Articles | Volume 20, issue 1
https://doi.org/10.5194/we-20-19-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-20-19-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pollen morphological variability correlates with a large-scale gradient of aridity
Hindel Fatmi
Department of Natural and Life Sciences, Faculty of Exact Sciences
and Natural and Life Sciences, University of Larbi Tébessi – Tébessa, 12002
Tébessa, Algeria
Souhaïl Mâalem
Department of Natural and Life Sciences, Faculty of Exact Sciences
and Natural and Life Sciences, University of Larbi Tébessi – Tébessa, 12002
Tébessa, Algeria
Bouchra Harsa
Department of Natural and Life Sciences, Faculty of Exact Sciences
and Natural and Life Sciences, University of Larbi Tébessi – Tébessa, 12002
Tébessa, Algeria
Department of Biology, University of Badji Mokhtar – Annaba, 23000
Annaba, Algeria
University of Badji Mokhtar – Annaba, Faculty of Science, Laboratory of Plant Biology and Environment (LBVE), Axis: Medicinal Plants and Natural Substances, 23000 Annaba, Algeria
Ahmed Dekak
Department of Natural and Life Sciences, Faculty of Exact Sciences
and Natural and Life Sciences, University of Larbi Tébessi – Tébessa, 12002
Tébessa, Algeria
Department of Natural and Life Sciences, Faculty of Exact Sciences
and Natural and Life Sciences, University of Larbi Tébessi – Tébessa, 12002
Tébessa, Algeria
Laboratory of Natural Resources and Management of Sensitive
Environments “RNAMS”, University of Larbi Ben M'hidi, 04000 Oum-El-Bouaghi,
Algeria
Related subject area
Biodiversity
Revisiting the debate: documenting biodiversity in the age of digital and artificially generated images
Pollination supply models from a local to global scale
Invasive shallow-water foraminifera impacts local biodiversity mostly at densities above 20 %: the case of Corfu Island
Effects of management cessation on hoverflies (Diptera: Syrphidae) across Austrian and Swiss mountain meadows
Ödenwinkel: an Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity
The influence of plant species richness on stress recovery of humans
The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands
Modelling plant invasion pathways in protected areas under climate change: implication for invasion management
Genetic diversity in the Alpine flatworm Crenobia alpina
Incorporating natural and human factors in habitat modelling and spatial prioritisation for the Lynx lynx martinoi
Relations between environmental gradients and diversity indices of benthic invertebrates in lotic systems of northern Italy
The first shoots of a modern morphometrics approach to the origins of agriculture
Do tree-species richness, stand structure and ecological factors affect the photosynthetic efficiency in European forests?
Comment on "Opinion paper: Forest management and biodiversity": the role of protected areas is greater than the sum of its number of species
Partitioning of diversity: the "within communities" component
Diversity did not influence soil water use of tree clusters in a temperate mixed forest
Diego Sousa Campos, Rafael Ferreira de Oliveira, Lucas de Oliveira Vieira, Pedro Henrique Negreiros de Bragança, Jorge Luiz Silva Nunes, Erick Cristofore Guimarães, and Felipe Polivanov Ottoni
Web Ecol., 23, 135–144, https://doi.org/10.5194/we-23-135-2023, https://doi.org/10.5194/we-23-135-2023, 2023
Short summary
Short summary
This study examines the risks of relying solely on images for biodiversity documentation. We conducted an experiment with 621 participants, revealing challenges in distinguishing artificial-intelligence-generated images. Trust is vital in biodiversity documentation, but eroded trust can hinder conservation. We call for improved communication, collaboration, and journal policies for data validation to preserve scientific credibility amidst technological advancements.
