Articles | Volume 21, issue 1
https://doi.org/10.5194/we-21-65-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/we-21-65-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought-tolerant cyanobacteria and mosses as biotechnological tools to attain land degradation neutrality
Alessandra Adessi
CORRESPONDING AUTHOR
Department of Agriculture, Food, Environment and Forestry – DAGRI,
University of Florence, via Maragliano 77, 50144 Florence, Italy
Roberto De Philippis
Department of Agriculture, Food, Environment and Forestry – DAGRI,
University of Florence, via Maragliano 77, 50144 Florence, Italy
Federico Rossi
Department of Environmental Sciences, Informatics and Statistics (DAIS), Cà Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
Related subject area
Soil ecology
Plant clustering generates negative plant–soil feedback without changing the spatial distribution of soil fauna
Spatial heterogeneity of Cladonia rangiformis and Erica spp. induces variable effects on soil microbial communities which are most robust in bare-soil microhabitats
Identifying social–ecological gaps to promote biocrust conservation actions
Peihua Zhang, Dries Bonte, Gerlinde De Deyn, and Martijn L. Vandegehuchte
Web Ecol., 23, 1–15, https://doi.org/10.5194/we-23-1-2023, https://doi.org/10.5194/we-23-1-2023, 2023
Short summary
Short summary
The dispersal of soil nematodes was not affected by plant spatial configurations, which mostly varied according to their life-history strategy. However, creeping bentgrass grown in a more clustered spatial configuration developed a larger aboveground biomass, which was coupled with a reduction in biomass of subsequently grown ryegrass and plantain. The negative plant–soil feedback may be attributed to the depleted soil nutrients by the stimulated plant growth due to plant–nematode interactions.
Theofilos Dostos, Pantelitsa D. Kapagianni, Nikolaos Monokrousos, George P. Stamou, and Efimia M. Papatheodorou
Web Ecol., 22, 21–31, https://doi.org/10.5194/we-22-21-2022, https://doi.org/10.5194/we-22-21-2022, 2022
Short summary
Short summary
Biocrusts in arid and semiarid regions interact with soil microbes and plants. The knowledge of the spatial scale of the interactions adds value to crusts' use for plant and soil restoration. Soil sampling was confined to an area with Erica spp. shrubs interspaced by crust cover (Cladonia rangiformis) or uncovered at different distances from the base of the shrubs towards the periphery. The community composition and the microbial networks showed response to spatial heterogeneity.
María D. López-Rodríguez, Sonia Chamizo, Yolanda Cantón, and Emilio Rodriguez-Caballero
Web Ecol., 20, 117–132, https://doi.org/10.5194/we-20-117-2020, https://doi.org/10.5194/we-20-117-2020, 2020
Short summary
Short summary
Biocrusts are a key component in Spanish drylands, where their ecological relevance has been widely studied. However, by doing a literature review, we found that the social dimension of their role still remains unexplored. This may hinder biocrusts and their benefits from being known and understood by the policy community and the general public. Thus, we identified social–ecological knowledge gaps and proposed new research areas that need to be addressed to advance towards biocrust conservation.
Cited articles
Adessi, A., Cruz de Carvalho, R., De Philippis, R., Branquinho, C., and
Marques da Silva, J.: Microbial extracellular polymeric substances improve
water retention in dryland biological soil crusts, Soil Biol. Biochem., 116, 67–69, 2018.
Ali, A. S.: Response of rice plants to inoculation with indigenous strains
of cyanobacteria along with different levels of N-fertilizers, Adv. Biochem.
Biotechnol., 1, 1–14, 2015.
Antoninka, A., Bowker, M. A., Reed, S. C., and Doherty, K.: Production of
greenhouse-grown biocrust mosses and associated cyanobacteria to
rehabilitate dryland soil function, Restor. Ecol., 24, 324–335,
https://doi.org/10.1111/rec.12311, 2016.
Antoninka, A., Faist, A., Rodriguez-Caballero, E., Young, K. E., Chaudhary,
V. B., Condon, L. A., and Pyke, D. A.: Biological soil crusts in ecological
restoration: emerging research and perspectives, Restor. Ecol., 28,
S3–S8, https://doi.org/10.1111/rec.13201, 2020a.
Antoninka, A., Bowker, M. A., Barger, N. N., Belnap, J., Giraldo-Silva, A.,
Reed, S. C., Garcia-Pichel, F., and Duniway, M. C.: Addressing barriers to
improve biocrust colonization and establishment in dryland restoration,
Restor. Ecol., 28, S150–S159, 2020b.
Aspiras, R. B., Allen, O. N., Chesters, G., and Harris, R. F.: Chemical and
Physical Stability of Microbially Stabilized Aggregates1, Soil Sci. Soc. Am.
J., 35, 283–286, https://doi.org/10.2136/sssaj1971.03615995003500020030x, 1971.
