Articles | Volume 20, issue 2
https://doi.org/10.5194/we-20-117-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/we-20-117-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying social–ecological gaps to promote biocrust conservation actions
María D. López-Rodríguez
CORRESPONDING AUTHOR
Internet Interdisciplinary Institute (IN3), Universitat Oberta de
Catalunya, Av. Carl Friedrich Gauss, Castelldefels, Barcelona, 08860, Spain
Sonia Chamizo
Agronomy Department, University of Almería, Ctra. Sacramento
s/n, 04120, Almería, Spain
Centro de Investigación de Colecciones Científicas de la
Universidad de Almería (CECOUAL), Almería, Spain
Yolanda Cantón
Agronomy Department, University of Almería, Ctra. Sacramento
s/n, 04120, Almería, Spain
Centro de Investigación de Colecciones Científicas de la
Universidad de Almería (CECOUAL), Almería, Spain
Agronomy Department, University of Almería, Ctra. Sacramento
s/n, 04120, Almería, Spain
Centro de Investigación de Colecciones Científicas de la
Universidad de Almería (CECOUAL), Almería, Spain
Related authors
No articles found.
Christopher Pöhlker, David Walter, Hauke Paulsen, Tobias Könemann, Emilio Rodríguez-Caballero, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Céline Degrendele, Viviane R. Després, Florian Ditas, Bruna A. Holanda, Johannes W. Kaiser, Gerhard Lammel, Jošt V. Lavrič, Jing Ming, Daniel Pickersgill, Mira L. Pöhlker, Maria Praß, Nina Löbs, Jorge Saturno, Matthias Sörgel, Qiaoqiao Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 19, 8425–8470, https://doi.org/10.5194/acp-19-8425-2019, https://doi.org/10.5194/acp-19-8425-2019, 2019
Short summary
Short summary
The Amazon Tall Tower Observatory (ATTO) has been established to monitor the rain forest's biosphere–atmosphere exchange, which experiences the combined pressures from human-made deforestation and progressing climate change. This work is meant to be a reference study, which characterizes various geospatial properties of the ATTO footprint region and shows how the human-made transformation of Amazonia may impact future atmospheric observations at ATTO.
Related subject area
Soil ecology
Plant clustering generates negative plant–soil feedback without changing the spatial distribution of soil fauna
Spatial heterogeneity of Cladonia rangiformis and Erica spp. induces variable effects on soil microbial communities which are most robust in bare-soil microhabitats
Drought-tolerant cyanobacteria and mosses as biotechnological tools to attain land degradation neutrality
Peihua Zhang, Dries Bonte, Gerlinde De Deyn, and Martijn L. Vandegehuchte
Web Ecol., 23, 1–15, https://doi.org/10.5194/we-23-1-2023, https://doi.org/10.5194/we-23-1-2023, 2023
Short summary
Short summary
The dispersal of soil nematodes was not affected by plant spatial configurations, which mostly varied according to their life-history strategy. However, creeping bentgrass grown in a more clustered spatial configuration developed a larger aboveground biomass, which was coupled with a reduction in biomass of subsequently grown ryegrass and plantain. The negative plant–soil feedback may be attributed to the depleted soil nutrients by the stimulated plant growth due to plant–nematode interactions.
Theofilos Dostos, Pantelitsa D. Kapagianni, Nikolaos Monokrousos, George P. Stamou, and Efimia M. Papatheodorou
Web Ecol., 22, 21–31, https://doi.org/10.5194/we-22-21-2022, https://doi.org/10.5194/we-22-21-2022, 2022
Short summary
Short summary
Biocrusts in arid and semiarid regions interact with soil microbes and plants. The knowledge of the spatial scale of the interactions adds value to crusts' use for plant and soil restoration. Soil sampling was confined to an area with Erica spp. shrubs interspaced by crust cover (Cladonia rangiformis) or uncovered at different distances from the base of the shrubs towards the periphery. The community composition and the microbial networks showed response to spatial heterogeneity.
Alessandra Adessi, Roberto De Philippis, and Federico Rossi
Web Ecol., 21, 65–78, https://doi.org/10.5194/we-21-65-2021, https://doi.org/10.5194/we-21-65-2021, 2021
Short summary
Short summary
Biocrusts are associations among drought-tolerant organisms and are crucial for maintaining the steady state of ecosystems subjected to high environmental stresses. The elaboration of sustainable plans for their preservation, restoration, and spreading is a recent strategy to combat land degradation and desertification. This review highlights the most relevant achievements and the critical points still open for the biotechnological application of cyanobacteria and mosses to soil restoration.
Cited articles
Abson, D. J., von Wehrden, H., Baumgaertner, S., Fischer, J., Hanspach, J.,
Haerdtle, W., Heinrichs, H., Klein, A. M., Lang, D. J., Martens, P., and
Walmsley, D.: Ecosystem services as a boundary object for sustainability,
Ecol. Econ., 103, 29–37, https://doi.org/10.1016/j.ecolecon.2014.04.012, 2014.
Alexander, R. W. and Calvo, A.: The influence of lichens on slope processes
in someSpanish badlands, in: Vegetation and Erosion, edited by: Thornes, J. B., John
Wiley & Sons, Ltd. Chichester, England, 385–398, 1990.
Ballesteros, M., Ayerbe, J., Casares, M., Cañadas, E. M., and Lorite, J.:
Successful lichen translocation on disturbed gypsum areas: A test with
adhesives to promote the recovery of biological soil crusts, Sci. Rep.,
7, 1–9, https://doi.org/10.1038/srep45606, 2017.
Ban, N. C., Mills, M., Tam, J., Hicks, C. C., Klain, S., Stoeckl, N.,
Bottrill, M. C., Levine, J., Pressey, R. L., Satterfield, T., and Chan, K. M.