Angel Giménez-García, Alfonso Allen-Perkins, Ignasi Bartomeus, Stefano Balbi, Jessica L. Knapp, Violeta Hevia, Ben Alex Woodcock, Guy Smagghe, Marcos Miñarro, Maxime Eeraerts, Jonathan F. Colville, Juliana Hipólito, Pablo Cavigliasso, Guiomar Nates-Parra, José M. Herrera, Sarah Cusser, Benno I. Simmons, Volkmar Wolters, Shalene Jha, Breno M. Freitas, Finbarr G. Horgan, Derek R. Artz, C. Sheena Sidhu, Mark Otieno, Virginie Boreux, David J. Biddinger, Alexandra-Maria Klein, Neelendra K. Joshi, Rebecca I. A. Stewart, Matthias Albrecht, Charlie C. Nicholson, Alison D. O'Reilly, David William Crowder, Katherine L. W. Burns, Diego Nicolás Nabaes Jodar, Lucas Alejandro Garibaldi, Louis Sutter, Yoko L. Dupont, Bo Dalsgaard, Jeferson Gabriel da Encarnação Coutinho, Amparo Lázaro, Georg K. S. Andersson, Nigel E. Raine, Smitha Krishnan, Matteo Dainese, Wopke van der Werf, Henrik G. Smith, and Ainhoa Magrach
Web Ecol., 23, 99–129, https://doi.org/10.5194/we-23-99-2023, https://doi.org/10.5194/we-23-99-2023, 2023
Short summary
Short summary
Modelling tools may provide a method of measuring pollination supply and promote the use of ecological intensification techniques among farmers and decision-makers. This study benchmarks different modelling approaches to provide clear guidance on which pollination supply models perform best at different spatial scales. These findings are an important step in bridging the gap between academia and stakeholders in modelling ecosystem service delivery under ecological intensification.
Anna E. Weinmann, Olga Koukousioura, Maria V. Triantaphyllou, and Martin R. Langer
Web Ecol., 23, 71–86, https://doi.org/10.5194/we-23-71-2023, https://doi.org/10.5194/we-23-71-2023, 2023
Short summary
Short summary
This study analyzes the diversity of benthic foraminifera at the range expansion front of the invasive species Amphistegina lobifera in Corfu (central Mediterranean). The species has been suggested to impact local diversity and community structures, and our results confirm these effects as soon as A. lobifera exceeds a specific abundance threshold (> 20 %). Nevertheless, we found that the study area reveals an overall high biodiversity that can be attributed to its unique location.
Ronnie Walcher, Raja Imran Hussain, Johannes Karrer, Andreas Bohner, David Brandl, Johann G. Zaller, Arne Arnberger, and Thomas Frank
Web Ecol., 20, 143–152, https://doi.org/10.5194/we-20-143-2020, https://doi.org/10.5194/we-20-143-2020, 2020
Short summary
Short summary
The abandonment of extensively managed mountainous meadows affects the diversity of both plants and associated pollinators. However, not much is known about the effects of abandonment on hoverflies which consitute an important pollinator group in grasslands. Our research suggests that extensive management is most beneficial in preserving hoverfly richness in mountainous grasslands.
Robert R. Junker, Maximilian Hanusch, Xie He, Victoria Ruiz-Hernández, Jan-Christoph Otto, Sabine Kraushaar, Kristina Bauch, Florian Griessenberger, Lisa-Maria Ohler, and Wolfgang Trutschnig
Web Ecol., 20, 95–106, https://doi.org/10.5194/we-20-95-2020, https://doi.org/10.5194/we-20-95-2020, 2020
Short summary
Short summary
We introduce the Alpine research platform Ödenwinkel to promote observational and experimental research on the emergence of multidiversity and ecosystem complexity. The Ödenwinkel platform will be available as a long-term ecological research site where researchers from various disciplines can contribute to the accumulation of knowledge on ecological successions and on how interactions between various taxonomic groups structure ecological complexity in this Alpine environment.
Petra Lindemann-Matthies and Diethart Matthies
Web Ecol., 18, 121–128, https://doi.org/10.5194/we-18-121-2018, https://doi.org/10.5194/we-18-121-2018, 2018
Short summary
Short summary
We studied the influence of plant diversity on recovery from stress. The blood pressure of stressed people decreased more strongly when they were looking at species-rich vegetation instead of bare ground or vegetation consisting of only a few species during relaxation. Our results indicate that species-rich vegetation may contribute to recovery from stress, which should be considered in landscape management and planning.