Bastida, F., Luis Moreno, J., Hernández, T., and García, C.:
Microbiological degradation index of soils in a semiarid climate, Soil Biol.
Biochem., 38, 3463–3473, https://doi.org/10.1016/j.soilbio.2006.06.001, 2006.
Becerra-Absalón, I., Muñoz-Martín, M. Á., Montejano, G., and
Mateo, P.: Differences in the Cyanobacterial Community Composition of
Biocrusts From the Drylands of Central Mexico. Are There Endemic Species?,
Front. Microbiol., 10, 937, https://doi.org/10.3389/fmicb.2019.00937, 2019.
Belnap, J.: Biological soil crusts in deserts: a short review of their role
in soil fertility, stabilization, and water relations, Algol. Stud., 109,
113–126, https://doi.org/10.1127/1864-1318/2003/0109-0113, 2003.
Belnap, J.: The potential roles of biological soil crusts in dryland
hydrologic cycles, Hydrol. Process., 20, 3159–3178,
https://doi.org/10.1002/hyp.6325, 2006.
Belnap, J.: CRUSTS | Biological?, in: Reference Module in Earth Systems and Environmental Sciences, Elsevier, https://doi.org/10.1016/B978-0-12-409548-9.05131-9, 2013.
Belnap, J. and Gillette, D. A.: Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance, J. Arid Environ., 39, 133–142, https://doi.org/10.1006/jare.1998.0388, 1998.
Belnap, J. and Lange, O. L. (Eds.): Biological soil crusts: structure,
function, and management, Springer, New York, 2001.
Belnap, J., Phillips, S. L., Witwicki, D. L., and Miller, M. E.: Visually
assessing the level of development and soil surface stability of
cyanobacterially dominated biological soil crusts, J. Arid Environ., 72,
1257–1264, https://doi.org/10.1016/j.jaridenv.2008.02.019, 2008.
Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N., and
Garcia-Pichel, F.: Optimizing the production of nursery-based biological soil
crusts for restoration of arid land soils, Appl. Environ. Microbiol., 85,
15, https://doi.org/10.1128/AEM.00735-19, 2019.
Bever, A. D., Ndakidemi, P., and Laubscher, C.: Effects of different
combinations of Hoagland's solution and Azolla filiculoides on growth and development of Beta vulgaris subsp. cycla “Fordhook Giant” grown in hydroponic cultures, Int. J. Phys. Sci., 7, 5281–5287, https://doi.org/10.5897/IJPS12.320, 2012.
Bowker, M. A.: Biological soil crust rehabilitation in theory and practice: an underexploited opportunity, Restor. Ecol., 15, 13–23, 2007.
Bowker, M. A., Belnap, J., Davidson, D. W., and Phillips, S. L.: Evidence for
micronutrient limitation of biological soil crusts: importance to arid-lands
restoration, Ecol. Appl., 15, 1941–1951, https://doi.org/10.1890/04-1959, 2005.
Brinda, J. C., Stark, L. R., Clark, T. A., and Greenwood, J. L.: Embryos of
a moss can be hardened to desiccation tolerance: effects of rate of drying
on the timeline of recovery and dehardening in Aloina ambigua (Pottiaceae), Ann. Bot.,, 117, 153–163, 2016.
Bu, C., Zhang, K., Zhang, C., and Wu, S.: Key Factors Influencing Rapid
Development of Potentially Dune-Stabilizing Moss-Dominated Crusts, PLOS One,
10, e0134447, https://doi.org/10.1371/journal.pone.0134447, 2015.
Bu, C., Li, R., Wang, C., and Bowker, M. A.: Successful field cultivation of
moss biocrusts on disturbed soil surfaces in the short term, Plant Soil,
429, 227–240, https://doi.org/10.1007/s11104-017-3453-0, 2018.
Buttars, S. M., Clair, L. L. S., Johansen, J. R., Sray, J. C., Payne, M. C.,
Webb, B. L., Terry, R. E., Pendleton, B. K., and Warren, S. D.: Pelletized
cyanobacterial soil amendments: Laboratory testing for survival,
escapability, and Nitrogen fixation, Arid Soil Res. Rehabil., 12,
165–178, https://doi.org/10.1080/15324989809381506, 1998.
Cantón, Y., Román, J. R., Chamizo, S., Rodríguez-Caballero, E.,
and Moro, M. J.: Dynamics of organic carbon losses by water erosion after
biocrust removal, J. Hydrol. Hydromech., 62, 258–268,
https://doi.org/10.2478/johh-2014-0033, 2014.
Chamizo, S., Cantón, Y., Miralles, I., and Domingo, F.: Biological soil
crust development affects physicochemical characteristics of soil surface in
semiarid ecosystems, Soil Biol. Biochem., 49, 96–105,
https://doi.org/10.1016/j.soilbio.2012.02.017, 2012.
Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., and Domingo, F.:
Biocrusts positively affect the soil water balance in semiarid ecosystems,
Ecohydrology, 9, 1208–1221, https://doi.org/10.1002/eco.1719, 2016.
Chamizo, S., Mugnai, G., Rossi, F., Certini, G., and De Philippis, R.:
Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different
Textured Soils: Gaining Insights for Applicability in Soil Restoration,
Front. Environ. Sci., 6, 49, https://doi.org/10.3389/fenvs.2018.00049, 2018.
Chamizo, S., Adessi, A., Mugnai, G., Simiani, A., and De Philippis, R.: Soil Type and Cyanobacteria Species Influence the Macromolecular and Chemical Characteristics of the Polysaccharidic Matrix in Induced Biocrusts, Microb. Ecol., 78, 482–493, https://doi.org/10.1007/s00248-018-1305-y, 2019.
Chandler, D. G., Day, N., Madsen, M. D., and Belnap, J.: Amendments fail to
hasten biocrust recovery or soil stability at a disturbed dryland sandy
site, Restor. Ecol., 27, 289–297, https://doi.org/10.1111/rec.12870, 2019.
Chen, L., Xie, Z., Hu, C., Li, D., Wang, G., and Liu, Y.: Man-made desert
algal crusts as affected by environmental factors in Inner Mongolia, China,
J. Arid Environ., 67, 521–527, https://doi.org/10.1016/j.jaridenv.2006.02.018, 2006.
Chen, L., Deng, S., De Philippis, R., Tian, W., Wu, H., and Wang, J.: UV-B resistance as a criterion for the selection of desert microalgae to be utilized for inoculating desert soils, J. Appl. Phycol., 25, 1009–1015, 2013.
Chen, L., Rossi, F., Deng, S., Liu, Y., Wang, G., Adessi, A., and De Philippis, R.: Macromolecular and chemical features of the excreted
extracellular polysaccharides in induced biological soil crusts of different
ages, Soil Biol. Biochem., 78, 1–9, https://doi.org/10.1016/j.soilbio.2014.07.004,
2014.
Chiquoine, L. P., Abella, S. R., and Bowker, M. A.: Rapidly restoring
biological soil crusts and ecosystem functions in a severely disturbed
desert ecosystem, Ecol. Appl., 26, 1260–1272, https://doi.org/10.1002/15-0973, 2016.
Colica, G., Li, H., Rossi, F., Li, D., Liu, Y., and De Philippis, R.:
Microbial secreted exopolysaccharides affect the hydrological behavior of
induced biological soil crusts in desert sandy soils, Soil Biol. Biochem.,
68, 62–70, https://doi.org/10.1016/j.soilbio.2013.09.017, 2014.
Condon, L. A. and Pyke, D. A.: Filling the interspace-restoring arid land
mosses: source populations, organic matter, and overwintering govern
success, Ecol. Evol., 6, 7623–7632, https://doi.org/10.1002/ece3.2448, 2016.
Danin, A. and Ganor, E.: Trapping of airborne dust by mosses in the Negev
Desert, Israel, Earth Surf. Proc. Land., 16, 153–162, 1991.
Deb, S., Rout, J., Sengupta, M., and Chakraborty, B.: Biochemical profile and
antimicrobial activity of a cyanobacterium, Scytonema tolypothrichoides isolated from acidic rice field soil of Cachar district (Assam), India, Int. J. Life Sci. Pharma Res., 5, L21–L31, 2015.
de Mulé, M. C. Z., de Caire, G. Z., de Cano, M. S., Palma, R. M., and
Colombo, K.: Effect of cyanobacterial inoculation and fertilizers on rice
seedlings and postharvest soil structure, Commun. Soil Sci. Plant Anal.,
30, 97–107, https://doi.org/10.1080/00103629909370187, 1999.
Doherty, K. D., Grover, H. S., Bowker, M. A., Durham, R. A., Antoninka, A.
J., and Ramsey, P. W.: Producing moss-colonized burlap fabric in a fog
chamber for restoration of biocrust, Ecol. Eng., 158, 106019, https://doi.org/10.1016/j.ecoleng.2020.106019, 2020.
Duckett, J. G., Burch, J., Fletcher, P. W., Matcham, H. W., Read, D. J.,
Russell, A. J., and Pressel, S.: In vitro cultivation of bryophytes: a review
of practicalities, problems, progress and promise, J. Bryol., 26, 3–20, 2004.
Evans, R. D. and Johansen, J. R.: Microbiotic Crusts and Ecosystem
Processes, Crit. Rev. Plant Sci., 18, 183–225, https://doi.org/10.1080/07352689991309199, 1999.
