Articles | Volume 23, issue 2
https://doi.org/10.5194/we-23-99-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-23-99-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pollination supply models from a local to global scale
Angel Giménez-García
CORRESPONDING AUTHOR
Basque Centre for Climate Change (BC3), Edif. Sede 1, 1°, Parque Científico UPV-EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
Alfonso Allen-Perkins
Estación Biológica de Doñana, EBD‐CSIC, 41092 Seville, Spain
Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Ignasi Bartomeus
Estación Biológica de Doñana, EBD‐CSIC, 41092 Seville, Spain
Stefano Balbi
Basque Centre for Climate Change (BC3), Edif. Sede 1, 1°, Parque Científico UPV-EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
Jessica L. Knapp
Centre for Environmental and Climate Science, Lund University, Lund, Sweden
Department of Biology, Lund University, Lund, Sweden
School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
Violeta Hevia
Social-Ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
Ben Alex Woodcock
UK Centre for Ecology & Hydrology, Wallingford, UK
Guy Smagghe
Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
Marcos Miñarro
Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Asturias, Spain
Maxime Eeraerts
Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI 48824, USA
Jonathan F. Colville
The Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa
Juliana Hipólito
Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution, Federal University of Bahia, Salvador, Brazil
National Institute for Amazonian Research (INPA), Biodiversity Research Coordination (COBIO), Manaus, Amazonas, Brazil
Pablo Cavigliasso
Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria, X2580, Córdoba, Argentina
Guiomar Nates-Parra
Laboratorio investigaciones en Abejas (LABUN), Universidad Nacional de Colombia, Bogotá, Colombia
José M. Herrera
Department of Biology, University of Cádiz, 11510 Puerto Real, Cádiz, Spain
Sarah Cusser
Santa Barbara Botanic Garden, 1212 Mission Canyon Rd, Santa Barbara, CA 93105, USA
Benno I. Simmons
Centre for Ecology and Conservation, University of Exeter, Penryn, UK
Volkmar Wolters
Department of Animal Ecology, University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
Shalene Jha
Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
Lady Bird Johnson Wildflower Center, University of Texas at Austin, Austin, TX 78712, USA
Breno M. Freitas
Centro de Ciências Agrárias, Departamento de Zootecnia, Universidade Federal do Ceará, Campus Universitário do Pici, Bloco 808, Caixa Postal 12168, Fortaleza, Brazil
Finbarr G. Horgan
Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, 3349001 Curicó, Chile
EcoLaVerna Integral Restoration Ecology, Kildinan, Co. Cork, Ireland
Derek R. Artz
Pollinating Insects Research Unit, USDA Agricultural Research Service, Logan, UT 84322, USA
C. Sheena Sidhu
Jasper Ridge Biological Preserve, Stanford University, Stanford, CA 94305, USA
Mark Otieno
Department of Water and Agricultural Resource Management, University of Embu, Embu, Kenya
Virginie Boreux
Ecosystem Management, Institute of Terrestrial Ecosystems, ETH Zürich, Universitaetstrasse 16, 8092 Zurich, Switzerland
David J. Biddinger
Department of Entomology, Fruit Research and Extension Center, Penn State University, Biglerville, PA 17307, USA
Alexandra-Maria Klein
Chair of Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
Neelendra K. Joshi
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
Rebecca I. A. Stewart
Department of Aquatic Ecology, Lund University, Lund, Sweden
Matthias Albrecht
Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
Charlie C. Nicholson
Department of Biology, Lund University, Lund, Sweden
Alison D. O'Reilly
School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
David William Crowder
Department of Entomology, Washington State University, Pullman, WA 99164, USA
Katherine L. W. Burns
School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
Diego Nicolás Nabaes Jodar
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina
Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Universidad Nacional de Río Negro, San Carlos de Bariloche, Río Negro, Argentina
Lucas Alejandro Garibaldi
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina
Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Universidad Nacional de Río Negro, San Carlos de Bariloche, Río Negro, Argentina
Louis Sutter
Plant-Production Systems, Agroscope, 1964 Conthey, Switzerland
Yoko L. Dupont
Department of Ecoscience, Aarhus University, 8000 Aarhus C, Denmark
Bo Dalsgaard
Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
Jeferson Gabriel da Encarnação Coutinho
Federal Institute of Education, Science and Technology of Bahia, Salvador, Brazil
