Impacts for Ecologists: Biological Soil Crust as a Model System for Education, Front. Microbiol., 11, https://doi.org/10.3389/fmicb.2020.577922, 2021.
Ferris, H., Bongers, T., and De Goede, R. G. M.: A framework for soil food web diagnostics: extension of the nematode faunal analysis concept, Appl. Soil Ecol., 18, 13–29, https://doi.org/10.1016/S0929-1393(01)00152-4, 2001.
Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and Hartmann, M.: Microbial diversity in European alpine permafrost and active layers, FEMS Microbiol. Ecol., 92, fiw018, https://doi.org/10.1093/femsec/fiw018, 2016.
Gao, Z., Huang, J., Gao, W., Jia, M., Li, X., Han, G., and Zhang, G.: Exploring the effects of warming and nitrogen deposition on desert steppe based on soil nematodes, Land Degrad. Dev., 34, 682–697, https://doi.org/10.1002/ldr.4486, 2023.
Gooseff, M. N., Barrett, J. E., Adams, B. J., Doran, P. T., Fountain, A. G., Lyons, W. B., McKnight, D. M., Priscu, J. C., Sokol, E. R., Takacs-Vesbach, C., Vandegehuchte, M. L., Virginia, R. A., and Wall, D. H.: Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica, Nat. Ecol. Evol., 1, 1334–1338, https://doi.org/10.1038/s41559-017-0253-0, 2017.
Groner, E., Babad, A., Berda Swiderski, N., and Shachak, M.: Toward an extreme world: The hyper-arid ecosystem as a natural model, Ecosphere, 14, e4586, https://doi.org/10.1002/ecs2.4586, 2023.
Heatwole, H. and Miller, W. R.: Structure of micrometazoan assemblages in the Larsemann Hills, Antarctica, Polar Biol., 42, 1837–1848, https://doi.org/10.1007/s00300-019-02557-6, 2019.
Hu, J., Chen, G., Hassan, W. M., Chen, H., Li, J., and Du, G.: Fertilization influences the nematode community through changing the plant community in the Tibetan Plateau, Eur. J. Soil Biol., 78, 7–16, https://doi.org/10.1016/j.ejsobi.2016.11.001, 2017.
Jan, A., Arismendi, I., and Giannico, G.: Double Trouble for Native Species Under Climate Change: Habitat Loss and Increased Environmental Overlap With Non-Native Species, Glob. Change Biol., 31, e70040, https://doi.org/10.1111/gcb.70040, 2025.
Kerfahi, D., Park, J., Tripathi, B. M., Singh, D., Porazinska, D. L., Moroenyane, I., and Adams, J. M.: Molecular methods reveal controls on nematode community structure and unexpectedly high nematode diversity, in Svalbard high Arctic tundra, Polar Biol., 40, 765–776, https://doi.org/10.1007/s00300-016-1999-6, 2017.
Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P., and Rasmann, S.: The Abundance, Diversity, and Metabolic Footprint of Soil Nematodes Is Highest in High Elevation Alpine Grasslands, Front. Ecol. Evol., 4, https://doi.org/10.3389/fevo.2016.00084, 2016.
Kletetschka, G. and Hruba, J.: Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades, BioResearch Open Access, 4, 209–217, https://doi.org/10.1089/biores.2015.0008, 2015.
König, S., Vogel, H.-J., Harms, H., and Worrich, A.: Physical, Chemical and Biological Effects on Soil Bacterial Dynamics in Microscale Models, Front. Ecol. Evol., 8, 53, https://doi.org/10.3389/fevo.2020.00053, 2020.
Li, G., Wilschut, R., Luo, S., Chen, H., Wang, X., Du, G., and Geisen, S.: Nematode biomass changes along an elevational gradient are trophic group dependent but independent of body size, Glob. Change Biol., 29, https://doi.org/10.1111/gcb.16814, 2023a.