Faist, A. M., Antoninka, A. J., Belnap, J., Bowker, M. A., Duniway, M. C.,
Garcia-Pichel, F., Nelson, C., Reed, S. C., Giraldo-Silva, A.,
Velasco-Ayuso, S., and Barger, N. N.: Inoculation and habitat amelioration
efforts in biological soil crust recovery vary by desert and soil texture,
Restor. Ecol., 28, S96–S105, https://doi.org/10.1111/rec.13087, 2020.
Falchini, L., Sparvoli, E., and Tomaselli, L.: Effect of Nostoc (Cyanobacteria) inoculation on the structure and stability of clay soils, Biol. Fertil. Soils, 23, 346–352, https://doi.org/10.1007/BF00335965, 1996.
Fattahi, S. M., Soroush, A., Huang, N., Zhang, J., Jodari Abbasi, S., and Yu,
Y.: Laboratory study on biophysicochemical improvement of desert sand,
Catena, 190, 104531, https://doi.org/10.1016/j.catena.2020.104531, 2020.
Fick, S. E., Barger, N. N., and Duniway, M. C.: Hydrological function of
rapidly induced biocrusts, Ecohydrology, 12, e2089, https://doi.org/10.1002/eco.2089,
2019.
Fick, S. E., Day, N., Duniway, M. C., Hoy-Skubik, S., and Barger, N. N.:
Microsite enhancements for soil stabilization and rapid biocrust
colonization in degraded drylands, Restor. Ecol., 28, S139–S149,
https://doi.org/10.1111/rec.13071, 2020.
Gao, G.-L., Ding, G.-D., Wu, B., Zhang, Y.-Q., Qin, S.-G., Zhao, Y.-Y., Bao,
Y.-F., Liu, Y.-D., Wan, L., and Deng, J.-F.: Fractal Scaling of Particle Size
Distribution and Relationships with Topsoil Properties Affected by
Biological Soil Crusts, edited by: Esteban, F. J., PLoS ONE, 9, e88559,
https://doi.org/10.1371/journal.pone.0088559, 2014.
Garcia‐Pichel, F. and Castenholz, R. W.: Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment 1, J. Phycol., 27, 395–409, 1991.
Garcia-Pichel, F. and Castenholz, R. W.: Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity, Appl. Environ. Microbiol., 59, 163–169, 1993.
Giraldo-Silva, A., Nelson, C., Barger, N. N., and Garcia-Pichel, F.: Nursing
biocrusts: isolation, cultivation, and fitness test of indigenous
cyanobacteria, Restor. Ecol., 27, 793–803, https://doi.org/10.1111/rec.12920, 2019.
Gold, W. G. and Bliss, L. C.: Water Limitations and Plant Community
Development in a Polar Desert, Ecology, 76, 1558–1568, 1995.
Greenwood, J. L., Stark, L. R., and Chiquoine, L. P.: Effects of rate of
drying, life history phase, and ecotype on the ability of the moss Bryum argenteum to survive desiccation events and the influence on conservation and selection of material for restoration, Front. Ecol. Evol., 7, 388, https://doi.org/10.3389/fevo.2019.00388, 2019.
Grover, H. S., Bowker, M. A., Fulé, P. Z., Doherty, K. D., Sieg, C. H.,
and Antoninka, A. J.: Post-wildfire moss colonisation and soil functional
enhancement in forests of the southwestern USA, Int. J. Wildland Fire, 29, 530–540, 2020.
Guedes, A. C., Katkam, N. G., Varela, J., and Malcata, F. X.:
Photobioreactors for cyanobacterial culturing, in Cyanobacteria,
John Wiley & Sons, Ltd., 270–292, 2013.
Guo, Y., Zhao, Y., and Downing, A. J.: Effect of storage time on the
physiological characteristics and vegetative regeneration of
desiccation-tolerant mosses on the Loess Plateau, China, Restor. Ecol., 28, S203–S211, 2020.
Hamdi, Y. A.: Application of nitrogen-fixing systems in soil improvement and
management, Food & Agriculture Org., Rome, Italy, 1982.
He, X., He, K. S., and Hyvönen, J.: Will bryophytes survive in a
warming world?, Perspect. Plant Ecol. Evol. Syst., 19, 49–60, 2016.
Hilty, J. H., Eldridge, D. J., Rosentreter, R., Wiclow-Howard, M. C., and
Pellant, M.: Recovery of biological soil crusts following wildfire in Idaho,
Rangel. Ecol. Manage. J. Range Manag. Arch., 57, 89–96, 2004.
Hu, C., Liu, Y., Song, L., and Zhang, D.: Effect of desert soil algae on the
stabilization of fine sands, J. Appl. Phycol., 14, 281–292, 2002.
Hu, C., Zhang, D., Huang, Z., and Liu, Y.: The vertical microdistribution of
cyanobacteria and green algae within desert crusts and the development of
the algal crusts, Plant Soil, 257, 97–111, https://doi.org/10.1023/A:1026253307432,
2003.