A.: A social-ecological approach to conservation planning: Embedding social
considerations, Front. Ecol. Environ., 11, 194–202, https://doi.org/10.1890/110205,
2013.
Bastida, F., Jehmlich, N., Ondoño, S., von Bergen, M., García, C.
and Moreno, J. L.: Characterization of the microbial community in biological
soil crusts dominated by Fulgensia desertorum (Tomin) Poel., and Squamarina
cartilaginea (With.) P. Jame., and in the underlying soil, Soil Biol.
Biochem., 76, 70–79, https://doi.org/10.1016/j.soilbio.2014.05.004, 2014.
Belnap, J. and Lange, O. L.: Biological Soil Crusts: Structure, Function., and
Management, in: Ecological Studies
Series 150, edited by: Baldwin, I. T., Caldwell, M. M., Heldmaier, G., Lange, O. L.,
Mooney, H. A., Schulze, E.- D., and Sommer, U., Springer, 150, p. 503, 2003.
Belnap, J., Walker, B. J., Munson, S. M., and Gill, R. A.: Controls on
sediment production in two U.S. deserts, Aeolian Res., 14, 15–24,
https://doi.org/10.1016/j.aeolia.2014.03.007, 2014.
Berdugo, M., Soliveres, S., and Maestre, F. T.: Vascular Plant., and Biocrusts
Modulate How Abiotic Factors Affect Wettin., and Drying Events in Drylands,
Ecosystems, 17, 1242–1256, https://doi.org/10.1007/s10021-014-9790-4, 2014.
Blanco-Sacristán, J., Panigada, C., Tagliabue, G., Gentili, R., Colombo,
R., de Guevara, M. L., Maestre, F. T., and Rossini, M.: Spectral diversity
successfully estimates the α-diversity of biocrust-forming lichens,
Remote Sens., 11, 1–16, https://doi.org/10.3390/rs11242942, 2019.
Bowker, M. A. and Maestre, F. T.: Inferring local competition intensity from
patch size distributions: A test using biological soil crusts, Oikos,
121, 1914–1922, https://doi.org/10.1111/j.1600-0706.2012.20192.x, 2012.
Bowker, M. A., Maestre, F. T., and Escolar, C.: Biological crusts as a model
system for examining the biodiversity-ecosystem function relationship in
soils, Soil Biol. Biochem., 42, 405–417,
https://doi.org/10.1016/j.soilbio.2009.10.025, 2010a.
Bowker, M. A., Soliveres, S., and Maestre, F. T.: Competition increases with
abiotic stres., and regulates the diversity of biological soil crusts, J.
Ecol., 98, 551–560, https://doi.org/10.1111/j.1365-2745.2010.01647.x, 2010b.
Bowker, M. A., Mau, R. L., Maestre, F. T., Escolar, C., and Castillo-Monroy,
A. P.: Functional profiles reveal unique ecological roles of various
biological soil crust organisms, Funct. Ecol., 25, 787–795,
https://doi.org/10.1111/j.1365-2435.2011.01835.x, 2011.
Bowker, M. A., Eldridge, D. J., Val, J., and Soliveres, S.: Hydrology in a
patterned landscape is co-engineered by soil-disturbing animal., and
biological crusts, Soil Biol. Biochem., 61, 14–22,
https://doi.org/10.1016/j.soilbio.2013.02.002, 2013.
Bowker, M. A., Reed, S. C., Maestre, F. T., and Eldridge, D. J.: Biocrusts:
the living skin of the earth, Plant Soil, 429, 1–7,
https://doi.org/10.1007/s11104-018-3735-1, 2018.
Büdel, B., Colesie, C., Green, T. G. A., Grube, M., Lázaro Suau, R.,
Loewen-Schneider, K., Maier, S., Peer, T., Pintado, A., Raggio, J.,
Ruprecht, U., Sancho, L. G., Schroeter, B., Türk, R., Weber, B., Wedin,
M., Westberg, M., Williams, L., and Zheng, L.: Improved appreciation of the
functionin., and importance of biological soil crusts in Europe: The Soil
Crust International Project (SCIN), Biodivers. Conserv., 23, 1639–1658,
https://doi.org/10.1007/s10531-014-0645-2, 2014.
Calvo-Cases, A., Harvey, A. M., Paya-Serrano, J., and Alexander, R. W.: Response
of badlands surfaces in South East Spain to simulated rainfall Cuaternario y
Geomorfología, 5, 3–14, 1991.
Cano-Díaz, C., Mateo, P., Muñoz-Martín, M. Á., and Maestre,
F. T.: Diversity of biocrust-forming cyanobacteria in a semiarid gypsiferous
site from Central Spain, J. Arid Environ., 151, 83–89,
https://doi.org/10.1016/j.jaridenv.2017.11.008, 2018.
Cantón, Y., Domingo, F., Solé-Benet, A., and Puigdefábregas, J.:
Hydrologica., and erosion response of a badlands system in semiarid SE Spain,
J. Hydrology, 252, 65–84, 2001.
Cantón, Y., Del Barrio, G., Solé-Benet, A., and Lázaro, R.:
Topographic controls on the spatial distribution of ground cover in the
Tabernas badlands of SE Spain, Catena, 55, 341–365,
https://doi.org/10.1016/S0341-816200108-5, 2004.
Cantón, Y., Chamizo, S., Rodriguez-Caballero, E., Lázaro, R.,
Roncero-Ramos, B., Román, J. R., and Solé-Benet, A.: Water regulation
in cyanobacterial biocrusts from drylands: negative impacts of anthropogenic
disturbance, Water, 12, 720, https://doi.org/10.3390/w12030720, 2020.