Li, X., Liu, Z., Zhang, C., Zheng, L., and Li, H.: Altitudinal variation in soil nematode communities in an alpine mountain region of the eastern Tibetan plateau, Eur. J. Soil Biol., 121, 103617, https://doi.org/10.1016/j.ejsobi.2024.103617, 2024.
Li, Z., Yang, Y., Zheng, H., Hu, B., Dai, X., Meng, N., Zhu, J., and Yan, D.: Environmental changes drive soil microbial community assembly across arid alpine grasslands on the Qinghai-Tibetan Plateau, China, Catena, 228, 107175, https://doi.org/10.1016/j.catena.2023.107175, 2023b.
Liu, L., Xie, R., Ma, D., Fu, L., and Wu, X.: Effects of snow removal on seasonal dynamics of soil bacterial community and enzyme activity, Eur. J. Soil Biol., 119, 103564, https://doi.org/10.1016/j.ejsobi.2023.103564, 2023.
Liu, T., Hu, F., and Li, H.: Spatial ecology of soil nematodes: Perspectives from global to micro scales, Soil Biol. Biochem., 137, 107565, https://doi.org/10.1016/j.soilbio.2019.107565, 2019.
Liu, Y., Wu, K.-X., Abozeid, A., Guo, X.-R., Mu, L.-Q., Liu, J., and Tang, Z.-H.: Transcriptomic and metabolomic insights into drought response strategies of two Astragalus species, Ind. Crops Prod., 214, 118509, https://doi.org/10.1016/j.indcrop.2024.118509, 2024.
Lu, L., Li, G., He, N., Li, H., Liu, T., Li, X., Whalen, J. K., Geisen, S., and Liu, M.: Drought shifts soil nematodes to smaller size across biological scales, Soil Biol. Biochem., 184, 109099, https://doi.org/10.1016/j.soilbio.2023.109099, 2023.
Majdi, N., Traunspurger, W., Fueser, H., Gansfort, B., Laffaille, P., and Maire, A.: Effects of a broad range of experimental temperatures on the population growth and body-size of five species of free-living nematodes, J. Therm. Biol., 80, 21–36, https://doi.org/10.1016/j.jtherbio.2018.12.010, 2019.
Marshall, G. J. and Turner, J. (Eds.): 1 – Introduction, in: Climate Change in the Polar Regions, Cambridge University Press, Cambridge, v–viii, ISBN 9780521850100 2011.
Mawarda, P. C., Le Roux, X., van Elsas, J. D., and Salles, J. F.: Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities, Soil Biol. Biochem., 148, 107874, https://doi.org/10.1016/j.soilbio.2020.107874, 2020.
Morán-Ordóñez, A., Briscoe, N. J., and Wintle, B. A.: Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals, Ecography, 41, 308–320, https://doi.org/10.1111/ecog.02850, 2018.
Neher, D. A.: Role of nematodes in soil health and their use as indicators, J. Nematol., 33, 161–168, 2001.
Nielsen, U. N. and Wall, D. H.: The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?, Ecol. Lett., 16, 409–419, https://doi.org/10.1111/ele.12058, 2013.
Nielsen, U. N., Wall, D. H., Adams, B. J., and Virginia, R. A.: Antarctic nematode communities: observed and predicted responses to climate change, Polar Biol., 34, 1701–1711, https://doi.org/10.1007/s00300-011-1021-2, 2011.
Nielsen, U. N., Ayres, E., Wall, D. H., Li, G., Bardgett, R. D., Wu, T., and Garey, J. R.: Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties, Glob. Ecol. Biogeogr., 23, 968–978, https://doi.org/10.1111/geb.12177, 2014.
Nitzbon, J., Schneider Von Deimling, T., Aliyeva, M., Chadburn, S. E., Grosse, G., Laboor, S., Lee, H., Lohmann, G., Steinert, N. J., Stuenzi, S. M., Werner, M., Westermann, S., and Langer, M.: No respite from permafrost-thaw impacts in the absence of a global tipping point, Nat. Clim. Change, 14, 573–585, https://doi.org/10.1038/s41558-024-02011-4, 2024.
