Articles | Volume 25, issue 2
https://doi.org/10.5194/we-25-221-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-25-221-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying refugia from the synergistic threats of climate change and invasive species
Finnbar Lee
CORRESPONDING AUTHOR
Cawthron Institute, 8 Halifax Street, East Nelson 7010, New Zealand
School of Environment, University of Auckland, Private Bag 92019, Auckland 1072, New Zealand
Ian A. K. Kusabs
Ian Kusabs and Associates Limited, 21 Summit Road, RD5. Lake Ōkāreka, Rotorua 3076, New Zealand
George L. W. Perry
School of Environment, University of Auckland, Private Bag 92019, Auckland 1072, New Zealand
Calum MacNeil
Cawthron Institute, 8 Halifax Street, East Nelson 7010, New Zealand
Related authors
No articles found.
Quinn Asena, George L. W. Perry, and Janet M. Wilmshurst
EGUsphere, https://doi.org/10.5194/egusphere-2024-3845, https://doi.org/10.5194/egusphere-2024-3845, 2025
Short summary
Short summary
Palaeoecology provides crucial information into past changes in climate and ecosystems. However, uncertainties from environmental processes and laboratory methods affect our inferences from the data. We use a virtual ecological approach to quantifying uncertainties by simulating proxy data and systematically introducing sources of uncertainty. Better understanding the effects of uncertainty can help shape study designs before a project is carried out and make robust inferences palaeoproxy data.
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022, https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary
Short summary
Long time series of temperature and rainfall grids are fundamental to understanding how these variables affects environmental or ecological patterns and processes. We present a History of Open Temperature and Rainfall with Uncertainty in New Zealand (HOTRUNZ) that is an open-access dataset that provides monthly 1 km resolution grids of rainfall and mean, minimum, and maximum daily temperatures with associated uncertainties for New Zealand from 1910 to 2019.
Cited articles
Ahmadi, M., Hemami, M., Kaboli, M., and Shabani, F.: MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models, Ecol. Evol., 13, e9827, https://doi.org/10.1002/ece3.9827, 2023.
Araújo, M. B. and Luoto, M.: The importance of biotic interactions for modelling species distributions under climate change, Glob. Ecol. Biogeogr., 16, 743–753, https://doi.org/10.1111/j.1466-8238.2007.00359.x, 2007.
Ashcroft, M. B.: Identifying refugia from climate change, J. Biogeogr., 37, 1407–1413, https://doi.org/10.1111/j.1365-2699.2010.02300.x, 2010.
Austin, M.: Species distribution models and ecological theory: a critical assessment and some possible new approaches, Ecol. Model., 200, 1–19, https://doi.org/10.1016/j.ecolmodel.2006.07.005, 2007.
Barnes, G. E. and Hicks, B. J.: Brown bullhead catfish (Ameiurus nebulosus) in Lake Taupo, Department of Conservation, Wellington, New Zealand, 2003.
Barrows, C. W., Ramirez, A. R., Sweet, L. C., Morelli, T. L., Millar, C. I., Frakes, N., Rodgers, J., and Mahalovich, M. F.: Validating climate-change refugia: empirical bottom-up approaches to support management actions, Front. Ecol. Environ., 18, 298–306, https://doi.org/10.1002/fee.2205, 2020.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., and Villalobos, F.: The crucial role of the accessible area in ecological niche modeling and species distribution modeling, Ecol. Model., 222, 1810–1819, https://doi.org/10.1016/j.ecolmodel.2011.02.011, 2011.
Blumer, L. S.: Reproductive natural history of the brown bullhead Ictalurus nebulosus in Michigan, Am. Midl. Nat., 318–330, https://doi.org/10.2307/2425607, 1985.
Buisson, L., Thuiller, W., Casajus, N., Lek, S., and Grenouillet, G.: Uncertainty in ensemble forecasting of species distribution, Glob. Change Biol., 16, 1145–1157, https://doi.org/10.1111/j.1365-2486.2009.02000.x, 2010.
