Birks, H. J. B.: Quantitative palaeoenvironmental reconstructions from Holocene biological data, in: Global change in the Holocene, edited by: Mackay, A., Battarbee, R. W., Birks, H. J. B., and Oldfield, F., 107–123,
https://www.st-andrews.ac.uk/~rjsw/PalaeoPDFs/Birks2003.pdf (last access: 17 June 2025), 2003. a
Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.: Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity, Geogr. Anal., 28, 281–298,
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x, 1996.
a
De Bellefon, M.-P. and Loonis, V.: Handbook of Spatial Analysis, in: Theory and Application with R, Insee,
https://www.insee.fr/en/information/3635545 (last access: 17 June 2025), 2018. a
Foissner, W.: Biogeography and Dispersal of Micro-organisms: A Review Emphasizing Protists, Acta Protozool., 111–136,
http://www.wfoissner.at/data_prot/Foissner_2006_111_136.pdf (last access: 17 June 2025), 2006. a
Fotheringham, A. S., Brunsdon, C., and Charlton, M.: Geographically weighted regression: the analysis of spatially varying relationships, Wiley, Chichester, Nachdr. der Ausg. 2002 edn., ISBN 978-0-471-49616-8,
https://www.jstor.org/stable/30139578 (last access: 17 June 2025), 2002. a
Fournier, B., Lara, E., Jassey, V. E., and Mitchell, E. A.: Functional traits as a new approach for interpreting testate amoeba palaeo-records in peatlands and assessing the causes and consequences of past changes in species composition, Holocene, 25, 1375–1383,
https://doi.org/10.1177/0959683615585842, 2015.
a
Harnisch, O.: Einige Daten zur recenten und fossilen testaceen Rhizopodenfauna der Sphagnen, Arch. Hydrobiol., 18, 345–360, 1927. a
Hutton, J.: Theory of the Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the Globe., Earth Env. Sci. T. R. So., 1, 209–304,
https://doi.org/10.1017/S0080456800029227, 1788.
a
Im, C. and Kim, Y.: Local Characteristics Related to SARS-CoV-2 Transmissions in the Seoul Metropolitan Area, South Korea, Int. J. Env. Res. Pub. He., 18, 12595,
https://doi.org/10.3390/ijerph182312595, 2021.
a
Juggins, S. and Birks, H. J. B.: Quantitative Environmental Reconstructions from Biological Data, in: Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Springer Netherlands, Dordrecht, 431–494, ISBN 978-94-007-2745-8,
https://doi.org/10.1007/978-94-007-2745-8_14, 2012.
a
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth’s land surface areas, Scientific Data, 4, 170122,
https://doi.org/10.1038/sdata.2017.122, 2017.
a
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Data from: Climatologies at high resolution for the earth's land surface areas, DRYAD [data set],
https://doi.org/10.5061/DRYAD.KD1D4, 2018.
a
Marcisz, K., Jassey, V. E. J., Kosakyan, A., Krashevska, V., Lahr, D. J. G., Lara, E., Lamentowicz, Ł., Lamentowicz, M., Macumber, A., Mazei, Y., Mitchell, E. A. D., Nasser, N. A., Patterson, R. T., Roe, H. M., Singer, D., Tsyganov, A. N., and Fournier, B.: Testate Amoeba Functional Traits and Their Use in Paleoecology, Frontiers in Ecology and Evolution, 8, 575966,
https://doi.org/10.3389/fevo.2020.575966, 2020.
a
Mitchell, E. A. D., Charman, D. J., and Warner, B. G.: Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future, Biodivers. Conserv., 17, 2115–2137,
https://doi.org/10.1007/s10531-007-9221-3, 2008.
a
O’Malley, M. A.: `
Everything is everywhere: but
the environment selects': ubiquitous distribution and ecological determinism in microbial biogeography, Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 39, 314–325,
https://doi.org/10.1016/j.shpsc.2008.06.005, 2008.
a
Payne, R. J.: Seven Reasons Why Protists Make Useful Bioindicators, Acta Protozool., 2013, 105–113,
https://ejournals.eu/en/journal/acta-protozoologica/article/seven-reasons-why-protists-make-useful-bioindicators (last access: 13 September 2025), 2013. a
Payne, R. J., Lamentowicz, M., and Mitchell, E. a. D.: The perils of taxonomic inconsistency in quantitative palaeoecology: experiments with testate amoeba data, Boreas, 40, 15–27,
https://doi.org/10.1111/j.1502-3885.2010.00174.x, 2011.