Sølvi Wehn, Knut Anders Hovstad, and Line Johansen
Web Ecol., 18, 55–65, https://doi.org/10.5194/we-18-55-2018, https://doi.org/10.5194/we-18-55-2018, 2018
Short summary
Short summary
We studied the effect of abandonment of extensively managed semi-natural grasslands on indicators of ecosystem services (ES) and found both positive and negative effects. We also studied relationships between ESs and plant species richness and whether abandonment affect these relationships. For several ESs we observed positive relationships. However, the relationships differed often between the abandoned and managed grasslands because the relationships were less pronounced in the managed.
Chun-Jing Wang, Ji-Zhong Wan, Hong Qu, and Zhi-Xiang Zhang
Web Ecol., 17, 69–77, https://doi.org/10.5194/we-17-69-2017, https://doi.org/10.5194/we-17-69-2017, 2017
Short summary
Short summary
We used an original global approach to explore the potential relationship between PAs and the intentional movement of IPS based on climate change. Climate change developed the potential pathways for IPS in PAs, and the ability of natural dispersal encourages IPS to invade non-native habitats in the potential movement pathways in PAs. This study shows the importance of the development of global conservation planning for PAs and biological invasion.
Martin Brändle, Jan Sauer, Lars Opgenoorth, and Roland Brandl
Web Ecol., 17, 29–35, https://doi.org/10.5194/we-17-29-2017, https://doi.org/10.5194/we-17-29-2017, 2017
K. Laze and A. Gordon
Web Ecol., 16, 17–31, https://doi.org/10.5194/we-16-17-2016, https://doi.org/10.5194/we-16-17-2016, 2016
Short summary
Short summary
We show areas for extending current protected areas and creating new ones for endangered sub-species of the Lynx lynx martinoi in the Albania–Macedonia–Kosovo and Montenegro–Albania–Kosovo cross-border areas. Our results highlight the importance international cooperation can have for lynx conservation. We used local knowledge on forests in the study area, our analytical skills, and our full interest in the lynx conservation. We did this study working remotely.
V. G. Aschonitis, G. Castaldelli, and E. A. Fano
Web Ecol., 16, 13–15, https://doi.org/10.5194/we-16-13-2016, https://doi.org/10.5194/we-16-13-2016, 2016
Short summary
Short summary
The relations between environmental gradients and traditional diversity indices (taxonomic richness, diversity and evenness) of benthic macroinvertebrate communities in the lotic systems of northern Italy were analyzed. Redundancy analysis (RDA) was used to describe the response of taxa to environmental gradients. Diversity indices were analyzed using generalized linear models (GLMs) with explanatory variables the first two major RDA axes.
V. Bonhomme, E. Forster, M. Wallace, E. Stillman, M. Charles, and G. Jones
Web Ecol., 16, 1–2, https://doi.org/10.5194/we-16-1-2016, https://doi.org/10.5194/we-16-1-2016, 2016
Short summary
Short summary
The transition from a mobile hunter-gatherer lifestyle to one of settled agriculture is arguably the most fundamental change in the development of human society (Lev-Yadun et al., 2000). The establishment of agricultural economies, emerging initially in the Fertile Crescent of the Near East (Nesbitt, 2002), required the domestication of crops; ancient plant remains recovered from early
farming sites provide direct evidence for this process of domestication.
F. Bussotti and M. Pollastrini
Web Ecol., 15, 39–41, https://doi.org/10.5194/we-15-39-2015, https://doi.org/10.5194/we-15-39-2015, 2015
Short summary
Short summary
The effects of tree diversity on the photosynthetic efficiency of tree species were assessed on six European mature forests (distributed along a latitudinal gradient) and in forest stands planted ad hoc with different levels of tree-species richness. The behaviour of Picea abies (spruce) was compared at the different sites. Site-specific responses were detected in relation to the age of the stands and their developmental stage.