Castillo-Monroy, A. P., Maestre, F. T., Delgado-Baquerizo, M., and Gallardo,
A.: Biological soil crusts modulate nitrogen availability in semi-arid
ecosystems: Insights from a Mediterranean grassland, Plant Soil, 333,
21–34, https://doi.org/10.1007/s11104-009-0276-7, 2010.
Castillo-Monroy, A. P., Bowker, M. A., Maestre, F. T.,
Rodríguez-Echeverría, S., Martinez, I., Barraza-Zepeda, C. E., and
Escolar, C.: Relationships between biological soil crusts, bacterial
diversit., and abundance., and ecosystem functioning: Insights from a
semi-arid Mediterranean environment, J. Veg. Sci., 22, 165–174,
https://doi.org/10.1111/j.1654-1103.2010.01236.x, 2011a.
Castillo-Monroy, A. P., Maestre, F. T., Rey, A., Soliveres, S., and
García-Palacios, P.: Biological Soil Crust Microsites Are the Main
Contributor to Soil Respiration in a Semiarid Ecosystem, Ecosystems, 14,
835–847, https://doi.org/10.1007/s10021-011-9449-3, 2011b.
Chamizo, S., Rodríguez-Caballero, E., Miralles-Mellado, I., Afana, A.,
Lázaro, R., Domingo, F., Calvo-Cases, A., Sole-Benet, A., and Cantón,
Y.: Características de las costras físicas y biológicas del
suelo con mayor influencia sobre la infiltración y la erosión en
ecosistemas semiáridos, Pirineos, 165, 69–96,
https://doi.org/10.3989/Pirineos.2010.165004, 2010.
Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., Domingo, F., and
Escudero, A.: Runoff at contrasting scales in a semiarid ecosystem: A
complex balance between biological soil crust feature, and rainfall
characteristics, J. Hydrol., 452–453, 130–138,
https://doi.org/10.1016/j.jhydrol.2012.05.045, 2012a.
Chamizo, S., Stevens, A., Cantón, Y., Miralles, I., Domingo, F., and Van
Wesemael, B.: Discriminating soil crust type, development stag., and degree
of disturbance in semiarid environments from their spectral characteristics,
Eur. J. Soil Sci., 63, 42–53, https://doi.org/10.1111/j.1365-2389.2011.01406.x,
2012b.
Chamizo, S., Cantón, Y., Lázaro, R., Solé-Benet, A., and Domingo,
F.: Crust Compositio., and Disturbance Drive Infiltration Through Biological
Soil Crusts in Semiarid Ecosystems, Ecosystems, 15, 148–161,
https://doi.org/10.1007/s10021-011-9499-6, 2012c.
Chamizo, S., Cantón, Y., Miralles, I., and Domingo, F.: Biological soil
crust development affects physicochemical characteristics of soil surface in
semiarid ecosystems, Soil Biol. Biochem., 49, 96–105,
https://doi.org/10.1016/j.soilbio.2012.02.017, 2012d.
Chamizo, S., Cantón, Y., Domingo, F., and Belnap, J.: Evaporative losses
from soils covered by physica., and different types of biological soil
crusts, Hydrol. Process., 27, 324–332, https://doi.org/10.1002/hyp.8421, 2013a.
Chamizo, S., Cantón, Y., Lázaro, R., and Domingo, F.: The role of
biological soil crusts in soil moisture dynamics in two semiarid ecosystems
with contrasting soil textures, J. Hydrol., 489, 74–84,
https://doi.org/10.1016/j.jhydrol.2013.02.051, 2013b.
Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., and Domingo, F.:
Biocrusts positively affect the soil water balance in semiarid ecosystems,
Ecohydrology, 9, 1208–1221, https://doi.org/10.1002/eco.1719, 2016.
Chamizo, S., Rodríguez-Caballero, E., Román, J. R., and Cantón,
Y.: Effects of biocrust on soil erosio., and organic carbon losses under
natural rainfall, Catena, 148, 117–125, https://doi.org/10.1016/j.catena.2016.06.017,
2017.
Concostrina-Zubiri, L., Martínez, I., Rabasa, S. G., and Escudero, A.:
The influence of environmental factors on biological soil crust: From a
community perspective to a species level approach, J. Veg. Sci., 25,
503–513, https://doi.org/10.1111/jvs.12084, 2014a.
Concostrina-Zubiri, L., Pescador, D. S., Martínez, I., and Escudero, A.:
Climat., and small scale factors determine functional diversity shifts of
biological soil crusts in Iberian drylands, Biodivers. Conserv., 23,
1757–1770, https://doi.org/10.1007/s10531-014-0683-9, 2014b.
Concostrina-Zubiri, L., Molla, I., Velizarova, E., and Branquinho, C.:
Grazing or Not Grazing: Implications for Ecosystem Services Provided by
Biocrusts in Mediterranean Cork Oak Woodlands, L. Degrad. Dev., 28,
1345–1353, https://doi.org/10.1002/ldr.2573, 2017.
Concostrina-Zubiri, L., Martínez, I., and Escudero, A.: Lichen-biocrust
diversity in a fragmented dryland: Fine scale factors are better predictors
than landscape structure, Sci. Total Environ., 628–629, 882–892,
https://doi.org/10.1016/j.scitotenv.2018.02.090, 2018.
Concostrina-Zubiri, L., Arenas, J. M., Martínez, I., and Escudero, A.: Unassisted establishment of biological soil crusts on dryland road slopes, Web Ecol., 19, 39–51, https://doi.org/10.5194/we-19-39-2019, 2019.
Cortina, J., Martín, N., Maestre, F. T., and Bautista, S.: Disturbance
of the biological soil crust., and performance of Stipa tenacissima in a
semi-arid Mediterranean steppe, Plant Soil, 334, 311–322,
https://doi.org/10.1007/s11104-010-0384-4, 2010.