Calabrese, J. M., Certain, G., Kraan, C., and Dormann, C. F.: Stacking species distribution models and adjusting bias by linking them to macroecological models, Glob. Ecol. Biogeogr., 23, 99–112, https://doi.org/10.1111/geb.12102, 2014.
Canning, A. D., Zammit, C., and Death, R. G.: The implications of climate change for New Zealand's freshwater fish, Can. J. Fish. Aquat. Sci., 82, 1–15, https://doi.org/10.1139/cjfas-2024-0127, 2025.
Clearwater, S. J., Kusabs, I., Budd, R., and Bowman, E.: Strategic evaluation of kōura populations in the upper Waikato River, National Institute of Water and Atmospheric Research, Hamilton, New Zealand, 2014.
Dedual, M.: Summary of the impacts and control methods of Brown Bullhead catfish (Ameiurus nebulosus Lesueur 1815) in New Zealand and overseas, Environment Bay of Plenty, MD-halieutics, New Zealand, https://atlas.boprc.govt.nz/api/v1/edms/document/A3591759/content (last access: July 2024), 2019.
Elith, J. and Graham, C. H.: Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models, Ecography, 32, 66–77, https://doi.org/10.1111/j.1600-0587.2008.05505.x, 2009.
Elith, J. and Leathwick, J. R.: Species distribution models: ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40, 677–697, https://doi.org/10.1146/annurev.ecolsys.110308.120159, 2009.
Fielding, A. H. and Bell, J. F.: A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv., 24, 38–49, https://doi.org/10.1017/S0376892997000088, 1997.
Francis, L.: Evaluating the effects of invasive brown bullhead catfish (Ameiurus nebulosus) on kōura (freshwater crayfish, Paranephrops planifrons) in Lake Rotoiti, Thesis, Master of Science, The University of Waikato, Hamilton, New Zealand, https://hdl.handle.net/10289/12746 (last access: June 2024), 2019.
Gallardo, B., Aldridge, D. C., González-Moreno, P., Pergl, J., Pizarro, M., Pyšek, P., Thuiller, W., Yesson, C., and Vilà, M.: Protected areas offer refuge from invasive species spreading under climate change, Glob. Change Biol., 23, 5331–5343, https://doi.org/10.1111/gcb.13798, 2017.
Gibson, P. B., Stuart, S., Sood, A., Stone, D., Rampal, N., Lewis, H., Broadbent, A., Thatcher, M., and Morgenstern, O.: Dynamical downscaling CMIP6 models over New Zealand: added value of climatology and extremes, Clim. Dynam., 62, 8255–8281, https://doi.org/10.1007/s00382-024-07337-5, 2024.
Heikkinen, R. K., Marmion, M., and Luoto, M.: Does the interpolation accuracy of species distribution models come at the expense of transferability?, Ecography, 35, 276–288, https://doi.org/10.1111/j.1600-0587.2011.06999.x, 2012.
Heller, N. E. and Zavaleta, E. S.: Biodiversity management in the face of climate change: a review of 22 years of recommendations, Biol. Conserv., 142, 14–32, https://doi.org/10.1016/j.biocon.2008.10.006, 2009.
Hernangómez, D.: Using the tidyverse with terra objects: the tidyterra package, J. Open Source Softw., 8, 5751, https://doi.org/10.21105/joss.05751, 2023.
Hicks, B. J. and Allan, M. G.: Estimation of potential contributions of brown bullhead catfish to the nutrient budgets of lakes Rotorua and Rotoiti, Environmental Research Institute, The University of Waikato, Hamilton, 2018.
Hijmans, R. J.: terra: Spatial Data Analysis, R package version 1.7-78, Comprehensive R Archive Network, https://CRAN.R-project.org/package=terra (last access: August 2025), 2024.