National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution, Federal University of Bahia, Salvador, Brazil
Amparo Lázaro
Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), 07190 Esporles, Spain
Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
Georg K. S. Andersson
Department of Biology, Lund University, Lund, Sweden
Nigel E. Raine
School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Smitha Krishnan
Bioversity International, College of Horticulture, UHS Campus, GKVK Post, 560065, Bengaluru, India
Ecosystem Management, Institute of Terrestrial Ecosystems, ETH Zürich, Universitaetstrasse 16, 8092 Zurich, Switzerland
Matteo Dainese
Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
Wopke van der Werf
Centre for Crop Systems Analysis, Department Plant Sciences, Wageningen University & Research, P.O. Box 430, 6700 AK Wageningen, the Netherlands
Henrik G. Smith
Centre for Environmental and Climate Science, Lund University, Lund, Sweden
Department of Biology, Lund University, Lund, Sweden
Ainhoa Magrach
Basque Centre for Climate Change (BC3), Edif. Sede 1, 1°, Parque Científico UPV-EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
Related authors
Alfonso Allen-Perkins, Angel Giménez-García, Ainhoa Magrach, Javier Galeano, Ana María Tarquis, and Ignasi Bartomeus
Web Ecol., 24, 81–96, https://doi.org/10.5194/we-24-81-2024, https://doi.org/10.5194/we-24-81-2024, 2024
Short summary
Short summary
Machine learning models outperform simple mechanistic models in predicting pollinator visitation rates. We use deep learning to infer rules from land cover maps to estimate pollination services globally. Results suggest deep learning can improve predictions by identifying complex patterns in landscape composition, especially in data-rich but knowledge-poor areas. The challenge is to make deep learning algorithms more interpretable so that experts can validate prediction rules for pollination.
Alfonso Allen-Perkins, Angel Giménez-García, Ainhoa Magrach, Javier Galeano, Ana María Tarquis, and Ignasi Bartomeus
Web Ecol., 24, 81–96, https://doi.org/10.5194/we-24-81-2024, https://doi.org/10.5194/we-24-81-2024, 2024
Short summary
Short summary
Machine learning models outperform simple mechanistic models in predicting pollinator visitation rates. We use deep learning to infer rules from land cover maps to estimate pollination services globally. Results suggest deep learning can improve predictions by identifying complex patterns in landscape composition, especially in data-rich but knowledge-poor areas. The challenge is to make deep learning algorithms more interpretable so that experts can validate prediction rules for pollination.
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023, https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary
Short summary
Only by mapping fire risks can we manage forest and prevent fires under current and future climate conditions. We present a fire risk map based on k.LAB, artificial-intelligence-powered and open-source software integrating multidisciplinary knowledge in near real time. Through an easy-to-use web application, we model the hazard with 84 % accuracy for Sicily, a representative Mediterranean region. Fire risk analysis reveals 45 % of vulnerable areas face a high probability of danger in 2050.
María Hurtado, Oscar Godoy, and Ignasi Bartomeus
Web Ecol., 23, 51–69, https://doi.org/10.5194/we-23-51-2023, https://doi.org/10.5194/we-23-51-2023, 2023
Short summary
Short summary
We found that crowded neighborhoods reduced individual seed production via plant–plant competition, but they also made individual plants more attractive for some pollinator guilds, increasing visitation rates and, therefore, plant fitness. The balance between these two forces varied depending on the species identity and the spatial scale considered. Our results indicate that plant spatial aggregation plays an important role in defining the net effect of mutualistic and antagonistic interactions.
Stefano Balbi, Ferdinando Villa, Vahid Mojtahed, Karin Tessa Hegetschweiler, and Carlo Giupponi
Nat. Hazards Earth Syst. Sci., 16, 1323–1337, https://doi.org/10.5194/nhess-16-1323-2016, https://doi.org/10.5194/nhess-16-1323-2016, 2016
Short summary
Short summary
This study develops a novel methodology to assess flood risk to people by integrating people’s vulnerability and ability to cushion hazards through coping and adapting. The model is used to estimate the effect of improving an existing early warning system. The proposed approach extends traditional risk assessments beyond material damages, complements quantitative and semi-quantitative data with subjective and local knowledge, and improves the use of commonly available information.