Crespo, A.: Composición florística de la costra de líquenes
del Herniario-Teucrietum pumili de la provincia de Madrid, Anales del
Instituto Botánico Antonio José = Cavanilles, 30, 57–68, 1973.
Crespo, A. and Barreno, E.: Ensayo florístico y ecológico de la
vegetación liquénica de los yesos del centro de España
(Fulgensietalia desertori ord. nov), Anales del Instituto Botánico
Cavanilles, 32, 873–908, 1975.
Delgado-Baquerizo, M., Castillo-Monroy, A. P., Maestre, F. T., and Gallardo,
A.: Plant., and biological soil crusts modulate the dominance of N forms in a
semi-arid grassland, Soil Biol. Biochem., 42, 376–378,
https://doi.org/10.1016/j.soilbio.2009.11.003, 2010.
Delgado-Baquerizo, M., Covelo, F., Maestre, F. T., and Gallardo, A.:
Biological soil crusts affect small-scale spatial patterns of inorganic N in
a semiarid Mediterranean grassland, J. Arid Environ., 91, 147–150,
https://doi.org/10.1016/j.jaridenv.2013.01.005, 2013a.
Delgado-Baquerizo, M., Maestre, F. T., and Gallardo, A.: Biological soil
crusts increase the resistance of soil nitrogen dynamics to changes in
temperatures in a semi-arid ecosystem, Plant Soil, 366, 35–47,
https://doi.org/10.1007/s11104-012-1404-3, 2013b.
Delgado-Baquerizo, M., Maestre, F. T., Rodríguez, J. G. P., and
Gallardo, A.: Biological soil crusts promote N accumulation in response to
dew events in dryland soils, Soil Biol. Biochem., 62, 22–27,
https://doi.org/10.1016/j.soilbio.2013.02.015, 2013c.
Delgado-Baquerizo, M., Maestre, F. T., Eldridge, D. J., Bowker, M. A.,
Ochoa, V., Gozalo, B., Berdugo, M., Val, J., and Singh, B. K.:
Biocrust-forming mosses mitigate the negative impacts of increasing aridity
on ecosystem multifunctionality in drylands, New Phytol., 209,
1540–1552, https://doi.org/10.1111/nph.13688, 2016.
Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N.,
Larigauderie, A., Adhikari, J. R., Arico, S., Báldi, A., Bartuska, A.,
Baste, I. A., Bilgin, A., Brondizio, E., Chan, K. M. A., Figueroa, V. E.,
Duraiappah, A., Fischer, M., Hill, R., Koetz, T., Leadley, P., Lyver, P.,
Mace, G. M., Martin-Lopez, B., Okumura, M., Pacheco, D., Pascual, U.,
Pérez, E. S., Reyers, B., Roth, E., Saito, O., Scholes, R. J., Sharma,
N., Tallis, H., Thaman, R., Watson, R., Yahara, T., Hamid, Z. A., Akosim,
C., Al-Hafedh, Y., Allahverdiyev, R., Amankwah, E., Asah, T. S., Asfaw, Z.,
Bartus, G., Brooks, A. L., Caillaux, J., Dalle, G., Darnaedi, D., Driver,
A., Erpul, G., Escobar-Eyzaguirre, P., Failler, P., Fouda, A. M. M., Fu, B.,
Gundimeda, H., Hashimoto, S., Homer, F., Lavorel, S., Lichtenstein, G.,
Mala, W. A., Mandivenyi, W., Matczak, P., Mbizvo, C., Mehrdadi, M., Metzger,
J. P., Mikissa, J. B., Moller, H., Mooney, H. A., Mumby, P., Nagendra, H.,
Nesshover, C., Oteng-Yeboah, A. A., Pataki, G., Roué, M., Rubis, J.,
Schultz, M., Smith, P., Sumaila, R., Takeuchi, K., Thomas, S., Verma, M.,
Yeo-Chang, Y., and Zlatanova, D.: The IPBES Conceptual Framework – connecting
natur., and people, Curr. Opin. Environ. Sustain., 14, 1–16,
https://doi.org/10.1016/j.cosust.2014.11.002, 2015.
Eldridge, D. J., Bowker, M. A., Maestre, F. T., Alonso, P., Mau, R. L.,
Papadopoulos, J., and Escudero, A.: Interactive effects of three ecosystem
engineers on infiltration in a semi-arid Mediterranean grassland,
Ecosystems, 13, 499–510, https://doi.org/10.1007/s10021-010-9335-4, 2010.
Ellison, A.: It's time to get real about conservation, Nature, 538,
https://doi.org/10.1038/538141a, 2016.
Escolar, C., Martínez, I., Bowker, M. A., and Maestre, F. T.: Warming
reduces the growt., and diversity of biological soil crusts in a semi-arid
environment: Implications for ecosystem structur., and functioning, Philos.
Trans. R. Soc. B Biol. Sci., 367, 3087–3099,
https://doi.org/10.1098/rstb.2011.0344, 2012.
Escolar, C., Maestre, F. T., and Rey, A.: Biocrusts modulate warming, and
rainfall exclusion effects on soil respiration in a semi-arid grassland,
Soil Biol. Biochem., 80, 9–17, https://doi.org/10.1016/j.soilbio.2014.09.019, 2015.
Escudero, A., Martínez, I., de la Cruz, A., Otálora, M. A. G., and
Maestre, F. T.: Soil lichens have species-specific effects on the seedling
emergence of three gypsophile plant species, J. Arid Environ., 70,
18–28, https://doi.org/10.1016/j.jaridenv.2006.12.019, 2007.