Hu, C., Gao, K., and Whitton, B. A.: Semi-arid Regions and Deserts, in:
Ecology of Cyanobacteria II, edited by: Whitton, B. A., Springer Netherlands, Dordrecht, 345–369, 2012.
Lan, S., Zhang, Q., Wu, L., Liu, Y., Zhang, D., and Hu, C.: Artificially
Accelerating the Reversal of Desertification: Cyanobacterial Inoculation
Facilitates the Succession of Vegetation Communities, Environ. Sci.
Technol., 48, 307–315, https://doi.org/10.1021/es403785j, 2014.
Lan, S., Wu, L., Zhang, D., and Hu, C.: Effects of light and temperature on
open cultivation of desert cyanobacterium Microcoleus vaginatus, Bioresour. Technol., 182, 144–150, https://doi.org/10.1016/j.biortech.2015.02.002, 2015.
Li, H., Colica, G., Wu, P., Li, D., Rossi, F., De Philippis, R., and Liu, Y.:
Shifting Species Interaction in Soil Microbial Community and Its Influence
on Ecosystem Functions Modulating, Microb. Ecol., 65, 700–708,
https://doi.org/10.1007/s00248-012-0171-2, 2013.
Li, H., Li, R., Rossi, F., Li, D., De Philippis, R., Hu, C., and Liu, Y.:
Differentiation of microbial activity and functional diversity between
various biocrust elements in a heterogeneous crustal community, Catena, 147,
138–145, https://doi.org/10.1016/j.catena.2016.07.008, 2016.
Li, X.-R., He, M.-Z., Zerbe, S., Li, X.-J., and Liu, L.-C.:
Micro-geomorphology determines community structure of biological soil crusts
at small scales, Earth Surf. Proc. Land., 35, 932–940,
https://doi.org/10.1002/esp.1963, 2010.
Liffman, K. and Paterson, D. A.: Comparing the energy efficiency of
different high rate algal raceway pond designs using computational fluid
dynamics, Chem. Eng. Res. Des., 91, 221–226, https://doi.org/10.1016/j.cherd.2012.08.007, 2013.
Liu, Y. D.: Integrated Management of Desertification by “Algae-Grass-Shrub (Tree)” Technology and Regional Sustainable Development, Science Press, Beijing, China, ISBN 978-7-03-030246-5, 2013.
Maestre, F. T., Martín, N., Díez, B., López-Poma, R., Santos,
F., Luque, I., and Cortina, J.: Watering, Fertilization, and Slurry
Inoculation Promote Recovery of Biological Crust Function in Degraded Soils,
Microb. Ecol., 52, 365–377, https://doi.org/10.1007/s00248-006-9017-0, 2006.
Maestre, F. T., Bowker, M. A., Cantón, Y., Castillo-Monroy, A. P.,
Cortina, J., Escolar, C., Escudero, A., Lázaro, R., and Martínez,
I.: Ecology and functional roles of biological soil crusts in semi-arid
ecosystems of Spain, J. Arid Environ., 75, 1282–1291,
https://doi.org/10.1016/j.jaridenv.2010.12.008, 2011.
Mager, D. M. and Thomas, A. D.: Carbohydrates in cyanobacterial soil crusts
as a source of carbon in the southwest Kalahari, Botswana, Soil Biol.
Biochem., 42, 313–318, https://doi.org/10.1016/j.soilbio.2009.11.009, 2010.
Maier, S., Tamm, A., Wu, D., Caesar, J., Grube, M., and Weber, B.:
Photoautotrophic organisms control microbial abundance, diversity, and
physiology in different types of biological soil crusts, ISME J., 12,
1032–1046, https://doi.org/10.1038/s41396-018-0062-8, 2018.
Maqubela, M. P., Mnkeni, P. N., Muchaonyerwa, P., D'Acqui, L. P., and Pardo, M. T.: Effects of cyanobacteria strains selected for their bioconditioning and biofertilization potential on maize dry matter and soil nitrogen status in a South African soil, Soil Sci. Plant Nutr., 56, 552–559, 2010.
Mazor, G., Kidron, G. J., Vonshak, A., and Abeliovich, A.: The role of
cyanobacterial exopolysaccharides in structuring desert microbial crusts,
FEMS Microbiol. Ecol., 21, 121–130, https://doi.org/10.1111/j.1574-6941.1996.tb00339.x, 1996.
Michel, P., Payton, I. J., Lee, W. G., and During, H. J.: Impact of
disturbance on above-ground water storage capacity of bryophytes in New
Zealand indigenous tussock grassland ecosystems, NZ J. Ecol., 37, 114–126, 2013.
Miralles, I., Domingo, F., Cantón, Y., Trasar-Cepeda, C., Leirós, M.
