Cusumano, A. and Lievens, B.: Microbe-mediated alterations in floral nectar: consequences for insect parasitoids, Curr. Opin. Insect Sci., 60, 101116, https://doi.org/10.1016/j.cois.2023.101116, 2023.
Darlington, J. P. E. C.: Fungus-growing termites (
Macrotermitinae), in: Encyclopedia of Social Insects, edited by: Starr, C. K., Springer, Cham, https://doi.org/10.1007/978-3-030-28102-1_47, 2021.
de Vega, C. and Herrera, C. M.: Relationships among nectar-dwelling yeasts, flowers and ants: patterns and incidence on nectar traits, Oikos, 121, 1878–1888, https://doi.org/10.1111/j.1600-0706.2012.20293.x, 2012.
Gouveia, C., Asensi, M. D., Zahner, V., Rangel, E. F., and de Oliveira, S. M. P.: Study on the Bacterial Midgut Microbiota Associated to Different Brazilian Populations of
Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae), Neotrop. Entomol., 37, 597–601, 2008.
Hernández-Santiago, F., Díaz-Aguilar, I., Pérez-Moreno, J., and Tovar-Salinas, J. L.: Interactions between soil mesofauna and edible ectomycorrhizal mushrooms, in: Mushrooms, humans and nature in a changing world, edited by: Pérez-Moreno, J., Guerin-Laguette, A., Flores Arzú, R., and Yu, F. Q., Springer, Cham, https://doi.org/10.1007/978-3-030-37378-8_14, 2020.
Khadempour, L., Huan, V., Keefer, K., Carlos-Shanley, C., Nagamoto, N. S., Miranda, A., Pupo, M. T., and Currie, C. R.: Metagenomics Reveals Diet-Specific Specialization of Bacterial Communities in Fungus Gardens of Grass- and Dicot-Cutter Ants, Front. Microbiol., 11, 570770, https://doi.org/10.3389/fmicb.2020.570770, 2020.
Li, X. and Wiens, J. J.: Estimating global biodiversity: the role of cryptic insect species, Syst. Biol., 72, 391–403, https://doi.org/10.1093/sysbio/syac069, 2023.
Maurice-Lira, J. V., Romero-Nápoles, J., Ferrera-Cerrato, R., Flores-Maldonado, K. Y., Pérez-Moreno, J., Guzmán-Franco, A. W., and González-Hernández, H.: The microbiota of stingless bees: adaptive advantages in their development, feeding, and protection, Entomol. Gen., 44, 779–795, https://doi.org/10.1127/entomologia/2024/2360, 2024.
Menezes, C., Vollet-Neto, A., Marsaioli, A. J., Zampieri, D., Fontoura, I. C., Luchessi, A. D., and Imperatriz-Fonseca, V. L.: A Brazilian social bee must cultivate fungus to survive, Curr. Biol., 25, 2851–2855, https://doi.org/10.1016/j.cub.2015.09.028, 2015.
Mondal, S., Somani, J., Roy, S., Babu, A., and Pandey, A. K.: Insect microbial symbionts: ecology, interactions, and biological significance, Microorganisms, 11, 2665, https://doi.org/10.3390/microorganisms11112665, 2023.
Ortega, H. E., Lourenço, V. B., Chevrette, M. G., Ferreira, L. L., Ramos-Alvarenga, R. F., Melo, W. G. P., Venâncio, T., Currie, C. R., Andricopulo, A. D., Bugni, T. S., and Pupo, M. T.: Antileishmanial macrolides from ant-associated
Streptomyces sp. ISID311, Bioorg. Med. Chem. Lett., 32, 116016, https://doi.org/10.1016/j.bmc.2021.116016, 2021.
Paludo, C. R., Menezes, C., Silva-Junior, E. A., Vollet-Neto, A., Andrade-Dominguez, A., Pishchany, G., and Pupo, M. T.: Stingless bee larvae require fungal steroids to pupate, Sci. Rep., 8, 1122, https://doi.org/10.1038/s41598-018-19583-9, 2018.
Pessotti, R. de C., Hansen, B. L., Reaso, J. N., Ceja-Navarro, J. A., El-Hifnawi, L., Brodie, E. L., and Traxler, M. F.: Multiple lineages of
Streptomyces produce antimicrobials within passalid beetle galleries across eastern North America, eLife, 10, e65091, https://doi.org/10.7554/eLife.65091, 2021.
Pollierer, M. M., Scheu, S., and Tiunov, A. V.: Isotope analyses of amino acids in fungi and fungal feeding Diptera larvae allow differentiating ectomycorrhizal and saprotrophic fungi-based food chains, Funct. Ecol., 34, 2375–2388, https://doi.org/10.1111/1365-2435.13654, 2020.
Qadri, M., Short, S., Gast, K., Hernandez, J., and Wong, A. C.-N.: Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management, Front. Sustain. Food Syst., 4, 547751, https://doi.org/10.3389/fsufs.2020.547751, 2020.