García-Palacios, P., Bowker, M. A., Maestre, F. T., Soliveres, S.,
Valladares, F., Papadopoulos, J., and Escudero, A.: Ecosystem development in
roadside grasslands: Biotic control, plant-soil interactions, and dispersal
limitations, Ecol. Appl., 21, 2806–2821, https://doi.org/10.1890/11-0204.1, 2011.
Gotelli, N. J., Ulrich, W., and Maestre, F. T.: Randomization tests for
quantifying species importance to ecosystem function, Methods Ecol. Evol.,
2, 634–642, https://doi.org/10.1111/j.2041-210X.2011.00121.x, 2011.
Guerra, J., Ros, R. M., Cano, M. J., and Casares, M.: Gypsiferous outcrops in SE
Spain, refuges of rare, vulnerabl., and endangered bryophyte, and lichens,
Cryptogamie, Bryologie et Lichènologie, 16, 125–135, 1995.
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2013, The
Physical Science Basis. Working Group I Contribution to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, 2013.
Kadykalo, A. N., López-Rodriguez, M. D., Ainscough, J., Droste, N., Ryu,
H., Ávila-Flores, G., Le Clec'h, S., Muñoz, M. C., Nilsson, L.,
Rana, S., Sarkar, P., Sevecke, K. J., and Harmáčková, Z. V.:
Disentangling “ecosystem services”, and “nature's contributions to people”,
Ecosyst. People, 15, 269–287, https://doi.org/10.1080/26395916.2019.1669713, 2019.
Ladrón de Guevara, M., Lázaro, R., Quero, J. L., Ochoa, V., Gozalo,
B., Berdugo, M., Uclés, O., Escolar, C., and Maestre, F. T.: Simulated
climate change reduced the capacity of lichen-dominated biocrusts to act as
carbon sinks in two semi-arid Mediterranean ecosystems, Biodivers. Conserv.,
23, 1787–1807, https://doi.org/10.1007/s10531-014-0681-y, 2014.
Ladrón De Guevara, M., Lázaro, R., Quero, J. L., Chamizo, S., and
Domingo, F.: Easy-to-make portable chamber for in situ CO2 exchange
measurements on biological soil crusts, Photosynthetica, 53, 72–84,
https://doi.org/10.1007/s11099-015-0086-5, 2015.
Lafuente, A., Berdugo, M., Ladrón de Guevara, M., Gozalo, B., and
Maestre, F. T.: Simulated climate change affects how biocrusts modulate
water gain., and desiccation dynamics after rainfall events, Ecohydrology,
11, 1–10, https://doi.org/10.1002/eco.1935, 2018.
Lázaro, R., Cantón, Y., Solé-Benet, A., Bevan, J., Alexander,
R., Sancho, L. G., and Puigdefábregas, J.: The influence of competition
between lichen colonizatio., and erosion on the evolution of soil surfaces in
the Tabernas badlands (SE Spain., and its landscape effects, Geomorphology,
102, 252–266, https://doi.org/10.1016/j.geomorph.2008.05.005, 2008.
Llimona, X.: Las comunidades de líquenes de los yesos de España,
Universidad de Barcelona, Secretariado de Publicaciones, Barcelona, 1974.
Lorite, J., Agea, D., García-Robles, H., Cañadas, E. M., Rams, S.,
and Sánchez-Castillo, P.: Plant recovery techniques do not ensure
biological soil-crust recovery after gypsum quarrying: a call for active
restoration, Restor. Ecol., 1–10, https://doi.org/10.1111/rec.13059, 2019.
Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T., and Escudero, A.:
Assemblage of a semi-arid annual plant community: Abioti, and biotic filters
act hierarchically, PLoS One, 7, 1–9, https://doi.org/10.1371/journal.pone.0041270,
2012.
Mace, G. M.: Whose conservation?, Science, 345, 1558–1560,
https://doi.org/10.1126/science.1254704, 2014.
Maestre, F. T.: Small-scale spatial patterns of two soil lichens in
semi-arid Mediterranean steppe, Lichenologist, 35, 71–81,
https://doi.org/10.1006/lich.2002.0425, 2003a.
Maestre, F. T.: Variaciones en el patrón espacial a pequeña escala
de los componentes de la costra biológica en un ecosistema
Mediterráneo semiárido, Rev. Chil. Hist. Nat., 76, 35–46,
https://doi.org/10.4067/s0716-078x2003000100004, 2003b.
Maestre, F. T. and Cortina, J.: Spatial patterns of surface soil properties
and vegetation in a Mediterranean semi-arid steppe, Plant Soil, 241,
279–291, https://doi.org/10.1023/A:1016172308462, 2002.
Maestre, F. T. and Cortina, J.: Small-scale spatial variation in soil CO2
efflux in a Mediterranean semiarid steppe, Appl. Soil Ecol., 23,
199–209, https://doi.org/10.1016/S0929-139300050-7, 2003.
Maestre, F. T., Escudero A., Martinez, I., Guerrero, C., and Rubio, A.: Does spatial pattern
matter to ecosystem functioning? Insights from biological soil crusts,
Funct. Ecol., 19, 566–573, https://doi.org/10.1111/j.1365-2435.2005.01000.x, 2005.
Maestre, F. T., Escolar, C., Martínez, I., and Escudero, A.: Are soil
lichen communities structured by biotic interactions? A null model analysis,
J. Veg. Sci., 19, 261–266, https://doi.org/10.3170/2007-8-18366, 2008.
Maestre, F. T., Martínez, I., Escolar, C., and Escudero, A.: On the
relationship between abiotic stres., and co-occurrence patterns: An
assessment at the community level using soil lichen communitie, and multiple
stress gradients, Oikos, 118, 1015–1022,
https://doi.org/10.1111/j.1600-0706.2009.17362.x, 2009.
