Articles | Volume 23, issue 1
https://doi.org/10.5194/we-23-1-2023
https://doi.org/10.5194/we-23-1-2023
Standard article
 | 
13 Jan 2023
Standard article |  | 13 Jan 2023

Plant clustering generates negative plant–soil feedback without changing the spatial distribution of soil fauna

Peihua Zhang, Dries Bonte, Gerlinde De Deyn, and Martijn L. Vandegehuchte

Related authors

Remote sensing of plant trait responses to field-based plant–soil feedback using UAV-based optical sensors
Bob van der Meij, Lammert Kooistra, Juha Suomalainen, Janna M. Barel, and Gerlinde B. De Deyn
Biogeosciences, 14, 733–749, https://doi.org/10.5194/bg-14-733-2017,https://doi.org/10.5194/bg-14-733-2017, 2017
Short summary
Soil fauna: key to new carbon models
Juliane Filser, Jack H. Faber, Alexei V. Tiunov, Lijbert Brussaard, Jan Frouz, Gerlinde De Deyn, Alexei V. Uvarov, Matty P. Berg, Patrick Lavelle, Michel Loreau, Diana H. Wall, Pascal Querner, Herman Eijsackers, and Juan José Jiménez
SOIL, 2, 565–582, https://doi.org/10.5194/soil-2-565-2016,https://doi.org/10.5194/soil-2-565-2016, 2016
Short summary

Related subject area

Soil ecology
Spatial heterogeneity of Cladonia rangiformis and Erica spp. induces variable effects on soil microbial communities which are most robust in bare-soil microhabitats
Theofilos Dostos, Pantelitsa D. Kapagianni, Nikolaos Monokrousos, George P. Stamou, and Efimia M. Papatheodorou
Web Ecol., 22, 21–31, https://doi.org/10.5194/we-22-21-2022,https://doi.org/10.5194/we-22-21-2022, 2022
Short summary
Drought-tolerant cyanobacteria and mosses as biotechnological tools to attain land degradation neutrality
Alessandra Adessi, Roberto De Philippis, and Federico Rossi
Web Ecol., 21, 65–78, https://doi.org/10.5194/we-21-65-2021,https://doi.org/10.5194/we-21-65-2021, 2021
Short summary
Identifying social–ecological gaps to promote biocrust conservation actions
María D. López-Rodríguez, Sonia Chamizo, Yolanda Cantón, and Emilio Rodriguez-Caballero
Web Ecol., 20, 117–132, https://doi.org/10.5194/we-20-117-2020,https://doi.org/10.5194/we-20-117-2020, 2020
Short summary

Cited articles

Arndt, H.: Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review, Hydrobiologia, 255, 231–246, https://doi.org/10.1007/BF00025844, 1993. 
Ayres, E., Steltzer, H., Simmons, B. L., Simpson, R. T., Steinweg, J. M., Wallenstein, M. D., Mellor, N., Parton, W. J., Moore, J. C., and Wall, D. H.: Home-field advantage accelerates leaf litter decomposition in forests, Soil Biol. Biochem., 41, 606–610, https://doi.org/10.1016/j.soilbio.2008.12.022, 2009. 
Baermann, G.: Eine einfache Methode zur Auffindung von Ankylostomum (Nematoden) Larven in Erdproben, Geneeskundig Tijdschrift Voor Nederlandsch-Indie Batavia, 57, 131–137, 1917. 
Bardgett, R. D. and Van Der Putten, W. H.: Belowground biodiversity and ecosystem functioning, Nature, 515, 505–511, https://doi.org/10.1038/nature13855, 2014. 
Bardgett, R. D., Denton, C. S., and Cook, R.​​​​​​​: Below-ground herbivory promotes soil nutrient transfer and root growth in grassland, Ecol. Lett., 2, 357–360, https://doi.org/10.1046/j.1461-0248.1999.00001.x, 1999. 
Download
Short summary
The dispersal of soil nematodes was not affected by plant spatial configurations, which mostly varied according to their life-history strategy. However, creeping bentgrass grown in a more clustered spatial configuration developed a larger aboveground biomass, which was coupled with a reduction in biomass of subsequently grown ryegrass and plantain. The negative plant–soil feedback may be attributed to the depleted soil nutrients by the stimulated plant growth due to plant–nematode interactions.