C., and Gil-Sotres, F.: Hydrolase enzyme activities in a successional
gradient of biological soil crusts in arid and semiarid zones, Soil Biol.
Biochem., 53, 124–132, https://doi.org/10.1016/j.soilbio.2012.05.016, 2012.
Mitri, G., Nasrallah, G., Gebrael, K., Bou Nassar, M., Abou Dagher, M.,
Nader, M., Masri, N., and Choueiter, D.: Assessing land degradation and
identifying potential sustainable land management practices at the
subnational level in Lebanon, Environ. Monit. Assess., 191, 567, https://doi.org/10.1007/s10661-019-7739-y, 2019.
Mugnai, G., Rossi, F., Felde, V. J. M. N. L., Colesie, C., Büdel, B.,
Peth, S., Kaplan, A., and De Philippis, R.: Development of the
polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated
in sand microcosms, Biol. Fertil. Soils, 54, 27–40,
https://doi.org/10.1007/s00374-017-1234-9, 2018a.
Mugnai, G., Rossi, F., Felde, V. J. M. N. L., Colesie, C., Büdel, B., Peth, S., Kaplan, A., and De Philippis, R.: The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates, Soil Biol. Biochem., 127, 318–328, https://doi.org/10.1016/j.soilbio.2018.08.007, 2018b.
Mugnai, G., Rossi, F., Chamizo, S., Adessi, A., and De Philippis, R.: The
role of grain size and inoculum amount on biocrust formation by
Leptolyngbya ohadii, Catena, 184, 104248, https://doi.org/10.1016/j.catena.2019.104248, 2020.
Nelson, C., Giraldo-Silva, A., and Garcia-Pichel, F.: A fog-irrigated soil
substrate system unifies and optimizes cyanobacterial biocrust inoculum
production. Appl. Environ. Microbiol., 86, e00624-20, https://doi.org/10.1128/AEM.00624-20, 2020.
Park, C.-H., Li, X., Jia, R. L., and Hur, J.-S.: Effects of Superabsorbent
Polymer on Cyanobacterial Biological Soil Crust Formation in Laboratory, Arid Land Res. Manage., 29, 55–71, https://doi.org/10.1080/15324982.2014.928835, 2015.
Park, C.-H., Li, X. R., Zhao, Y., Jia, R. L., and Hur, J.-S.: Rapid
development of cyanobacterial crust in the field for combating desertification, PLoS ONE, 12, e0179903, https://doi.org/10.1371/journal.pone.0179903, 2017.
Pisa, S., Werner, O., Vanderpoorten, A., Magdy, M., and Ros, R. M.:
Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae), Am. J. Bot., 100, 2000–2008, 2013.
Pointing, S. B. and Belnap, J.: Microbial colonization and controls in
dryland systems, Nat. Rev. Microbiol., 10, 551–562, https://doi.org/10.1038/nrmicro2831, 2012.
Román, J. R., Roncero-Ramos, B., Chamizo, S., Rodríguez-Caballero,
E., and Cantón, Y.: Restoring soil functions by means of cyanobacteria
inoculation: Importance of soil conditions and species selection, Land
Degrad. Dev., 29, 3184–3193, https://doi.org/10.1002/ldr.3064, 2018.
Román, J. R., Chilton, A. M., Cantón, Y., and Muñoz-Rojas, M.:
Assessing the viability of cyanobacteria pellets for application in arid
land restoration, J. Environ. Manage., 270, 110795,
https://doi.org/10.1016/j.jenvman.2020.110795, 2020a.
Román, J. R., Chamizo, S., Roncero-Ramos, B., Adessi, A., De Philippis, R., and Cantón, Y.: Overcoming field barriers to restore dryland soils by
cyanobacteria inoculation, Soil Till. Res., 207, 104799, https://doi.org/10.1016/j.still.2020.104799, 2020b.
Roncero-Ramos, B., Román, J. R., Gómez-Serrano, C., Cantón, Y.,
and Acién, F. G.: Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils, J. Appl. Phycol., 31, 2217–2230, https://doi.org/10.1007/s10811-019-1749-6, 2019a.
Roncero-Ramos, B., Román, J. R., Rodríguez-Caballero, E., Chamizo,
S., Águila-Carricondo, P., Mateo, P., and Cantón, Y.: Assessing the
influence of soil abiotic and biotic factors on Nostoc commune inoculation success, Plant Soil, 444, 57–70, https://doi.org/10.1007/s11104-019-04239-y, 2019b.
Rossi, F., Olguín, E. J., Diels, L., and De Philippis, R.: Microbial
fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification, New Biotechnol., 32, 109–120,
https://doi.org/10.1016/j.nbt.2013.12.002, 2015.