Related subject area
Biodiversity
Revisiting the debate: documenting biodiversity in the age of digital and artificially generated images
Invasive shallow-water foraminifera impacts local biodiversity mostly at densities above 20 %: the case of Corfu Island
Effects of management cessation on hoverflies (Diptera: Syrphidae) across Austrian and Swiss mountain meadows
Ödenwinkel: an Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity
Pollen morphological variability correlates with a large-scale gradient of aridity
The influence of plant species richness on stress recovery of humans
The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands
Modelling plant invasion pathways in protected areas under climate change: implication for invasion management
Genetic diversity in the Alpine flatworm Crenobia alpina
Incorporating natural and human factors in habitat modelling and spatial prioritisation for the Lynx lynx martinoi
Relations between environmental gradients and diversity indices of benthic invertebrates in lotic systems of northern Italy
The first shoots of a modern morphometrics approach to the origins of agriculture
Do tree-species richness, stand structure and ecological factors affect the photosynthetic efficiency in European forests?
Comment on "Opinion paper: Forest management and biodiversity": the role of protected areas is greater than the sum of its number of species
Partitioning of diversity: the "within communities" component
Diversity did not influence soil water use of tree clusters in a temperate mixed forest
Diego Sousa Campos, Rafael Ferreira de Oliveira, Lucas de Oliveira Vieira, Pedro Henrique Negreiros de Bragança, Jorge Luiz Silva Nunes, Erick Cristofore Guimarães, and Felipe Polivanov Ottoni
Web Ecol., 23, 135–144, https://doi.org/10.5194/we-23-135-2023, https://doi.org/10.5194/we-23-135-2023, 2023
Short summary
Short summary
This study examines the risks of relying solely on images for biodiversity documentation. We conducted an experiment with 621 participants, revealing challenges in distinguishing artificial-intelligence-generated images. Trust is vital in biodiversity documentation, but eroded trust can hinder conservation. We call for improved communication, collaboration, and journal policies for data validation to preserve scientific credibility amidst technological advancements.
Anna E. Weinmann, Olga Koukousioura, Maria V. Triantaphyllou, and Martin R. Langer
Web Ecol., 23, 71–86, https://doi.org/10.5194/we-23-71-2023, https://doi.org/10.5194/we-23-71-2023, 2023
Short summary
Short summary
This study analyzes the diversity of benthic foraminifera at the range expansion front of the invasive species Amphistegina lobifera in Corfu (central Mediterranean). The species has been suggested to impact local diversity and community structures, and our results confirm these effects as soon as A. lobifera exceeds a specific abundance threshold (> 20 %). Nevertheless, we found that the study area reveals an overall high biodiversity that can be attributed to its unique location.
Ronnie Walcher, Raja Imran Hussain, Johannes Karrer, Andreas Bohner, David Brandl, Johann G. Zaller, Arne Arnberger, and Thomas Frank
Web Ecol., 20, 143–152, https://doi.org/10.5194/we-20-143-2020, https://doi.org/10.5194/we-20-143-2020, 2020
Short summary
Short summary
The abandonment of extensively managed mountainous meadows affects the diversity of both plants and associated pollinators. However, not much is known about the effects of abandonment on hoverflies which consitute an important pollinator group in grasslands. Our research suggests that extensive management is most beneficial in preserving hoverfly richness in mountainous grasslands.
Robert R. Junker, Maximilian Hanusch, Xie He, Victoria Ruiz-Hernández, Jan-Christoph Otto, Sabine Kraushaar, Kristina Bauch, Florian Griessenberger, Lisa-Maria Ohler, and Wolfgang Trutschnig
Web Ecol., 20, 95–106, https://doi.org/10.5194/we-20-95-2020, https://doi.org/10.5194/we-20-95-2020, 2020
Short summary
Short summary
We introduce the Alpine research platform Ödenwinkel to promote observational and experimental research on the emergence of multidiversity and ecosystem complexity. The Ödenwinkel platform will be available as a long-term ecological research site where researchers from various disciplines can contribute to the accumulation of knowledge on ecological successions and on how interactions between various taxonomic groups structure ecological complexity in this Alpine environment.