Hill, M. P., Gallardo, B., and Terblanche, J. S.: A global assessment of climatic niche shifts and human influence in insect invasions, Glob. Ecol. Biogeogr., 26, 679–689, https://doi.org/10.1111/geb.12578, 2017.
Hopkins, C. L.: Systematics of the New Zealand freshwater crayfish Paranephrops (Crustacea: Decapoda: Parastacidae), N. Z. J. Mar. Freshw. Res., 4, 278–291, https://doi.org/10.1080/00288330.1970.9515347, 1970.
Hossain, M. A., Lahoz-Monfort, J. J., Burgman, M. A., Böhm, M., Kujala, H., and Bland, L. M.: Assessing the vulnerability of freshwater crayfish to climate change, Divers. Distrib., 24, 1830–1843, https://doi.org/10.1111/ddi.12831, 2018.
IPBES: Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, edited by: EBrondizio, E. S., Settele, J., Díaz, S., and Ngo H. T., IPBES secretariat, Bonn, Germany, https://doi.org/10.5281/zenodo.3831673, 1148 pp., 2019.
Jones, J. B.: Growth of two species of freshwater crayfish ( Paranephrops spp.) in New Zealand, N. Z. J. Mar. Freshw. Res., 15, 15–20, https://doi.org/10.1080/00288330.1981.9515892, 1981.
Jowett, I. G., Parkyn, S. M., and Richardson, J.: Habitat characteristics of crayfish (Paranephrops planifrons) in New Zealand streams using generalised additive models (GAMs), Hydrobiologia, 596, 353–365, https://doi.org/10.1007/s10750-007-9108-z, 2008.
Kearney, M. and Porter, W.: Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges, Ecol. Lett., 12, 334–350, https://doi.org/10.1111/j.1461-0248.2008.01277.x, 2009.
Keppel, G., Van Niel, K. P., Wardell-Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A. G. T., Hopper, S. D., and Franklin, S. E.: Refugia: identifying and understanding safe havens for biodiversity under climate change, Glob. Ecol. Biogeogr., 21, 393–404, https://doi.org/10.1111/j.1466-8238.2011.00686.x, 2012.
Kumschick, S., Alba, C., Hufbauer, R. A., and Nentwig, W.: Weak or strong invaders? A comparison of impact between the native and invaded ranges of mammals and birds alien to Europe, Divers. Distrib., 17, 663–672, https://doi.org/10.1111/j.1472-4642.2011.00775.x, 2011.
Kusabs, I. A. and Quinn, J. M.: Use of a traditional Maori harvesting method, the tau kōura, for monitoring kōura (freshwater crayfish, Paranephrops planifions) in Lake Rotoiti, North Island, New Zealand, N. Z. J. Mar. Freshw. Res., 43, 713–722, https://doi.org/10.1080/00288330909510036, 2009.
Kusabs, I. A., Hicks, B. J., Quinn, J. M., and Hamilton, D. P.: Sustainable management of freshwater crayfish (kōura, Paranephrops planifrons) in Te Arawa (Rotorua) lakes, North Island, New Zealand, Fish. Res., 168, 35–46, https://doi.org/10.1016/j.fishres.2015.03.015, 2015.
Leathwick, J., West, D., Gerbeaux, P., Kelly, D., Robertson, H., Brown, D., Chadderton, W. L., and Ausseil, A. G.: Freshwater Ecosystems of New Zealand (FENZ) Geodatabase, Department of Conservation, 2010.
Lee, F.: Catfish and kōura data and R code, Zenodo [code and data set], https://doi.org/10.5281/zenodo.17372820, 2025.
Lee-Yaw, J., L. McCune, J., Pironon, S., and Sheth, N. S.: Species distribution models rarely predict the biology of real populations, Ecography, 2022, e05877, https://doi.org/10.1111/ecog.05877, 2022.
Ling, N.: Socio-economic drivers of freshwater fish declines in a changing climate: a New Zealand perspective, J. Fish Biol., 77, 1983–1992, https://doi.org/10.1111/j.1095-8649.2010.02776.x, 2010.