M. Mikoláš, M. Svoboda, V. Pouska, R. C. Morrissey, D. C. Donato, W. S. Keeton, T. A. Nagel, V. D. Popescu, J. Müller, C. Bässler, J. Knorn, L. Rozylowicz, C. M. Enescu, V. Trotsiuk, P. Janda, H. Mrhalová, Z. Michalová, F. Krumm, and D. Kraus
Web Ecol., 14, 61–64, https://doi.org/10.5194/we-14-61-2014, https://doi.org/10.5194/we-14-61-2014, 2014
Short summary
Short summary
Clear-fellings to introduce heterogeneity can be an important component of a forest management plan. However, it is misleading to compare clear-fellings to protected areas dominated by old-growth forests using a simplistic measure of biodiversity and without a landscape perspective. To minimize the well-documented role of protected areas can have adverse effects on forested landscapes, primary forest remnants, and taxa that rely on forest structural elements characteristic of old-growth forests.
H.-R. Gregorius
Web Ecol., 14, 51–60, https://doi.org/10.5194/we-14-51-2014, https://doi.org/10.5194/we-14-51-2014, 2014
M. Meißner, M. Köhler, and D. Hölscher
Web Ecol., 13, 31–42, https://doi.org/10.5194/we-13-31-2013, https://doi.org/10.5194/we-13-31-2013, 2013
Cited articles
Amer, W. M. and Amany, S. A.: Infra-specific pollen diversity of Atriplex halimus L. in
Egyptian flora, International Journal of Research Studies in Biosciences, 2, 36–48, 2014.
Angiosperm Phylogeny Group: An update of the Angiosperm Phylogeny Group
classification for the orders and families of flowering plants: APG III,
Bot. J. Linn. Soc., 161, 105–121, https://doi.org/10.1111/j.1095-8339.2009.00996.x, 2009.
Beaulieu, J. M., Leitch, I. J., Patel, S., Pendharkar, A., and Knight, C. A.:
Genome size is a strong predictor of cell size and stomatal density in
angiosperms, New Phytol., 179, 975–986.
https://doi.org/10.1111/j.1469-8137.2008.02528.x, 2008.
Benzarti, M., Rejeb, K. B., Debez, A., and Abdelly, C.: Environmental and
economical opportunities for the valorisation of the genus Atriplex: new insights,
in: Crop Improvement, edited by: Hakeem, K., Ahmad, P., and Ozturk, M., Springer, Boston, MA,
441–457, https://doi.org/10.1007/978-1-4614-7028-1_16, 2013.
Bokszczanin, K. L. and Fragkostefanakis, S.: Solanaceae pollen
thermotolerance initial training network C: Perspectives on deciphering
mechanisms underlying plant heat stress response and thermotolerance, Front. Plant Sci., 4,
315, https://doi.org/10.3389/fpls.2013.00315, 2013.
Charlesworth, D. and Charlesworth, B.: The effects of selection in the
gametophyte stage on mutational load, Evolution, 46, 703–720, https://doi.org/10.1111/j.1558-5646.1992.tb02077.x, 1992.
Chaudhury, R. and Shivanna, K. R.: Differential responses of Pennisetum and Secale pollen,
Phytomorphology, 37, 181–185, 1987.
Chenchouni, H.: Edaphic factors controlling the distribution of inland
halophytes in an ephemeral salt lake “Sabkha ecosystem” at North African
semi-arid lands, Sci. Total Environ., 575, 660–671, https://doi.org/10.1016/j.scitotenv.2016.09.071, 2017.
Delph, L. F.: Sex-differential resource allocation patterns in the
subdioecious shrub Hebe subalpina, Ecology, 71, 1342–1351, https://doi.org/10.2307/1938271,
1990.
Djellab, S., Mebarkia, N., Neffar, S., and Chenchouni, H.: Diversity and
phenology of hoverflies (Diptera: Syrphidae) in pine forests (Pinus halepensis Miller) of
Algeria, J. Asia-Pac. Entomol., 22, 766–777, https://doi.org/10.1016/j.aspen.2019.05.012, 2019.
Dobson, H. E. and Bergström, G.: The ecology and evolution of pollen
odors, Plant Syst. Evol., 222, 63–87, https://doi.org/10.1007/bf00984096, 2000.
Edlund, A. F., Swanson, R., and Preuss, D.: Pollen and stigma structure and
function: the role of diversity in pollination, Plant Cell, 16, S84–S97,
https://doi.org/10.1105/tpc.015800, 2004.