Hindel Fatmi, Souhaïl Mâalem, Bouchra Harsa, Ahmed Dekak, and Haroun Chenchouni
Web Ecol., 20, 19–32, https://doi.org/10.5194/we-20-19-2020, https://doi.org/10.5194/we-20-19-2020, 2020
Short summary
Short summary
This study determines the diversity of pollen morphotypes of Atriplex halimus (Amaranthaceae) along a large-scale climatic gradient. Occurrences of 10 pollen grain shapes were quantified at seven climates across a humid-to-hyperarid gradient. We discuss how the evolutionary effects of climate gradients on pollen morphology and variability in dryland induce a high level of specialization to maximize trade-offs between adaptation to severe ecological conditions and pollination efficiency.
Petra Lindemann-Matthies and Diethart Matthies
Web Ecol., 18, 121–128, https://doi.org/10.5194/we-18-121-2018, https://doi.org/10.5194/we-18-121-2018, 2018
Short summary
Short summary
We studied the influence of plant diversity on recovery from stress. The blood pressure of stressed people decreased more strongly when they were looking at species-rich vegetation instead of bare ground or vegetation consisting of only a few species during relaxation. Our results indicate that species-rich vegetation may contribute to recovery from stress, which should be considered in landscape management and planning.
Sølvi Wehn, Knut Anders Hovstad, and Line Johansen
Web Ecol., 18, 55–65, https://doi.org/10.5194/we-18-55-2018, https://doi.org/10.5194/we-18-55-2018, 2018
Short summary
Short summary
We studied the effect of abandonment of extensively managed semi-natural grasslands on indicators of ecosystem services (ES) and found both positive and negative effects. We also studied relationships between ESs and plant species richness and whether abandonment affect these relationships. For several ESs we observed positive relationships. However, the relationships differed often between the abandoned and managed grasslands because the relationships were less pronounced in the managed.
Chun-Jing Wang, Ji-Zhong Wan, Hong Qu, and Zhi-Xiang Zhang
Web Ecol., 17, 69–77, https://doi.org/10.5194/we-17-69-2017, https://doi.org/10.5194/we-17-69-2017, 2017
Short summary
Short summary
We used an original global approach to explore the potential relationship between PAs and the intentional movement of IPS based on climate change. Climate change developed the potential pathways for IPS in PAs, and the ability of natural dispersal encourages IPS to invade non-native habitats in the potential movement pathways in PAs. This study shows the importance of the development of global conservation planning for PAs and biological invasion.
Martin Brändle, Jan Sauer, Lars Opgenoorth, and Roland Brandl
Web Ecol., 17, 29–35, https://doi.org/10.5194/we-17-29-2017, https://doi.org/10.5194/we-17-29-2017, 2017
K. Laze and A. Gordon
Web Ecol., 16, 17–31, https://doi.org/10.5194/we-16-17-2016, https://doi.org/10.5194/we-16-17-2016, 2016
Short summary
Short summary
We show areas for extending current protected areas and creating new ones for endangered sub-species of the Lynx lynx martinoi in the Albania–Macedonia–Kosovo and Montenegro–Albania–Kosovo cross-border areas. Our results highlight the importance international cooperation can have for lynx conservation. We used local knowledge on forests in the study area, our analytical skills, and our full interest in the lynx conservation. We did this study working remotely.
V. G. Aschonitis, G. Castaldelli, and E. A. Fano
Web Ecol., 16, 13–15, https://doi.org/10.5194/we-16-13-2016, https://doi.org/10.5194/we-16-13-2016, 2016
Short summary
Short summary
The relations between environmental gradients and traditional diversity indices (taxonomic richness, diversity and evenness) of benthic macroinvertebrate communities in the lotic systems of northern Italy were analyzed. Redundancy analysis (RDA) was used to describe the response of taxa to environmental gradients. Diversity indices were analyzed using generalized linear models (GLMs) with explanatory variables the first two major RDA axes.