Osborne, P., Hall, L. J., Kronfeld-Schor, N., Thybert, D., and Haerty, W.: A rather dry subject; investigating the study of arid-associated microbial communities, Environ. Microbiome, 15, 20, https://doi.org/10.1186/s40793-020-00367-6, 2020.
Pan, J., Zhang, X., Liu, S., Liu, N., Liu, M., Chen, C., Zhang, X., Niu, S., and Wang, J.: Precipitation alleviates microbial C limitation but aggravates N and P limitations along a 3000 km transect on the Tibetan Plateau, Catena, 247, 108535, https://doi.org/10.1016/j.catena.2024.108535, 2024.
Pedra, F., Inácio, M. L., Fareleira, P., Oliveira, P., Pereira, P., and Carranca, C.: Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal, Pollutants, 4, 16–25, https://doi.org/10.3390/pollutants4010002, 2024.
Philipp, L., Blagodatskaya, E., Tarkka, M., and Reitz, T.: Soil microbial communities are more disrupted by extreme drought than by gradual climate shifts under different land-use intensities, Front. Microbiol., 16, 1649443, https://doi.org/10.3389/fmicb.2025.1649443, 2025.
Pires, D., Orlando, V., Collett, R. L., Moreira, D., Costa, S. R., and Inácio, M. L.: Linking Nematode Communities and Soil Health under Climate Change, Sustainability, 15, 11747, https://doi.org/10.3390/su151511747, 2023.
Potapov, A., Lindo, Z., Buchkowski, R., and Geisen, S.: Multiple dimensions of soil food-web research: History and prospects, Eur. J. Soil Biol., 117, 103494, https://doi.org/10.1016/j.ejsobi.2023.103494, 2023.
Rantanen, M., Karpechko, A. Yu., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Razgour, O., Persey, M., Shamir, U., and Korine, C.: The role of climate, water and biotic interactions in shaping biodiversity patterns in arid environments across spatial scales, Divers. Distrib., 24, 1440–1452, https://doi.org/10.1111/ddi.12773, 2018.
Romanowicz, K. J. and Kling, G. W.: Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra, Environ. Microbiol., 24, 6220–6237, https://doi.org/10.1111/1462-2920.16218, 2022.
Ruess, L., Michelsen, A., Schmidt, I. K., and Jonasson, S.: Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils, Plant Soil, 212, 63–73, https://doi.org/10.1023/A:1004567816355, 1999.
Sánchez-Moreno, S. and Ferris, H.: Nematode ecology and soil health, in: Plant parasitic nematodes in subtropical and tropical agriculture, 62–86, https://doi.org/10.1079/9781786391247.0062, 2018.
Schiestl, F. P., Wartmann, B. A., Bänziger, R., Györög-Kobi, B., Hess, K., Luder, J., Merz, E., Peter, B., Reutlinger, M., Richter, T., Senn, H., Ulrich, T., Waldeck, B., Wartmann, C., Wüest, R., Wüest, W., and Rusman, Q.: The Late Orchid Catches the Bee: Frost Damage and Pollination Success in the Face of Global Warming in a European Terrestrial Orchid, Ecol. Evol., 15, e70729, https://doi.org/10.1002/ece3.70729, 2025.
Shain, D. H., Novis, P. M., Cridge, A. G., Zawierucha, K., Geneva, A. J., and Dearden, P. K.: Five animal phyla in glacier ice reveal unprecedented biodiversity in New Zealand's Southern Alps, Sci. Rep., 11, 3898, https://doi.org/10.1038/s41598-021-83256-3, 2021.
Shepard, I. D., Wissinger, S. A., and Greig, H. S.: Elevation alters outcome of competition between resident and range-shifting species, Glob. Change Biol., 27, 270–281, https://doi.org/10.1111/gcb.15401, 2021.
Simmons, B. L., Wall, D. H., Adams, B. J., Ayres, E., Barrett, J. E., and Virginia, R. A.: Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica, Soil Biol. Biochem., 41, 2052–2060, https://doi.org/10.1016/j.soilbio.2009.07.009, 2009.