Maestre, F. T., Bowker, M. A., Escolar, C., Puche, M. D., Soliveres, S.,
Maltez-Mouro, S., García-Palacios, P., Castillo-Monroy, A. P.,
Martínez, I., and Escudero, A.: Do biotic interactions modulate
ecosystem functioning along stress gradients? Insights from semi-arid plant
and biological soil crust communities, Philos. Trans. R. Soc. B Biol. Sci.,
365, 2057–2070, https://doi.org/10.1098/rstb.2010.0016, 2010.
Maestre, F. T., Bowker, M. A., Cantón, Y., Castillo-Monroy, A. P.,
Cortina, J., Escolar, C., Escudero, A., Lázaro, R., and Martínez,
I.: Ecolog., and functional roles of biological soil crusts in semi-arid
ecosystems of Spain, J. Arid Environ., 75, 1282–1291,
https://doi.org/10.1016/j.jaridenv.2010.12.008, 2011.
Maestre, F. T., Escolar, C., de Guevara, M. L., Quero, J. L., Lázaro,
R., Delgado-Baquerizo, M., Ochoa, V., Berdugo, M., Gozalo, B., and Gallardo,
A.: Changes in biocrust cover drive carbon cycle responses to climate change
in drylands, Glob. Chang. Biol., 19, 3835–3847, https://doi.org/10.1111/gcb.12306,
2013.
Maier, S., Schmidt, T. S. B., Zheng, L., Peer, T., Wagner, V., and Grube, M.:
Analyses of dryland biological soil crusts highlight lichens as an important
regulator of microbial communities, Biodivers. Conserv., 23, 1735–1755,
https://doi.org/10.1007/s10531-014-0719-1, 2014.
Maier, S., Tamm, A., Wu, D., Caesar, J., Grube, M., and Weber, B.:
Photoautotrophic organisms control microbial abundance, diversity., and
physiology in different types of biological soil crusts, ISME J., 12,
1032–1046, https://doi.org/10.1038/s41396-018-0062-8, 2018.
Martínez, I., Escudero, A., Maestre, F. T., De La Cruz, A., Guerrero,
C., and Rubio, A.: Small-scale patterns of abundance of mosse., and lichens
forming biological soil crusts in two semi-arid gypsum environments, Aust.
J. Bot., 54, 339–348, https://doi.org/10.1071/BT05078, 2006.
Martínez-Valderrama, J., Ibáñez, J., Alcalá, F., and
Martínez, S.: SAT: A Software for Assessing the Risk of Desertification
in Spain, Sci. Program., 2020, 7563928, https://doi.org/10.1155/2020/7563928, 2020.
Mastrángelo, M. E., Pérez-Harguindeguy, N., Enrico, L., Bennett, E.,
Lavorel, S., Cumming, G. S., Abeygunawardane, D., Amarilla, L. D., Burkhard,
B., Egoh, B. N., Frishkoff, L., Galetto, L., Huber, S., Karp, D. S., Ke, A.,
Kowaljow, E., Kronenburg-García, A., Locatelli, B.,
Martín-López, B., Meyfroidt, P., Mwampamba, T. H., Nel, J.,
Nicholas, K. A., Nicholson, C., Oteros-Rozas, E., Rahlao, S. J.,
Raudsepp-Hearne, C., Ricketts, T., Shrestha, U. B., Torres, C., Winkler, K.
J., and Zoeller, K.: Key knowledge gaps to achieve global sustainability
goals, Nat. Sustain., 2, 1115–1121, https://doi.org/10.1038/s41893-019-0412-1,
2019.
Mendoza-Aguilar, D. O., Cortina, J., and Pando-Moreno, M.: Biological soil
crust influence on germinatio., and rooting of two key species in a Stipa
tenacissima steppe, Plant Soil, 375, 267–274,
https://doi.org/10.1007/s11104-013-1958-8, 2014.
Miralles-Mellado, I., Cantón, Y., and Solé-Benet, A.: Two-Dimensional
Porosity of Crusted Silty Soils: Indicators of Soil Quality in Semiarid
Rangelands?, Soil Sci. Soc. Am. J., 75, 1330–1342,
https://doi.org/10.2136/sssaj2010.0283, 2011.
Miralles, I., van Wesemael, B., Cantón, Y., Chamizo, S., Ortega, R.,
Domingo, F., and Almendros, G.: Surrogate descriptors of C-storage processes
on crusted semiarid ecosystems, Geoderma, 189–190, 227–235,
https://doi.org/10.1016/j.geoderma.2012.05.011, 2012a.
Miralles, I., Domingo, F., Cantón, Y., Trasar-Cepeda, C., Leirós, M.
C., and Gil-Sotres, F.: Hydrolase enzyme activities in a successional
gradient of biological soil crusts in ari., and semi-arid zones, Soil Biol.
Biochem., 53, 124–132, https://doi.org/10.1016/j.soilbio.2012.05.016, 2012b.
Miralles, I., Domingo, F., García-Campos, E., Trasar-Cepeda, C.,
Leirós, M. C., and Gil-Sotres, F.: Biologica, and microbial activity in
biological soil crusts from the Tabernas desert, a sub-arid zone in SE
Spain, Soil Biol. Biochem., 55, 113–121, https://doi.org/10.1016/j.soilbio.2012.06.017,
2012c.
Miralles, I., Trasar-Cepeda, C., Leirós, M. C., and Gil-Sotres, F.:
Labile carbon in biological soil crusts in the Tabernas desert, SE Spain,
Soil Biol. Biochem., 58, 1–8, https://doi.org/10.1016/j.soilbio.2012.11.010, 2013.