V. Bonhomme, E. Forster, M. Wallace, E. Stillman, M. Charles, and G. Jones
Web Ecol., 16, 1–2, https://doi.org/10.5194/we-16-1-2016, https://doi.org/10.5194/we-16-1-2016, 2016
Short summary
Short summary
The transition from a mobile hunter-gatherer lifestyle to one of settled agriculture is arguably the most fundamental change in the development of human society (Lev-Yadun et al., 2000). The establishment of agricultural economies, emerging initially in the Fertile Crescent of the Near East (Nesbitt, 2002), required the domestication of crops; ancient plant remains recovered from early
farming sites provide direct evidence for this process of domestication.
F. Bussotti and M. Pollastrini
Web Ecol., 15, 39–41, https://doi.org/10.5194/we-15-39-2015, https://doi.org/10.5194/we-15-39-2015, 2015
Short summary
Short summary
The effects of tree diversity on the photosynthetic efficiency of tree species were assessed on six European mature forests (distributed along a latitudinal gradient) and in forest stands planted ad hoc with different levels of tree-species richness. The behaviour of Picea abies (spruce) was compared at the different sites. Site-specific responses were detected in relation to the age of the stands and their developmental stage.
M. Mikoláš, M. Svoboda, V. Pouska, R. C. Morrissey, D. C. Donato, W. S. Keeton, T. A. Nagel, V. D. Popescu, J. Müller, C. Bässler, J. Knorn, L. Rozylowicz, C. M. Enescu, V. Trotsiuk, P. Janda, H. Mrhalová, Z. Michalová, F. Krumm, and D. Kraus
Web Ecol., 14, 61–64, https://doi.org/10.5194/we-14-61-2014, https://doi.org/10.5194/we-14-61-2014, 2014
Short summary
Short summary
Clear-fellings to introduce heterogeneity can be an important component of a forest management plan. However, it is misleading to compare clear-fellings to protected areas dominated by old-growth forests using a simplistic measure of biodiversity and without a landscape perspective. To minimize the well-documented role of protected areas can have adverse effects on forested landscapes, primary forest remnants, and taxa that rely on forest structural elements characteristic of old-growth forests.
H.-R. Gregorius
Web Ecol., 14, 51–60, https://doi.org/10.5194/we-14-51-2014, https://doi.org/10.5194/we-14-51-2014, 2014
M. Meißner, M. Köhler, and D. Hölscher
Web Ecol., 13, 31–42, https://doi.org/10.5194/we-13-31-2013, https://doi.org/10.5194/we-13-31-2013, 2013
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Scientific Data, 5, 170191,
https://doi.org/10.1038/sdata.2017.191, 2018. a, b
Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., and Klein, A. M.: Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency, Curr. Biol., 18, 1572–1575, https://doi.org/10.1016/j.cub.2008.08.066, 2008. a
Aizen, M. A., Aguiar, S., Biesmeijer, J. C., Garibaldi, L. A., Inouye, D. W.,
Jung, C., Martins, D. J., Medel, R., Morales, C. L., Ngo, H., Pauw, A.,
Paxton, R. J., Sáez, A., and Seymour, C. L.: Global agricultural
productivity is threatened by increasing pollinator dependence without a
parallel increase in crop diversification, Glob. Change Biol., 25,
3516–3527, https://doi.org/10.1111/gcb.14736, 2019. a