a
Payne, R. J., Telford, R. J., Blackford, J. J., Blundell, A., Booth, R. K., Charman, D. J., Lamentowicz, Ł., Lamentowicz, M., Mitchell, E. A., Potts, G., Swindles, G. T., Warner, B. G., and Woodland, W.: Testing peatland testate amoeba transfer functions: Appropriate methods for clustered training-sets, Holocene, 22, 819–825,
https://doi.org/10.1177/0959683611430412, 2012.
a,
b
Qin, Y., Li, H., Mazei, Y., Kurina, I., Swindles, G. T., Bobrov, A., Tsyganov, A. N., Gu, Y., Huang, X., Xue, J., Lamentowicz, M., Marcisz, K., Roland, T., Payne, R. J., Mitchell, E. A. D., and Xie, S.: Developing a continental-scale testate amoeba hydrological transfer function for Asian peatlands, Quaternary Sci. Rev., 258, 106868,
https://doi.org/10.1016/j.quascirev.2021.106868, 2021.
a
Seddon, A. W. R., Mackay, A. W., Baker, A. G., Birks, H. J. B., Breman, E., Buck, C. E., Ellis, E. C., Froyd, C. A., Gill, J. L., Gillson, L., Johnson, E. A., Jones, V. J., Juggins, S., Macias-Fauria, M., Mills, K., Morris, J. L., Nogués-Bravo, D., Punyasena, S. W., Roland, T. P., Tanentzap, A. J., Willis, K. J., Aberhan, M., van Asperen, E. N., Austin, W. E. N., Battarbee, R. W., Bhagwat, S., Belanger, C. L., Bennett, K. D., Birks, H. H., Bronk Ramsey, C., Brooks, S. J., de Bruyn, M., Butler, P. G., Chambers, F. M., Clarke, S. J., Davies, A. L., Dearing, J. A., Ezard, T. H. G., Feurdean, A., Flower, R. J., Gell, P., Hausmann, S., Hogan, E. J., Hopkins, M. J., Jeffers, E. S., Korhola, A. A., Marchant, R., Kiefer, T., Lamentowicz, M., Larocque-Tobler, I., López-Merino, L., Liow, L. H., McGowan, S., Miller, J. H., Montoya, E., Morton, O., Nogué, S., Onoufriou, C., Boush, L. P., Rodriguez-Sanchez, F., Rose, N. L., Sayer, C. D., Shaw, H. E., Payne, R., Simpson, G., Sohar, K., Whitehouse, N. J., Williams, J. W., and Witkowski, A.: Looking forward through the past: identification of 50 priority research questions in palaeoecology, J. Ecol., 102, 256–267,
https://doi.org/10.1111/1365-2745.12195, 2014.
a
Seppey, C. V. W., Broennimann, O., Buri, A., Yashiro, E., Pinto-Figueroa, E., Singer, D., Blandenier, Q., Mitchell, E. A. D., Niculita-Hirzel, H., Guisan, A., and Lara, E.: Soil protist diversity in the Swiss western Alps is better predicted by topo-climatic than by edaphic variables, J. Biogeogr., 47, 866–878,
https://doi.org/10.1111/jbi.13755, 2020.
a
Setiyorini, A., Suprijadi, J., and Handoko, B.: Implementations of geographically weighted lasso in spatial data with multicollinearity (Case study: Poverty modeling of Java Island), AIP Conf. Proc., 1827, 020003,
https://doi.org/10.1063/1.4979419, 2017.
a
Swetnam, T. W., Allen, C. D., and Betancourt, J. L.: Applied Historical Ecology: Using the Past to Manage for the Future, Ecol. Appl., 9, 1189–1206,
https://doi.org/10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2, 1999.
a
Telford, R. J., Vandvik, V., and Birks, H. J. B.: Dispersal Limitations Matter for Microbial Morphospecies, Science, 312, 1015–1015,
https://doi.org/10.1126/science.1125669, 2006.
a
Tolonen, K.: Rhizopod analysis, in: Handbook of Holocene Palaeoecology and Palaeohydrology, edited by: Berglund, B. E., John Wiley and Sons, Chichester,
https://www.osti.gov/biblio/5654226 (last access: 17 June 2025), 1987. a
Warner, B. G.: Testate Amoebae (Protozoa), in: Methods in Quaternary ecology, edited by: Warner, B. G., vol. 5, Geoscience Canada, St. John's, Newfoundland, 65–74,
https://journals.lib.unb.ca/index.php/GC/article/view/3574 (last access: 17 June 2025), 1990. a
Wheeler, D. and Tiefelsdorf, M.: Multicollinearity and correlation among local regression coefficients in geographically weighted regression, J. Geogr. Syst., 7, 161–187,
https://doi.org/10.1007/s10109-005-0155-6, 2005.
a
Wheeler, D. C.: Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso, Environ. Plann. A, 41, 722–742,
https://doi.org/10.1068/a40256, 2009.
a,
b