Singh, S. and Singh, R.: High-altitude clear-sky direct solar ultraviolet irradiance at Leh and Hanle in the western Himalayas: Observations and model calculations, J. Geophys. Res. Atmospheres, 109, https://doi.org/10.1029/2004JD004854, 2004.
Sjöberg, Y., Jan, A., Painter, S. L., Coon, E. T., Carey, M. P., O'Donnell, J. A., and Koch, J. C.: Permafrost Promotes Shallow Groundwater Flow and Warmer Headwater Streams, Water Resour. Res., 57, e2020WR027463, https://doi.org/10.1029/2020WR027463, 2021.
Song, D., Pan, K., Tariq, A., Sun, F., Li, Z., Sun, X., Zhang, L., Olusanya, O. A., and Wu, X.: Large-scale patterns of distribution and diversity of terrestrial nematodes, Appl. Soil Ecol., 114, 161–169, https://doi.org/10.1016/j.apsoil.2017.02.013, 2017.
Sorensen, P. L. and Michelsen, A.: Long-term warming and litter addition affects nitrogen fixation in a subarctic heath, Glob. Change Biol., 17, 528–537, https://doi.org/10.1111/j.1365-2486.2010.02234.x, 2011.
Sorte, C. J. B., Ibáñez, I., Blumenthal, D. M., Molinari, N. A., Miller, L. P., Grosholz, E. D., Diez, J. M., D'Antonio, C. M., Olden, J. D., Jones, S. J., and Dukes, J. S.: Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance, Ecol. Lett., 16, 261–270, https://doi.org/10.1111/ele.12017, 2013.
Trejos-Espeleta, J. C., Marin-Jaramillo, J. P., Schmidt, S. K., Sommers, P., Bradley, J. A., and Orsi, W. D.: Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic, Proc. Natl. Acad. Sci., 121, e2402689121, https://doi.org/10.1073/pnas.2402689121, 2024.
Treonis, A. M. and Wall, D. H.: Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic Dry Valleys, Integr. Comp. Biol., 45, 741–750, https://doi.org/10.1093/icb/45.5.741, 2005.
Van Daele, R., Lee, H., Althuizen, I., and Vandegehuchte, M. L.: Experimental warming and permafrost thaw decrease soil nematode abundance in northern palsa peatlands, Web Ecol., 25, 121–135, https://doi.org/10.5194/we-25-121-2025, 2025.
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. R., Matveeva, E., Mayad, E. H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D. H., Wilschut, R., Wright, D. G., Yang, J., and Crowther, T. W.: Soil nematode abundance and functional group composition at a global scale, Nature, 572, 194–198, https://doi.org/10.1038/s41586-019-1418-6, 2019.
Vlaar, L. E., Bertran, A., Rahimi, M., Dong, L., Kammenga, J. E., Helder, J., Goverse, A., and Bouwmeester, H. J.: On the role of dauer in the adaptation of nematodes to a parasitic lifestyle, Parasit. Vectors, 14, 554, https://doi.org/10.1186/s13071-021-04953-6, 2021.
Wall, D. H. and Virginia, R. A.: Controls on soil biodiversity: insights from extreme environments, Appl. Soil Ecol., 13, 137–150, https://doi.org/10.1016/S0929-1393(99)00029-3, 1999.
Wilschut, R. A., Geisen, S., Martens, H., Kostenko, O., De Hollander, M., Ten Hooven, F. C., Weser, C., Snoek, L. B., Bloem, J., Caković, D., Čelik, T., Koorem, K., Krigas, N., Manrubia, M., Ramirez, K. S., Tsiafouli, M. A., Vreš, B., and Van Der Putten, W. H.: Latitudinal variation in soil nematode communities under climate warming-related range-expanding and native plants, Glob. Change Biol., 25, 2714–2726, https://doi.org/10.1111/gcb.14657, 2019.