Miralles, I., Trasar-Cepeda, C., Leirós, M. C., Barbosa-Pereira, L., and
Gil-Sotres, F.: Capacity of biological soil crusts colonized by the lichen
Diploschistes to metabolize simple phenols, Plant Soil, 385, 229–240,
https://doi.org/10.1007/s11104-014-2220-8, 2014.
Miralles, I., Ladrón de Guevara, M., Chamizo, S.,
Rodríguez-Caballero, E., Ortega, R., van Wesemael, B., and Cantón,
Y.: Soil CO2 exchange controlled by the interaction of biocrust successional
stag., and environmental variables in two semiarid ecosystems, Soil Biol.
Biochem., 124, 11–23, https://doi.org/10.1016/j.soilbio.2018.05.020,
2018.
Ochoa-Hueso, R. and Manrique, E.: Effects of nitrogen depositio., and soil
fertility on cove, and physiology of Cladonia foliacea (Huds.) Willd., a
lichen of biological soil crusts from Mediterranean Spain, Environ. Pollut.,
159, 449–457, https://doi.org/10.1016/j.envpol.2010.10.021, 2011.
Ochoa-Hueso, R., Hernandez, R. R., Pueyo, J. J., and Manrique, E.: Spatial
distribution, and physiology of biological soil crusts from semi-arid central
Spain are related to soil chemistr., and shrub cover, Soil Biol. Biochem.,
43, 1894–1901, https://doi.org/10.1016/j.soilbio.2011.05.010, 2011.
Ochoa-Hueso, R., Delgado-Baquerizo, M., Gallardo, A., Bowker, M. A., and
Maestre, F. T.: Climatic conditions, soil fertility, and atmospheric nitrogen
deposition largely determine the structure, and functioning of microbial
communities in biocrust-dominated Mediterranean drylands, Plant Soil,
399, 271–282, https://doi.org/10.1007/s11104-015-2695-y, 2016.
Ochoa-Hueso, R., Mondragon-Cortés, T., Concostrina-Zubiri, L.,
Serrano-Grijalva, L., and Estébanez, B.: Nitrogen deposition reduces the
cover of biocrust-forming lichen., and soil pigment content in a semiarid
Mediterranean shrubland, Environ. Sci. Pollut. Res., 24, 26172–26184,
https://doi.org/10.1007/s11356-017-0482-4, 2017.
Pintado, A., Sancho, L. G., Green, T. G. A., Blanquer, J. M., and Lázaro,
R.: Functional ecology of the biological soil crust in semiarid SE Spain:
Su., and shade populations of Diploschistes diacapsis (Ach.) Lumbsch,
Lichenologist, 37, 425–432, https://doi.org/10.1017/S0024282905015021, 2005.
Raggio, J., Pintado, A., Vivas, M., Sancho, L. G., Büdel, B., Colesie,
C., Weber, B., Schroeter, B., Lázaro, R., and Green, T. G. A.: Continuous
chlorophyll fluorescence, gas exchange, and microclimate monitoring in a
natural soil crust habitat in Tabernas badlands, Almería, Spain:
Progressing towards a model to understand productivity, Biodivers. Conserv.,
23, 1809–1826, https://doi.org/10.1007/s10531-014-0692-8, 2014.
Raggio, J., Allan Green, T. G., Sancho, L. G., Pintado, A., Colesie, C.,
Weber, B., and Büdel, B.: Metabolic activity duration can be effectively
predicted from macroclimatic data for biological soil crust habitats across
Europe, Geoderma, 306, 10–17, https://doi.org/10.1016/j.geoderma.2017.07.001,
2017.
Reed, S. C., Delgado-Baquerizo, M., and Ferrenberg, S.: Biocrust scienc., and
global change, New Phytol., 223, 1047–1051, https://doi.org/10.1111/nph.15992, 2019.
Rey, A., Oyonarte, C., Morán-López, T., Raimundo, J., and Pegoraro,
E.: Changes in soil moisture predict soil carbon losses upon rewetting in a
perennial semiarid steppe in SE Spain, Geoderma, 287, 135–146,
https://doi.org/10.1016/j.geoderma.2016.06.025, 2017.
Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Afana, A., and
Solé-Benet, A.: Effects of biological soil crusts on surface roughness
and implications for runof., and erosion, Geomorphology, 145–146, 81–89,
https://doi.org/10.1016/j.geomorph.2011.12.042, 2012.
Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Lázaro, R.
and Escudero, A.: Soil Loss, and Runoff in Semiarid Ecosystems: A Complex
Interaction Between Biological Soil Crusts, Micro-topography, and
Hydrological Drivers, Ecosystems, 16, 529–546,
https://doi.org/10.1007/s10021-012-9626-z, 2013.
Rodríguez-Caballero, E., Cantón, Y., Lazaro, R., and Solé-Benet,
A.: Cross-scale interactions between surface component., and rainfall
properties. Non-linearities in the hydrologica., and erosive behavior of
semiarid catchments, J. Hydrol., 517, 815–825,
https://doi.org/10.1016/j.jhydrol.2014.06.018, 2014a.
Rodríguez-Caballero, E., Escribano, P., and Cantón, Y.: Advanced
image processing methods as a tool to ma., and quantify different types of
biological soil crust, ISPRS J. Photogramm. Remote Sens., 90, 59–67,
https://doi.org/10.1016/j.isprsjprs.2014.02.002, 2014b.
Rodríguez-Caballero, E., Aguilar, M. Á., Castilla, Y. C., Chamizo,
S., and Aguilar, F. J.: Swelling of biocrusts upon wetting induces changes in
surface micro-topography, Soil Biol. Biochem., 82, 107–111,
https://doi.org/10.1016/j.soilbio.2014.12.010, 2015a.