Schultz, T. R.: Fungus-farming ants (
Attini in part), in: Encyclopedia of Social Insects, edited by: Starr, C., Springer, Cham, https://doi.org/10.1007/978-3-319-90306-4_46-1, 2020.
Schultz, T. R.: The convergent evolution of agriculture in humans and fungus-farming ants, in: The convergent evolution of agriculture in humans and insects, edited by: Schultz, T. R., Gawne, R., and Peregrine, P. N., MIT Press, Cambridge, Massachusetts, Vienna Series in Theoretical Biology, 281–313, https://doi.org/10.7551/mitpress/13600.003.0021, 2022.
Singh, B., Mal, G., Gautam, S. K., and Mukesh, M.: Insect Gut – A Treasure of Microbes and Microbial Enzymes, in: Advances in Animal Biotechnology, Springer, Cham, https://doi.org/10.1007/978-3-030-21309-1_5, 2019.
Sinotte, V. M., Renelies-Hamilton, J., Andreu-Sánchez, S., Vasseur-Cognet, M., and Poulsen, M.: Selective enrichment of founding reproductive microbiomes allows extensive vertical transmission in a fungus-farming termite, P. Roy. Soc. B, 290, 20231559, https://doi.org/10.1098/rspb.2023.1559, 2023.
Six, D. L. and Klepzig, K. D.: Context Dependency in Bark Beetle-Fungus Mutualisms Revisited: Assessing Potential Shifts in Interaction Outcomes Against Varied Genetic, Ecological, and Evolutionary Backgrounds, Front. Microbiol., 12, 682187, https://doi.org/10.3389/fmicb.2021.682187, 2021.
Soto-Robles, L.V., López, M.F., Torres-Banda, V., Cano-Ramírez, C., Obregón-Molina, G., and Zúñiga, G.: The Bark Beetle
Dendroctonus rhizophagus (Curculionidae: Scolytinae) Has Digestive Capacity to Degrade Complex Substrates: Functional Characterization and Heterologous Expression of an
α-Amylase, Int. J. Mol. Sci., 22, 36, https://doi.org/10.3390/ijms22010036, 2021.
Toro-Delgado, E., Hernández-Roldán, J., Dincă, V., Vicente, J. C., Shaw, M. R., Quicke, D. L. J., Vodă, R., Albrecht, M., Fernández-Triana, J., Vidiella, B., Valverde, S., Dapporto, L., Hebert, P. D. N., Talavera, G., and Vila, R.: Butterfly–parasitoid–hostplant interactions in Western Palaearctic Hesperiidae: a DNA barcoding reference library, Zool. J. Linn. Soc., 196, 757–774, https://doi.org/10.1093/zoolinnean/zlac052, 2022.
Tsegaye, B., Balomajumder, C., and Roy, P.: Isolation and characterization of novel lignolytic, cellulolytic, and hemicellulolytic bacteria from wood-feeding termite
Cryptotermes brevis, Int. Microbiol., 22, 29–39, https://doi.org/10.1007/s10123-018-0024-z, 2019.
Um, S., Fraimout, A., Sapountzis, P., and Poulsen, M.: The fungus-growing termite
Macrotermes natalensis harbors bacillaene-producing
Bacillus sp. that inhibit potentially antagonistic fungi, Sci. Rep., 3, 3250, https://doi.org/10.1038/srep03250, 2013.
Van Moll, L., De Smet, J., Cos, P., and Van Campenhout, L.: Microbial symbionts of insects as a source of new antimicrobials: a review, Crit. Rev. Microbiol., 47, 562–579, https://doi.org/10.1080/1040841X.2021.1907302, 2021.
Vannette, R. L., Bichier, P., and Philpott, S. M.: The presence of aggressive ants is associated with fewer insect visits to and altered microbe communities in coffee flowers, Basic Appl. Ecol., 20, 62–74, https://doi.org/10.1016/j.baae.2017.02.002, 2017.
Wagner, D. L.: Insect declines in the Anthropocene, Annu. Rev. Entomol., 65, 457–480, https://doi.org/10.1146/annurev-ento-011019-025151, 2020.
Wagner, D. L., Grames, E. M., Forister, M. L., and Stopak, D.: Insect decline in the Anthropocene: death by a thousand cuts, P. Natl. Acad. Sci. USA, 118, e2023989118, https://doi.org/10.1073/pnas.2023989118, 2021.
Yang, M., Deng, G.-C., Gong, Y.-B., and Huang, S.-Q.: Nectar yeasts enhance the interaction between
Clematis akebioides and its bumblebee pollinator, Plant Biol., 21, 732–737, https://doi.org/10.1111/plb.12957, 2019.
Zhao, M., Lin, X., and Guo, X.: The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals, Insects, 13, 583, https://doi.org/10.3390/insects13070583, 2022.
Zhukova, M., Sapountzis, P., Schiøtt, M., and Boomsma, J. J.: Phylogenomic analysis and metabolic role reconstruction of mutualistic Rhizobiales hindgut symbionts of Acromyrmex leaf-cutting ants, FEMS Microbiol. Ecol., 98, fiac084, https://doi.org/10.1093/femsec/fiac084, 2022.