Rossi, F., Li, H., Liu, Y., and De Philippis, R.: Cyanobacterial inoculation
(cyanobacterisation): Perspectives for the development of a standardized
multifunctional technology for soil fertilization and desertification
reversal, Earth-Sci. Rev., 171, 28–43, https://doi.org/10.1016/j.earscirev.2017.05.006, 2017.
Rossi, F., Mugnai, G., and De Philippis, R.: Complex role of the polymeric
matrix in biological soil crusts, Plant Soil, 429, 19–34,
https://doi.org/10.1007/s11104-017-3441-4, 2018.
Schroeter, B., Green, T. G., Kulle, D., Pannewitz, S., Schlensog, M., and
Sancho, L. G.: The moss Bryum argenteum var. muticum Brid. is well adapted
to cope with high light in continental Antarctica, Antarct. Sci., 24, 281–291, 2012.
Sears, J. T.: Production and application of an aircraft spreadable,
cyanobacterial based biological soil crust inoculant for soil fertilization,
soil stabilization and atmospheric CO2 drawdown and sequestration,
Google Patents, available at:http://www.google.com/patents/USH2271 (last access: 1 September 2015), 2012.
Sears, J. T. and Prithiviraj, B.: Seeding of Large Areas with Biological
Soil Crust Starter Culture Formulations: Using an Aircraft Disbursable
Granulate to Increase Stability, Fertility and CO2 Sequestration on a Landscape Scale, in: 2012 IEEE Green Technologies Conference, Tulsa, OK, USA, 1–3, 2012.
Singh, H.: Desiccation and radiation stress tolerance in cyanobacteria, J. Basic Microbiol., 58, 813–826, 2018.
Singh, R. N.: Role of blue-green algae in N-economy of Indian agriculture,
Indian Council of Agricultural Research, New Delhi, 1961.
Slate, M. L., Durham, R. A., and Pearson, D. E.: Strategies for restoring the
structure and function of lichen-moss biocrust communities, Restor. Ecol.,
28, S160–S167, https://doi.org/10.1111/rec.12996, 2020.
Smith, S. D., Monson, R. K., and Anderson, J. E.: Poikilohydric plants, in:
Physiological ecology of North American desert plants, Springer, Berlin, Heidelberg, 191–198, 1997.
Stark, L. R., Nichols, L., McLetchie, D. N., Smith, S. D., and Zundel, C.:
Age and sex-specific rates of leaf regeneration in the Mojave Desert moss
Syntrichia caninervis, Am. J. Bot., 91, 1–9, https://doi.org/10.3732/ajb.91.1.1, 2004.
Stark, L. R., Brinda, J. C., and McLetchie, D. N.: Effects of increased
summer precipitation and N deposition on Mojave Desert populations of the
biological crust moss Syntrichia caninervis, J. Arid Environ., 75, 457–463, 2011.
Sveinbjörnsson, B. and Oechel, W. C.: The effect of temperature
preconditioning on the temperature sensitivity of net CO2 flux in
geographically diverse populations of the moss Polytrichum commune, Ecology, 64, 1100–1108, 1983.
Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T.: Crucial Role of
Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the
Terrestrial Cyanobacterium Nostoc commune, Appl. Environ. Microbiol., 71, 7327–7333, https://doi.org/10.1128/AEM.71.11.7327-7333.2005, 2005.
Tang, D., Shi, S., Li, D., Hu, C., and Liu, Y.: Physiological and biochemical
responses of Scytonema javanicum (cyanobacterium) to salt stress, J. Arid Environ., 71, 312–320, https://doi.org/10.1016/j.jaridenv.2007.05.004, 2007.
van der Heijden, M. G. A., Bardgett, R. D., and van Straalen, N. M.: The
unseen majority: soil microbes as drivers of plant diversity and
productivity in terrestrial ecosystems, Ecol. Lett., 11, 296–310,
https://doi.org/10.1111/j.1461-0248.2007.01139.x, 2008.
Velasco Ayuso, S., Giraldo Silva, A., Nelson, C., Barger, N. N., and
Garcia-Pichel, F.: Microbial Nursery Production of High-Quality Biological
Soil Crust Biomass for Restoration of Degraded Dryland Soils, Appl. Environ.
Microbiol., 83, 1–17, https://doi.org/10.1128/AEM.02179-16, 2017.
Velasco Ayuso, S., Giraldo-Silva, A., Barger, N. N., and Garcia-Pichel, F.:
Microbial inoculum production for biocrust restoration: testing the effects
of a common substrate versus native soils on yield and community composition, Restor. Ecol., 28, S194–S202, https://doi.org/10.1111/rec.13127, 2020.
Wang, W., Liu, Y., Li, D., Hu, C., and Rao, B.: Feasibility of cyanobacterial
inoculation for biological soil crusts formation in desert area, Soil Biol.
Biochem., 41, 926–929, https://doi.org/10.1016/j.soilbio.2008.07.001, 2009.