MacDougall, A. S., Gilbert, B., and Levine, J. M.: Plant invasions and the niche, J. Ecol., 97, 609–615, https://doi.org/10.1111/j.1365-2745.2009.01514.x, 2009.
MacNeil, C. and Briffa, M.: Fear alone reduces energy processing by resident `keystone' prey threatened by an invader; a non-consumptive effect of `killer shrimp' invasion of freshwater ecosystems is revealed, Acta Oecologica, 98, 1–5, 2019.
McCarthy, J. K., Wiser, S. K., Bellingham, P. J., Beresford, R. M., Campbell, R. E., Turner, R., and Richardson, S. J.: Using spatial models to identify refugia and guide restoration in response to an invasive plant pathogen, J. Appl. Ecol., 58, 192–201, https://doi.org/10.1111/1365-2664.13756, 2021.
McDowall, R. M.: Gamekeepers for the nation: The story of New Zealand's Acclimatisation Society 1861–1990, Canterbury University Press, Christchurch, New Zealand, ISBN 0-908812-37-X, 508 pp., 1994.
McDowall, R. M.: Historical biogeography of the New Zealand freshwater crayfishes (Parastacidae, Paranephrops spp.): restoration of a refugial survivor?. New Zealand Journal of Zoology, 32, 55–77, 2005.
McGarvey, D. J., Menon, M., Woods, T., Tassone, S., Reese, J., Vergamini, M., and Kellogg, E.: On the use of climate covariates in aquatic species distribution models: are we at risk of throwing out the baby with the bath water?, Ecography, 41, 695–712, https://doi.org/10.1111/ecog.03134, 2018.
Merow, C., Smith, M. J., and Silander Jr., J. A.: A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter, Ecography, 36, 1058–1069, https://doi.org/10.1111/j.1600-0587.2013.07872.x, 2013.
Morelli, T. L., Daly, C., Dobrowski, S. Z., Dulen, D. M., Ebersole, J. L., Jackson, S. T., Lundquist, J. D., Millar, C. I., Maher, S. P., and Monahan, W. B.: Managing climate change refugia for climate adaptation, PLOS ONE, 11, e0159909, https://doi.org/10.1371/journal.pone.0159909, 2016.
Mpanza, N. P., Cuthbert, R. N., Pegg, J., and Wasserman, R. J.: Assessing biological invasion predatory impacts through interaction strengths and morphological trophic profiling, Biol. Invasions, 26, 4165–4177, https://doi.org/10.1007/s10530-024-03435-x, 2024.
MPI: Biosecurity Response to Corbicula fluminea in the Waikato River, Technical Advisory Group Report, Biosecurity New Zealand, https://www.mpi.govt.nz/dmsdocument/59086-Technical-Advisory-Group-Report-Biosecurity-Response-to-Corbicula-fluminea-in-the-Waikato-River Accessed (last access: July 2024), 2023.
NIWA: Freshwater invasive species of New Zealand, National Institute of Water and Atmospheric Research, https://niwa.co.nz/sites/default/files/Freshwater invasive species of New Zealand 2020_1.pdf (last access: July 2024), 2020.
Parkyn, S. M., Collier, K. J., and Hicks, B. J.: Growth and population dynamics of crayfish Paranephrops planifrons in streams within native forest and pastoral land uses, N. Z. J. Mar. Freshw. Res., 36, 847–862, https://doi.org/10.1080/00288330.2002.9517137, 2002.
Pebesma, E. J.: Simple features for R: standardized support for spatial vector data, R J., 10, 439, https://doi.org/10.32614/RJ-2018-009, 2018.
Pedersen, T. L.: patchwork: the composer of plots, R package version 1.1.1, Comprehensive R Archive Network, https://CRAN.R-project.org/package=patchwork (last access: August 2025), 2021.
Phillips, S. J., Anderson, R. P., and Schapire, R. E.: Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026, 2006.