Alejandre, E. M., Scherer, L., Guinée, J. B., Aizen, M. A., Albrecht, M., Balzan, M. V., Bartomeus, I., Bevk, D., Burkle, L. A., Clough, Y., Cole, L. J., Delphia, C. M., Dicks, L. V., Garratt, M. P., Kleijn, D., Kovács-Hostyánszki, A., Mandelik, Y., Paxton, R. J., Petanidou, T., Potts, S., Sárospataki, M., Schulp, C. J., Stavrinides, M., Stein, K., Stout, J. C., Szentgyörgyi, H., Varnava, A. I., Woodcock, B. A., and van Bodegom, P. M.: Characterization Factors to Assess Land Use Impacts on Pollinator Abundance in Life Cycle Assessment, Environ. Sci. Technol., 57, 3445–3454, https://doi.org/10.1021/acs.est.2c05311, 2023. a, b, c
Allen-Perkins, A., Magrach, A., Dainese, M., Garibaldi, L. A., Kleijn, D., Rader, R., Reilly, J. R., Winfree, R., Lundin, O., McGrady, C. M., Brittain, C., Biddinger, D. J., Artz, D. R., Elle, E., Hoffman, G., Ellis, J. D., Daniels, J., Gibbs, J., Campbell, J. W., Brokaw, J., Wilson, J. K., Mason, K., Ward, K. L., Gundersen, K. B., Bobiwash, K., Gut, L., Rowe, L. M., Boyle, N. K., Williams, N. M., Joshi, N. K., Rothwell, N., Gillespie, R. L., Isaacs, R., Fleischer, S. J., Peterson, S. S., Rao, S., Pitts-Singer, T. L., Fijen, T., Boreux, V., Rundlöf, M., Viana, B. F., Klein, A.-M., Smith, H. G., Bommarco, R., Carvalheiro, L. G., Ricketts, T. H., Ghazoul, J., Krishnan, S., Benjamin, F. E., Loureiro, J., Castro, S., Raine, N. E., de Groot, G. A., Horgan, F. G., Hipólito, J., Smagghe, G., Meeus, I., Eeraerts, M., Potts, S. G., Kremen, C., García, D., Miñarro, M., Crowder, D. W., Pisanty, G., Mandelik, Y., Vereecken, N. J., Leclercq, N., Weekers, T., Lindstrom, S. A. M., Stanley, D. A., Zaragoza-Trello, C., Nicholson, C. C., Scheper, J., Rad, C., Marks, E. A. N., Mota, L., Danforth, B., Park, M., Bezerra, A. D. M., Freitas, B. M., Mallinger, R. E., Oliveira da Silva, F., Willcox, B., Ramos, D. L., D. da Silva e Silva, F., Lázaro, A., Alomar, D., González-Estévez, M. A., Taki, H., Cariveau, D. P., Garratt, M. P. D., Nabaes Jodar, D. N., Stewart, R. I. A., Ariza, D., Pisman, M., Lichtenberg, E. M., Schüepp, C., Herzog, F., Entling, M. H., Dupont, Y. L., Michener, C. D., Daily, G. C., Ehrlich, P. R., Burns, K. L. W., Vilà, M., Robson, A., Howlett, B., Blechschmidt, L., Jauker, F., Schwarzbach, F., Nesper, M., Diekötter, T., Wolters, V., Castro, H., Gaspar, H., Nault, B. A., Badenhausser, I., Petersen, J. D., Tscharntke, T., Bretagnolle, V., Willis Chan, D. S., Chacoff, N., Andersson, G. K. S., Jha, S., Colville J. F., Veldtman, R., Coutinho, J., Bianchi, F. J. J. A., Sutter, L., Albrecht, M., Jeanneret, P., Zou, Y., Averill, A. L., Saez, A., Sciligo, A. R., Vergara, C. H., Bloom, E. H., Oeller, E., Badano, E. I., Loeb, G. M., Grab, H., Ekroos, J., Gagic, V., Cunningham, S. A., Åström, J., Cavigliasso, P., Trillo, A., Classen, A., Mauchline, A. L., Montero-Castaño, A., Wilby, A., Woodcock, B. A., Sidhu, C. S., Steffan-Dewenter, I., Vogiatzakis, I. N., Herrera, J. M., Otieno, M., Gikungu, M. W., Cusser, S. J., Nauss, T., Nilsson, L., Knapp, J., Ortega-Marcos, J. J., González, J. A., Osborne, J. L., Blanche, R., Shaw, R. F., Hevia, V., Stout, J., Arthur, A. D., Blochtein, B., Szentgyorgyi, H., Li, J., Mayfield, M. M., Woyciechowski, M., Nunes-Silva, P., Halinski de Oliveira, R., Henry, S., Simmons, B. I., Dalsgaard, B., Hansen, K., Sritongchuay, T., O'Reilly, A. D., Chamorro García, F. J., Nates Parra, G., Magalhães Pigozo, C., and Bartomeus, I.: CropPol: A dynamic, open and global database on crop pollination, Ecology, 103, e3614, https://doi.org/10.1002/ecy.3614, 2022. a, b, c
Becher, M. A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P. J., and Osborne, J. L.: BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure, J. Appl. Ecol., 51, 470–482, https://doi.org/10.1111/1365-2664.12222, 2014. a