Wilpiszeski, R. L., Aufrecht, J. A., Retterer, S. T., Sullivan, M. B.,
Graham, D. E., Pierce, E. M., Zablocki, O. D., Palumbo, A. V., and Elias, D.
A.: Soil Aggregate Microbial Communities: Towards Understanding Microbiome
Interactions at Biologically Relevant Scales, Appl. Environ. Microbiol., 85, e00324-19, https://doi.org/10.1128/AEM.00324-19, 2019.
Wu, Y., Rao, B., Wu, P., Liu, Y., Li, G., and Li, D.: Development of
artificially induced biological soil crusts in fields and their effects on
top soil, Plant Soil, 370, 115–124, https://doi.org/10.1007/s11104-013-1611-6, 2013.
Xiao, B. and Veste, M.: Moss-dominated biocrusts increase soil microbial
abundance and community diversity and improve soil fertility in semiarid
climates on the Loess Plateau of China, Appl. Soil Ecol., 117–118,
165–177, https://doi.org/10.1016/j.apsoil.2017.05.005, 2017.
Xiao, B., Wang, Q., Zhao, Y., and Shao, M.: Artificial culture of biological
soil crusts and its effects on overland flow and infiltration under simulated rainfall, Appl. Soil Ecol., 48, 11–17, https://doi.org/10.1016/j.apsoil.2011.02.006, 2011.
Xiao, B., Ma, S., and Hu, K.: Moss biocrusts regulate surface soil thermal properties and generate buffering effects on soil temperature dynamics in dryland ecosystem, Geoderma, 351, 9–24, 2019.
Xu, S., Yin, C., He, M., and Wang, Y.: A Technology for Rapid Reconstruction
of Moss-Dominated Soil Crusts, Environ. Eng. Sci., 25, 1129–1138,
https://doi.org/10.1089/ees.2006.0272, 2008.
Yang, Y., Zhang, L., Chen, X., Wang, W., Bu, C., Li, Y., and Zhou, H.:
Effects of chemical substances on the rapid cultivation of moss crusts in a
phytotron from the Loess Plateau, China, Int. J. Phytoremed., 21, 268–278, 2019.
Yang, Y. Z.: Experimental study on wind erosion control of artificial
cultivation biocrusts in the photovoltaic power plant construction slash in
Mu Us Sandland, China, Graduate student of the Chinese Academy of Sciences,
Research Center of Soil and Water Conservation and Ecological Environment,
Chinese Academy of Sciences and Ministry of Education, Yangling, China, 2016.
Young, K. E., Bowker, M. A., Reed, S. C., Duniway, M. C., and Belnap, J.:
Temporal and abiotic fluctuations may be preventing successful rehabilitation of soil-stabilizing biocrust communities, Ecol. Appl., 29, e01908, https://doi.org/10.1002/eap.1908, 2019.
Zaady, E., Ben-David, E. A., Sher, Y., Tzirkin, R., and Nejidat, A.:
Inferring biological soil crust successional stage using combined PLFA,
DGGE, physical and biophysiological analyses, Soil Biol. Biochem., 42,
842–849, https://doi.org/10.1016/j.soilbio.2010.02.002, 2010.
Zhao, J., Zheng, Y., Zhang, B., Chen, Y., and Zhang, Y.: Progress in the
study of algae and mosses in biological soil crusts, Front. Biol. China, 4, 143–150, https://doi.org/10.1007/s11515-008-0104-0, 2009.
Zhao, Y., Zhu, Q., Li, P., Zhao, L., Wang, L., Zheng, X., and Ma, H.: Effects
of artificially cultivated biological soil crusts on soil nutrients and
biological activities in the Loess Plateau, J. Arid Land, 6, 742–752,
https://doi.org/10.1007/s40333-014-0032-6, 2014.
Zhao, Y., Bowker, M. A., Zhang, Y., and Zaady, E.: Enhanced Recovery of
Biological Soil Crusts After Disturbance, in Biological Soil Crusts: An
Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and
Belnap, J., Springer International Publishing, Cham, 499–523, 2016.
Zhou, X., Zhao, Y., Belnap, J., Zhang, B., Bu, C., and Zhang, Y.: Practices
of biological soil crust rehabilitation in China: experiences and
challenges, Restor. Ecol., 28, S45–S55, https://doi.org/10.1111/rec.13148, 2020.
Short summary
Biocrusts are associations among drought-tolerant organisms and are crucial for maintaining the steady state of ecosystems subjected to high environmental stresses. The elaboration of sustainable plans for their preservation, restoration, and spreading is a recent strategy to combat land degradation and desertification. This review highlights the most relevant achievements and the critical points still open for the biotechnological application of cyanobacteria and mosses to soil restoration.
Biocrusts are associations among drought-tolerant organisms and are crucial for maintaining the...
Special issue