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., and Blair, M. E.: Opening the black box: An open-source release of Maxent, Ecography, 40, 887–893, https://doi.org/10.1111/ecog.03049, 2017.
Pilowsky, J. A., Colwell, R. K., Rahbek, C., and Fordham, D. A.: Process-explicit models reveal the structure and dynamics of biodiversity patterns, Sci. Adv., 8, eabj2271, https://doi.org/10.1126/sciadv.abj2271, 2022.
Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O'Hara, R. B., Parris, K. M., Vesk, P. A., and McCarthy, M. A.: Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM), Methods Ecol. Evol., 5, 397–406, https://doi.org/10.1111/2041-210X.12180, 2014.
R Core Team: R: A Language and Environment for Statistical Computing, Foundation for Statistical Computing, 2020.
Rahel, F. J. and Olden, J. D.: Assessing the effects of climate change on aquatic invasive species, Conserv. Biol., 22, 521–533, https://doi.org/10.1111/j.1523-1739.2008.00950.x, 2008.
Rahel, F. J., Bierwagen, B., and Taniguchi, Y.: Managing Aquatic Species of Conservation Concern in the Face of Climate Change and Invasive Species, Conserv. Biol., 22, 551–561, https://doi.org/10.1111/j.1523-1739.2008.00953.x, 2008.
Rayne, A., Byrnes, G., Collier-Robinson, L., Hollows, J., McIntosh, A., Ramsden, M., Rupene, M., Tamati-Elliffe, P., Thoms, C., and Steeves, T.: Centring Indigenous knowledge systems to re-imagine conservation translocations, People Nat., 2, 512–526, https://doi.org/10.1002/pan3.10126, 2020.
Rayne, A., Beaven, K., Clapcott, J. E., Eveleens, R. A., Kitson, J. C., Ledington, J., McIntosh, A. R., McLeod, T., Parata, R. N., and Shanahan, D. F.: Rethinking freshwater translocation policy and practice in Aotearoa New Zealand, N. Z. J. Ecol., 49, 3602, 2025.
Ricciardi, A., Hoopes, M. F., Marchetti, M. P., and Lockwood, J. L.: Progress toward understanding the ecological impacts of nonnative species, Ecol. Monogr., 83, 263–282, https://doi.org/10.1890/13-0183.1, 2013.
Rillig, M. C.: Global change refugia could shelter species from multiple threats, Nat. Rev. Biodivers., 1, 10–11, https://doi.org/10.1038/s44358-024-00002-z, 2025.
Scott, W. B. and Crossman, E. J.: Freshwater fishes of Canada, Bulletin 184, Fisheries Research Board of Canada, Ottawa, 1973.
Simons, M.: Species-specific responses of freshwater organisms to elevated water temperatures, Waikato Valley Authority Technical Publication, 29, Waikato Regional Council, Waikato, New Zealand, 1984.
Somerville, R., MacNeil, C., and Lee, F.: Habitat suitability of Aotearoa New Zealand for the recently invaded gold clam (Corbicula fluminea), N. Z. J. Mar. Freshw. Res., 59, 762–779, https://doi.org/10.1080/00288330.2024.2368856, 2025.
Stoffels, R.: New Zealand Freshwater Fish Database (extended), Natl. Inst. Water Atmospheric Res. NIWA Sampl. Event Dataset, National Institute of Water and Atmospheric Research (NIWA), https://doi.org.10.15468/jbpw92 (last access: August 2025), 2022.
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I. C.: Climate change threats to plant diversity in Europe, Proc. Natl. Acad. Sci., 102, 8245–8250, https://doi.org/10.1073/pnas.0409902102, 2005.
Tingley, M. W., Darling, E. S., and Wilcove, D. S.: Fine- and coarse-filter conservation strategies in a time of climate change, Ann. N. Y. Acad. Sci., 1322, 92–109, https://doi.org/10.1111/nyas.12484, 2014.