Becher, M. A., Twiston-Davies, G., Penny, T. D., Goulson, D., Rotheray, E. L., and Osborne, J. L.: Bumble-BEEHAVE: A systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level, J. Appl. Ecol., 55, 2790–2801,
https://doi.org/10.1111/1365-2664.13165, 2018. a
Bommarco, R., Kleijn, D., and Potts, S. G.: Ecological intensification:
harnessing ecosystem services for food security, Trends Ecol. Evol., 28, 230–238, https://doi.org/10.1016/j.tree.2012.10.012, 2013. a, b
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover Layers – Collection 2, Remote
Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020. a, b
Burkle, L. A., Marlin, J. C., and Knight, T. M.: Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function, Science, 339, 1611–1615, https://doi.org/10.1126/science.1232728, 2013. a
Cassman, K. G., Grassini, P., and van Wart, J.: Crop Yield Potential, Yield Trends, and Global Food Security in a Changing Climate, in: Handbook of Climate Change and Agroecosystems, Imperial College Press, 37–51,
https://doi.org/10.1142/9781848166561_0004, 2010. a
Corbet, S. A., Fusell, M., Ake, R., Fraser, A., Gunson, C., Savage, A., and Smith, K.: Temperature and the pollinating activity of social bees, Ecol. Entomol., 18, 17–30, https://doi.org/10.1111/j.1365-2311.1993.tb01075.x, 1993. a, b, c, d
Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L. G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Landis, D. A., Letourneau, D. K., Marini, L., Poveda, K., Rader, R., Smith, H. G., Tscharntke, T., Andersson, G. K. S., Badenhausser, I., Baensch, S., Bezerra, A. D. M., Bianchi, F. J. J. A., Boreux, V., Bretagnolle, V., Caballero-Lopez, B., Cavigliasso, P., Ćetković, A., Chacoff, N. P., Classen, A., Cusser, S., da Silva e Silva, F. D., de Groot, G. A., Dudenhöffer, J. H., Ekroos, J., Fijen, T., Franck, P., Freitas, B. M., Garratt, M. P. D., Gratton, C., Hipólito, J., Holzschuh, A., Hunt, L., Iverson, A. L., Jha, S., Keasar, T., Kim, T. N., Kishinevsky, M., Klatt, B. K., Klein, A.-M., Krewenka, K. M., Krishnan, S., Larsen, A. E., Lavigne, C., Liere, H., Maas, B., Mallinger, R. E., Pachon, E. M., Martínez-Salinas, A., Meehan, T. D., Mitchell, M. G. E., Molina, G. A. R., Nesper, M., Nilsson, L., O'Rourke, M. E., Peters, M. K., Plećaš, M., Potts, S. G., de L. Ramos, D., Rosenheim, J. A., Rundlöf, M., Rusch, A., Sáez, A., Scheper, J., Schleuning, M., Schmack, J. M., Sciligo, A. R., Seymour, C., Stanley, D. A., Stewart, R., Stout, J. C., Sutter, L., Takada, M. B., Taki, H., Tamburini, G., Tschumi, M., Viana, B. F., Westphal, C., Willcox, B. K., Wratten, S. D., Yoshioka, A., Zaragoza-Trello, C., Zhang, W., Zou, Y., and Steffan-Dewenter, I.: A global synthesis reveals biodiversity-mediated benefits for crop production, Science Advances, 5, eaax0121, https://doi.org/10.1126/sciadv.aax0121, 2019. a, b
Danforth, B. N., Minckley, R. L., and Neff, J. L.: The Solitary Bees, Princeton University Press, https://doi.org/10.2307/j.ctvd1c929, 2019. a
Dicks, L. V., Baude, M., Roberts, S. P., Phillips, J., Green, M., and Carvell, C.: How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge, Ecol. Entomol., 40, 22–35, https://doi.org/10.1111/een.12226, 2015. a
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A., Ghazanfar, S. A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J.-P. B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K. F., and Saleem, M.: An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm,