Ejsmond, M. J., Wrońska-Pilarek, D., Ejsmond, A., Dragosz-Kluska, D.,
Karpińska-Kołaczek, M., Kołaczek, P., and Kozłowski, J.: Does
climate affect pollen morphology? Optimal size and shape of pollen grains
under various desiccation intensity, Ecosphere, 2, 1–15,
https://doi.org/10.1890/ES11-00147.1, 2011.
Erdtman, G.: Pollen Morphology and Plant Taxonomy. Angiosperms, Almkvist & Wiksell, Stockholm, 1952.
Firon, N., Nepi, M., and Pacini, E.: Water status and associated processes
mark critical stages in pollen development and functioning, Ann. Bot., 109,
1201–1214, https://doi.org/10.1093/aob/mcs070, 2012.
Flores Olvera, H.: Taxonomía del grupo Atriplex pentandra (Chenopodiaceae), Anales del Instituto de Biología Serie Botánica, 63, 155–194, 1992.
García, C. C., Nepi, M., and Pacini, E.: It is a matter of timing:
asynchrony during pollen development and its consequences on pollen
performance in angiosperms – a review, Protoplasma, 254, 57–73,
https://doi.org/10.1007/s00709-016-0950-6, 2017.
Grímsson, F., Grimm, G. W., and Zetter, R.: Evolution of pollen
morphology in Loranthaceae, Grana, 57, 16–116,
https://doi.org/10.1080/00173134.2016.1261939, 2018.
Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse,
M., Buchner, R., Svojtka, M., and Frosch-Radivo, A.: Illustrated pollen
terminology, Springer, Cham, https://doi.org/10.1007/978-3-319-71365-6,
2018.
Hallé, F.: Eloge de la plante. Pour une nouvelle biologie, Le Seuil, Paris, 2015.
Hao, H. P., Zhang, J. T., and Yan, S.: Scanning electron microscope
observation on the pollen grains of Chenopodiaceae, Acta Bot. Sin., 31, 650–652, 1989.
Havens, K., Preston, K. A., Richardson, C., and Delph, L. F.: Nutrients affect
allocation to male and female function in Abutilon theophrasti (Malvaceae), Am. J. Bot., 82, 726–733,
https://doi.org/10.1002/j.1537-2197.1995.tb15683.x, 1995.
Katifori, E., Alben, S., Cerda, E., Nelson, D. R., and Dumais, J.: Foldable
structures and the natural design of pollen grains, P. Natl. Acad. Sci. USA, 107,
7635–7639, https://doi.org/10.1073/pnas.0911223107, 2010.
Kearns, C. A. and Inouye, D. W.: Techniques for pollination biologists,
University press of Colorado, Boulder, CO, USA, 1993.
Knight, C. A., Clancy, R. B., Götzenberger, L., Dann, L., and Beaulieu,
J. M.: On the relationship between pollen size and genome size, Journal of Botany, 2010,
612017, https://doi.org/10.1155/2010/612017, 2010.
Kouba, Y., Merdes, S., Saadali, B., and Chenchouni, H.: Responses of individual
plant species, functional groups, α- and β-diversity to
short-term grazing exclusion under severe drought episode in long-term
grazed alfa-steppes, Preprints, 2020010038,
https://doi.org/10.20944/preprints202001.0038.v1, 2020.
Lau, T. C., Lu, X., Koide, R. T., and Stephenson, A. G.: Effects of soil
fertility and mycorrhizal infection on pollen production and pollen grain
size of Cucurbita pepo (Cucurbitaceae), Plant Cell Environ., 18, 169–177,
https://doi.org/10.1111/j.1365-3040.1995.tb00350.x, 1995.
Lefèvre, F., Fady, B., Jean, F., Davi, H., Pichot, C., and
Oddou-Muratorio, S.: Les processus biologiques de réponse des arbres et
forêts au changement climatique: adaptation et plasticité
phénotypique, Innovations Agronomiques, 47, 63–79, 2015.