Rodríguez-Caballero, E., Cantón, Y., and Jetten, V.: Biological soil
crust effects must be included to accurately model infiltratio., and erosion
in drylands: An example from Tabernas Badlands, Geomorphology, 241,
331–342, https://doi.org/10.1016/j.geomorph.2015.03.042, 2015b.
Rodríguez-Caballero, E., Escribano, P., Olehowski, C., Chamizo, S.,
Hill, J., Cantón, Y., and Weber, B.: Transferability of multi., and
hyperspectral optical biocrust indices, ISPRS J. Photogramm. Remote Sens.,
126, 94–107, https://doi.org/10.1016/j.isprsjprs.2017.02.007, 2017.
Rodriguez-Caballero, E., Belnap, J., Büdel, B., Crutzen, P. J., Andreae,
M. O., Pöschl, U., and Weber, B.: Dryland photoautotrophic soil surface
communities endangered by global change, Nat. Geosci., 11, 185–189,
https://doi.org/10.1038/s41561-018-0072-1, 2018a.
Rodríguez-Caballero, E., Chamizo, S., Roncero-Ramos, B., Román, R.,
and Cantón, Y.: Runoff from biocrust: A vital resource for vegetation
performance on Mediterranean steppes, Ecohydrology, 11, 1–13,
https://doi.org/10.1002/eco.1977, 2018b.
Rodríguez-Caballero, E., Castro, A. J., Chamizo, S., Quintas-Soriano,
C., Garcia-Llorente, M., Cantón, Y., and Weber, B.: Ecosystem services
provided by biocrusts: From ecosystem functions to social values, J. Arid
Environ., 159, 45–53, https://doi.org/10.1016/j.jaridenv.2017.09.005, 2018c.
Rodríguez-Caballero, E., Román, J. R., Chamizo, S., Roncero Ramos,
B., and Cantón, Y.: Biocrust landscape-scale spatial distribution is
strongly controlled by terrain attributes: Topographic thresholds for
colonization in a semiarid badland system, Earth Surf. Process. Land.,
44, 2771–2779, https://doi.org/10.1002/esp.4706, 2019.
Román, J. R., Roncero-Ramos, B., Chamizo, S., Rodriguez-Caballero, E., and Canton, Y.: Restoring soil functions by means of cyanobacteria inoculation: Importance of soil conditions and species selection, Land Degrad. Dev., 28, 31840-3193, 2018.
Román, J. R., Rodríguez-Caballero, E., Rodríguez-Lozano, B.,
Roncero-Ramos, B., Chamizo, S., Águila-Carricondo, P., and Cantón,
Y.: Spectral response analysis: An indirec., and non-destructive methodology
for the chlorophyll quantification of biocrusts, Remote Sens., 11, 1350,
https://doi.org/10.3390/rs11111350, 2019.
Roncero-Ramos, B., Román, J. R., Gómez-Serrano, C., Cantón, Y.,
and Acién, F. G.: Production of a biocrust-cyanobacteria strain (Nostoc
commune) for large-scale restoration of dryland soils, J. Appl. Phycol.,
31, 2217–2230, https://doi.org/10.1007/s10811-019-1749-6, 2019a.
Roncero-Ramos, B., Muñoz-Martín, M. Á., Chamizo, S.,
Fernández-Valbuena, L., Mendoza, D., Perona, E., Cantón, Y., and
Mateo, P.: Polyphasic evaluation of key cyanobacteria in biocrusts from the
most arid region in Europe, PeerJ, 2019, 1–27, https://doi.org/10.7717/peerj.6169,
2019b.
Souza-Egipsy, V., Wierzchos, J., Sancho, C., Belmonte, A., and Ascaso, C.:
Role of biological soil crust cover in bioweatherin, and protection of
sandstones in a semi-arid landscape (Torrollones de Gabarda, Huesca, Spain),
Earth Surf. Process. Land., 29, 1651–1661, https://doi.org/10.1002/esp.1118,
2004.
Uclés, O., Villagarcía, L., Cantón, Y., and Domingo, F.:
Partitioning of non rainfall water input regulated by soil cover type,
Catena, 139, 265–270, https://doi.org/10.1016/j.catena.2015.02.018, 2016.
Weber, B., Büdel, B., and Belnap, J.: Biological Soil Crusts as an
Organizing Principle in Drylands, Ecological Studies, vol. 226, Springer International Publishing, 2016.
Williams, L., Loewen-Schneider, K., Maier, S., and Büdel, B.:
Cyanobacterial diversity of western European biological soil crusts along a
latitudinal gradient, FEMS Microbiol. Ecol., 92, 1–9,
https://doi.org/10.1093/femsec/fiw157, 2016.
Williams, L., Colesie, C., Ullmann, A., Westberg, M., Wedin, M., and
Büdel, B.: Lichen acclimation to changing environments: Photobiont
switching vs. climate-specific uniqueness in Psora decipiens, Ecol. Evol.,
7, 2560–2574, https://doi.org/10.1002/ece3.2809, 2017.
Williams, L., Jung, P., Zheng, L. J., Maier, S., Peer, T., Grube, M., Weber,
B., and Büdel, B.: Assessing recovery of biological soil crusts across a
latitudinal gradient in Western Europe, Restor. Ecol., 26, 543–554,
https://doi.org/10.1111/rec.12579, 2018.
Short summary
Biocrusts are a key component in Spanish drylands, where their ecological relevance has been widely studied. However, by doing a literature review, we found that the social dimension of their role still remains unexplored. This may hinder biocrusts and their benefits from being known and understood by the policy community and the general public. Thus, we identified social–ecological knowledge gaps and proposed new research areas that need to be addressed to advance towards biocrust conservation.
Biocrusts are a key component in Spanish drylands, where their ecological relevance has been...
Special issue