Xiong, D., Wei, C., Wubs, E. R. J., Veen, G. F., Liang, W., Wang, X., Li, Q., Van der Putten, W. H., and Han, X.: Nonlinear responses of soil nematode community composition to increasing aridity, Glob. Ecol. Biogeogr., 29, 117–126, https://doi.org/10.1111/geb.13013, 2020.
Yang, Z., Chen, J., Wang, J., Liu, Z., Meng, L., Cui, H., Xiao, S., Zhang, A., Liu, K., An, L., Chen, S., and Nielsen, U. N.: Shrub removal suppresses the effects of warming on nematode communities in an alpine grassy ecosystem, Appl. Soil Ecol., 211, 106117, https://doi.org/10.1016/j.apsoil.2025.106117, 2025.
Yeates, G. W.: Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals, Biol. Fertil. Soils, 37, 199–210, https://doi.org/10.1007/s00374-003-0586-5, 2003.
Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W., and Georgieva, S. S.: Feeding habits in soil nematode families and genera-an outline for soil ecologists., J. Nematol., 25, 315–331, https://doi.org/10.1006/jipa.1993.1100, 1993.
Yergeau, E., Bokhorst, S., Kang, S., Zhou, J., Greer, C. W., Aerts, R., and Kowalchuk, G. A.: Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments, ISME J., 6, 692–702, https://doi.org/10.1038/ismej.2011.124, 2012.
Zhang, G., Sui, X., Li, Y., Jia, M., Wang, Z., Han, G., and Wang, L.: The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China, J. Soils Sediments, 20, 2166–2180, https://doi.org/10.1007/s11368-019-02555-5, 2020a.
Zhang, Q., Buyantuev, A., Fang, X., Han, P., Li, A., Li, F. Y., Liang, C., Liu, Q., Ma, Q., Niu, J., Shang, C., Yan, Y., and Zhang, J.: Ecology and sustainability of the Inner Mongolian Grassland: Looking back and moving forward, Landsc. Ecol., 35, 2413–2432, https://doi.org/10.1007/s10980-020-01083-9, 2020b.
Zhang, X., Nian, L., Li, L., Liu, X., and Wang, Q.: Soil Nematodes Regulate Ecosystem Multifunctionality Under Different Zokor Mounds in Qinghai–Tibet Alpine Grasslands, Biology, 14, 1200, https://doi.org/10.3390/biology14091200, 2025a.
Zhang, Y. and Liu, B.: Biological soil crusts and their potential applications in the sand land over Qinghai-Tibet Plateau, Res. Cold Arid Reg., 16, 20–29, https://doi.org/10.1016/j.rcar.2024.03.001, 2024.
Zhang, Y., Xi, H., Whalen, J. K., Han, J., Liu, X., and Liu, Y.: Fungicide, not nitrogen, reduces soil nematode diversity and multifunctionality in alpine grasslands, Appl. Soil Ecol., 215, 106481, https://doi.org/10.1016/j.apsoil.2025.106481, 2025b.
Zheng, L., Wu, S., Lu, L., Li, T., Liu, Z., Li, X., and Li, H.: Unraveling the interaction effects of soil temperature and moisture on soil nematode community: A laboratory study, Eur. J. Soil Biol., 118, 103537, https://doi.org/10.1016/j.ejsobi.2023.103537, 2023.
Zhou, J., Wu, J., Huang, J., Sheng, X., Dou, X., and Lu, M.: A synthesis of soil nematode responses to global change factors, Soil Biol. Biochem., 165, 108538, https://doi.org/10.1016/j.soilbio.2021.108538, 2022.
Short summary
How do soil nematodes survive in Earth's harshest places? We synthesized global research from polar, alpine, and arid regions. We found they share common survival strategies, like suspending their metabolism, and rely on simple microbe-based food webs. Our review concludes that climate change impacts them mostly indirectly, by altering permafrost or vegetation. Understanding these sensitive organisms is vital for predicting the stability of nutrient cycling in Earth's most vulnerable ecosystems.
How do soil nematodes survive in Earth's harshest places? We synthesized global research from...