Lunau, K.: The ecology and evolution of visual pollen signals, Plant Syst. Evol., 222,
89–111, https://doi.org/10.1007/BF00984097, 2000.
Macheroum, A. and Kadik, L.: Étude de l'étude actuel de la végétation du Nord de la wilaya de Tébessa sur le plan phytoécologie et pastoral, Edilivre, Paris, France, 2015.
Mallick, P. K.: Morphological Study of Pollen Grains of Angiosperms, International Journal of Applied Sciences and Biotechnology, 7, 354–358, https://doi.org/10.3126/ijasbt.v7i3.25714, 2019.
Mekahlia, M. N., Beddiar, A., and Chenchouni, H.: Mycorrhizal dependency in
the olive tree (Olea europaea) across a xeric climatic gradient, Advances in Environmental Biology, 7, 2166–2175, 2013.
Mignot, A.: Contraintes et sélection dans l'évolution: le cas du
pollen, Doctoral thesis, Univ. Tours, Tours, France, 1995.
Mignot, A., Hoss, C., Dajoz, I., Leuret, C., Henry, J. P., Dreuillaux, J. M.,
Heberle-Bors, E., and Till-Bottraud, I.: Pollen aperture polymorphism in the angiosperms: importance,
possible causes and consequences, Acta Bot. Gallica, 141, 109–122,
https://doi.org/10.1080/12538078.1994.10515144, 1994.
Mulder C.: Biogeographic re-appraisal of the Chenopodiaceae of Mediterranean
drylands: A quantitative outline of their general ecological significance in
the Holocene, Palaeoecol. Afr., 26, 161–188, 1999.
Müller, F. and Rieu, I.: Acclimation to high temperature during pollen
development, Plant Reprod., 29, 107–118, https://doi.org/10.1007/s00497-016-0282-x,
2016.
Muller, J.: Form and function in angiosperm pollen, Ann. Mo. Bot. Gard., 66, 593–632, https://doi.org/10.2307/2398913, 1979.
Müller, K. and Borsch, T.: Phylogenetics of Amaranthaceae based on
matK/trnK sequence data: evidence from parsimony, likelihood, and Bayesian
analyses, Ann. Mo. Bot. Gard., 92, 66–102, 2005.
Neffar, S., Chenchouni, H., Beddiar, A., and Redjel, N.: Rehabilitation of
Degraded Rangeland in Drylands by Prickly Pear (Opuntia ficus-indica L.) Plantations: Effect on
Soil and Spontaneous Vegetation, Ecologia Balkanica, 5, 63–83, 2013.
Neffar, S., Chenchouni, H., and Si Bachir, A.: Floristic composition and
analysis of spontaneous vegetation of Sabkha Djendli in North-east Algeria, Plant Biosyst., 150, 396–403, https://doi.org/10.1080/11263504.2013.810181, 2016.
Neffar, S., Menasria, T., and Chenchouni, H.: Diversity and functional
traits of spontaneous plant species in Algerian rangelands rehabilitated
with prickly pear (Opuntia ficus-indica L.) plantations, Turk. J. Bot., 42, 448–461, https://doi.org/10.3906/bot-1801-39, 2018.
Nepi, M., Franchi, G. G., and Padni, E.: Pollen hydration status at
dispersal: cytophysiological features and strategies, Protoplasma, 216, 171, https://doi.org/10.1007/bf02673869, 2001.
Ortiz-Dorda, J., Martínez-Mora, C., Correal, E., Simón, B., and
Cenis, J. L.: Genetic structure of Atriplex halimus populations in the Mediterranean Basin, Ann. Bot., 95, 827–834, https://doi.org/10.1093/aob/mci086, 2005.
Pacini, E.: Harmomegathic characters of Pteridophyta spores and Spermatophyta pollen, in: Morphology, Development, and Systematic Relevance
of Pollen and Spores, edited by: Hesse,
M. and Ehrendorfer F., Plant Systematics and Evolution, Vol. 5, Springer,
Vienna, 53–69, https://doi.org/10.1007/978-3-7091-9079-1_5, 1990.