Unwin, M. J. and Larned, S. T.: Statistical models, indicators and trend analyses for reporting national-scale river water quality, National Institute of Water and Atmospheric Research Client Report CHC2013-033, Ministry for the Environment, New Zealand, 71 pp., https://environment.govt.nz/assets/publications/Files/mfe-statistical-models-indicators-trend-analysis-reporting-national-scale-river-water-quality-2013.pdf (last access: August 2025), 2013.
Usio, N. and Townsend, C. R.: Distribution of the New Zealand crayfish Paranephrops zealandicus in relation to stream physico-chemistry, predatory fish, and invertebrate prey, N. Z. J. Mar. Freshw. Res., 34, 557–567, https://doi.org/10.1080/00288330.2000.9516957, 2000.
Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J., and Elith, J.: Predictive performance of presence-only species distribution models: a benchmark study with reproducible code, Ecol. Monogr., 92, e01486, https://doi.org/10.1002/ecm.1486, 2022.
Van Der Putten, W. H., Macel, M., and Visser, M. E.: Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels, Philos. Trans. R. Soc. B Biol. Sci., 365, 2025–2034, https://doi.org/10.1098/rstb.2010.0037, 2010.
Velazco, S. J. E., Rose, M. B., De Andrade, A. F. A., Minoli, I., and Franklin, J.: flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow, Methods Ecol. Evol., 13, 1661–1669, https://doi.org/10.1111/2041-210X.13874, 2022.
Velazco, S. J. E., Rose, M. B., De Marco, P., Regan, H. M., and Franklin, J.: How far can I extrapolate my species distribution model? Exploring shape, a novel method, Ecography, 2024, e06992, https://doi.org/10.1111/ecog.06992, 2024.
Verhoef, G. D. and Austin, C. M.: Combined effects of temperature and density on the growth and survival of juveniles of the Australian freshwater crayfish, Cherax destructor Clark: Part 1, Aquaculture, 170, 37–47, https://doi.org/10.1016/S0044-8486(98)00394-9, 1999.
Whitehead, A., Fraser, C., and Snelder, T.: Spatial modelling of river water-quality state: incorporating monitoring data from 2016 to 2020, NIWA Client Rep. Minist. Environ. 2021303CH, Ministry for the Environment, New Zealand, 47 pp., https://environment.govt.nz/assets/publications/spatial-modelling-river-quality.pdf (last access: August 2025), 2022.
Whitehead, A. L. and Booker, D. J.: Communicating biophysical conditions across New Zealand's rivers using an interactive webtool, N. Z. J. Mar. Freshw. Res., 53, 278–287, https://doi.org/10.1080/00288330.2018.1532914, 2019.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., and Hester, J.: Welcome to the Tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., Dormann, C. F., Forchhammer, M. C., Grytnes, J., Guisan, A., Heikkinen, R. K., Høye, T. T., Kühn, I., Luoto, M., Maiorano, L., Nilsson, M., Normand, S., Öckinger, E., Schmidt, N. M., Termansen, M., Timmermann, A., Wardle, D. A., Aastrup, P., and Svenning, J.: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling, Biol. Rev., 88, 15–30, https://doi.org/10.1111/j.1469-185X.2012.00235.x, 2013.
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Ritter, C. D., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svanteson, S., Wengstrom, N., Zizka, V., and Antonelli, A.: CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases, Methods Ecol. Evol., 744–751, https://doi.org/10.1111/2041-210X.13152, 2019.
Short summary
Climate change may reduce available habitat for native species, while simultaneously increasing suitable habitat for invasive species.To identify climate refugia that are both suitable for native species and unsuitable for invasive species, we propose a refugia habitat identification metric based on ecological niche modelling. We demonstrate the utility of the metric via a case study of a freshwater crayfish which is threatened by both climate change and the invasive brown bullhead catfish.
Climate change may reduce available habitat for native species, while simultaneously increasing...