Pacini, E. and Bellani L. M.: Lagerstroemia indica L. pollen: form and function, in: Pollen and Spores. Form and Function, edited by: Blackmore, S. and Ferguson, I. K., Linnean Society Symposium Series, No. 12, Academic Press, London, UK, 347–357, 1986.
Pacini, E. and Franchi, G. G.: Pollen biodiversity – why are pollen grains
different despite having the same function? A review, Bot. J. Linn. Soc., boaa014,
https://doi.org/10.1093/botlinnean/boaa014, 2020.
Payne, W. W.: Structure and function in angiosperm pollen wall evolution, Rev. Palaeobot. Palyno., 35, 39–59, https://doi.org/10.1016/0034-6667(81)90013-0, 1981.
Platt-Aloia, K. A., Lord, E. M., DeMason, D. A., and Thomson, W. W.:
Freeze-fracture observations on membranes of dry and hydrated pollen from
Collomia, Phoenix and Zea, Planta, 168, 291–298, https://doi.org/10.1007/bf00392352, 1986.
Prieu, C.: Evolution et développement des grains de pollen chez les
Angiospermes, Doctoral dissertation, Paris-Saclay University, 2015.
Prieu, C., Toghranegar, Z., Gouyon, P. H., and Albert, B.: Microsporogenesis
in angiosperms producing pantoporate pollen, Botany Letters, 166, 457–466, https://doi.org/10.1080/23818107.2019.1652849, 2019.
Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., and Le Thomas, A.:
Glossary of pollen and spore terminology, Rev. Palaeobot. Palyno., 143, 1–81, https://doi.org/10.1016/j.revpalbo.2006.06.008, 2007.
Quesada, M., Bollman, K., and Stephenson, A. G.: Leaf damage decreases pollen
production and hinders pollen performance in Cucurbita texana, Ecology, 76, 437–443, https://doi.org/10.2307/1941202, 1995.
Reznick, D. N. and Ghalambor, C. K.: The population ecology of contemporary
adaptations: what empirical studies reveal about the conditions that promote
adaptive evolution, in: Microevolution rate, pattern, process. Contemporary Issues in Genetics and Evolution, edited by: Hendry, A. P. and Kinnison, M. T., Vol. 8,
Springer, Dordrecht, 183–198, https://doi.org/10.1007/978-94-010-0585-2_12, 2001.
Roulston, T. A. H., Cane, J. H., and Buchmann, S. L.: What governs protein content of pollen: pollinator preferences, pollen–pistil interactions, or phylogeny?, Ecol. Monogr., 70, 617–643, https://doi.org/10.1890/0012-9615(2000)070[0617:wgpcop]2.0.co;2, 2000.
Schlichting, C. D.: Environmental stress reduces pollen quality in Phlox:
compounding the fitness deficit, in: Biotechnology and ecology of pollen, edited by: Mulcahy, D. L., Mulcahy, G. B., and
Ottaviano, E., Springer, NY, 483–488, https://doi.org/10.1007/978-1-4613-8622-3_78, 1986.
Schlichting, C. D., Stephenson, A. G., Small, L. E., and Winsor, J. A.: Pollen
loads and progeny vigor in Cucurbita pepo: the next generation, Evolution, 44, 1358–1372, https://doi.org/10.1111/j.1558-5646.1990.tb05238.x, 1990.
Snow, A. A. and Mazer, S. J.: Gametophytic selection in Raphanus raphanistrum: a test for
heritable variation in pollen competitive ability, Evolution, 42, 1065–1075,
https://doi.org/10.1111/j.1558-5646.1988.tb02524.x, 1988.
Stanley, R. G. and Linskens, H. F.: Pollen pigments, in: Pollen: biology
biochemistry management. Springer, Berlin, Heidelberg,
223–246, https://doi.org/10.1007/978-3-642-65905-8_15, 1974.
Stephenson, A. G., Erickson, C. W., Lau, T. C., Quesada, M. R., and Winsor,
J. A.: Effects of growing conditions on the male gametophyte, in: Pollen–pistil interactions and pollen tube growth, edited by: Stephenson,
A. G. and Kao, T.-H., Vol. 12, Current Topics in Plant Physiology. An
American Society of Plant Physiologists Series, Rockville, Maryland, USA,
220–229, 1994.
Suaire, R., Durickovic, I., Framont-Terrasse, L., Leblain, J. Y., De Rouck,
A. C., and Simonnot, M. O.: Phytoextraction of Na+ and Cl− by
Atriplex halimus L. and Atriplex hortensis L.: A promising solution for remediation of road runoff
contaminated with deicing salts, Ecol. Eng., 94, 182–189,
https://doi.org/10.1016/j.ecoleng.2016.05.055, 2016.
Talamali, A., Gorenflot, R., Kinet, J. M., and Dutuit, P.: Floral plasticity
and flower evolution in Atriplex halimus L. (Amaranthaceae), Acta Bot. Gallica, 153, 243–248, https://doi.org/10.1080/12538078.2006.10515540, 2006.
Talamali, A., Gorenflot, R., and Dutuit, P.: Hétérostylie
intra-individuelle chez Atriplex halimus L. (Amaranthaceae), C. R. Biol., 330, 871–879,
https://doi.org/10.1016/j.crvi.2007.09.003, 2007.
Till, I., Valdeyron, G., and Gouyon, P. H.: Polymorphisme pollinique et
polymorphisme génétique, Can. J. Botany, 67, 538–543,
https://doi.org/10.1139/b89-075, 1989.
Till-Bottraud, I., Vincent, M., Dajoz, I., and Mignot, A.: Pollen aperture
heteromorphism Variation in pollen-type proportions along altitudinal
transects in Viola calcarata, C. R. Acad. Sci.-Vie, 322, 579–589, https://doi.org/10.1016/s0764-4469(00)88528-5, 1999.
Tiwari, S. C., Polito, V. S., and Webster, B. D.: In dry pear (Pyrus communis L.) pollen,
membranes assume a tightly packed multilamellate aspect that disappears
rapidly upon hydration, Protoplasma, 153, 157–168,
https://doi.org/10.1007/bf01354000, 1990.
Torres, C.: Pollen size evolution: correlation between pollen volume and
pistil length in Asteraceae, Sex. Plant Reprod., 12, 365–370,
https://doi.org/10.1007/s004970000030, 2000.
Uyeda, J. C., Hansen, T. F., Arnold, S. J., and Pienaar, J.: The million-year
wait for macroevolutionary bursts, P. Natl. Acad. Sci. USA, 108, 15908–15913, https://doi.org/10.1073/pnas.1014503108, 2011.
Volkova, O. A., Severova, E. E., and Polevova, S. V.: Structural basis of
harmomegathy: evidence from Boraginaceae pollen, Plant Syst. Evol., 299, 1769–1779, https://doi.org/10.1007/s00606-013-0832-8, 2013.
Walker, D. J., Lutts, S., Sánchez-García, M., and Correal, E.:
Atriplex halimus L.: Its biology and uses, J. Arid Environ., 100, 111–121, https://doi.org/10.1016/j.jaridenv.2013.09.004, 2014.
Wodehouse, R. P.: Pollen grains, 3rd Edn., Hafner
Publishing Co., New York & London, 1965.
Young, H. J. and Stanton, M. L.: Influence of environmental quality on pollen
competitive ability in wild radish, Science, 248, 1631–1633,
https://doi.org/10.1126/science.248.4963.1631, 1990a.
Young, H. J. and Stanton, M. L.: Temporal patterns of gamete production
within individuals of Raphanus sativus (Brassicaceae), Can. J. Botany, 68, 480–486, https://doi.org/10.1139/b90-064, 1990b.
Short summary
This study determines the diversity of pollen morphotypes of Atriplex halimus (Amaranthaceae) along a large-scale climatic gradient. Occurrences of 10 pollen grain shapes were quantified at seven climates across a humid-to-hyperarid gradient. We discuss how the evolutionary effects of climate gradients on pollen morphology and variability in dryland induce a high level of specialization to maximize trade-offs between adaptation to severe ecological conditions and pollination efficiency.
This study determines the diversity of pollen morphotypes of Atriplex halimus (Amaranthaceae)...