BioScience, 67, 534–545, https://doi.org/10.1093/biosci/bix014, 2017. a
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B.,
Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.:
Collinearity: a review of methods to deal with it and a simulation study
evaluating their performance, Ecography, 36, 27–46, https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2012. a
Eeraerts, M., Piot, N., Pisman, M., Claus, G., Meeus, I., and Smagghe, G.:
Landscapes with high amounts of mass-flowering fruit crops reduce the
reproduction of two solitary bees, Basic Appl. Ecol., 56, 122–131,
https://doi.org/10.1016/j.baae.2021.07.005, 2021. a
European Commission Joint Research Centre: Ecosystem services accounting. Part I, Outdoor recreation and crop pollination, Publications Office of the European Union, https://doi.org/10.2760/619793, 2018. a, b, c
Everaars, J., Settele, J., and Dormann, C. F.: Fragmentation of nest and
foraging habitat affects time budgets of solitary bees, their fitness and
pollination services, depending on traits: Results from an individual-based
model, PLOS ONE, 13, e0188269, https://doi.org/10.1371/journal.pone.0188269,
2018. a
Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., King, D., Lindsay, K. F., Mitchell, S., and Tischendorf, L.: Farmlands with smaller crop fields have higher within-field biodiversity, Agr. Ecosyst. Environ., 200, 219–234, https://doi.org/10.1016/j.agee.2014.11.018, 2015. a
Foley, J. A.: Global Consequences of Land Use, Science, 309, 570–574,
https://doi.org/10.1126/science.1111772, 2005. a
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478, 337–342,
https://doi.org/10.1038/nature10452, 2011. a
Forsythe, W. C., Rykiel, E. J., Stahl, R. S., i Wu, H., and Schoolfield, R. M.: A model comparison for daylength as a function of latitude and day of year, Ecol. Model., 80, 87–95, https://doi.org/10.1016/0304-3800(94)00034-f, 1995. a
Gan, R., Zhang, Y., Shi, H., Yang, Y., Eamus, D., Cheng, L., Chiew, F. H., and Yu, Q.: Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems, Ecohydrology, 11, e1974,
https://doi.org/10.1002/eco.1974, 2018. a
Gardner, E., Breeze, T. D., Clough, Y., Smith, H. G., Baldock, K. C. R.,
Campbell, A., Garratt, M. P. D., Gillespie, M. A. K., Kunin, W. E.,
McKerchar, M., Memmott, J., Potts, S. G., Senapathi, D., Stone, G. N.,
Wäckers, F., Westbury, D. B., Wilby, A., and Oliver, T. H.: Reliably
predicting pollinator abundance: Challenges of calibrating process-based
ecological models, Methods Ecol. Evol., 11, 1673–1689,
https://doi.org/10.1111/2041-210x.13483, 2020. a, b, c, d, e, f
Garibaldi, L. A., Steffan-Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R., Cunningham, S. A., Carvalheiro, L. G., Chacoff, N. P., Dudenhöffer,
J. H., Greenleaf, S. S., Holzschuh, A., Isaacs, R., Krewenka, K., Mandelik,
Y., Mayfield, M. M., Morandin, L. A., Potts, S. G., Ricketts, T. H.,
Szentgyörgyi, H., Viana, B. F., Westphal, C., Winfree, R., and Klein,
A. M.: Stability of pollination services decreases with isolation from
natural areas despite honey bee visits, Ecol. Lett., 14, 1062–1072,
https://doi.org/10.1111/j.1461-0248.2011.01669.x, 2011. a, b
Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhoffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S., Hipolito, J., Holzschuh, A., Howlett, B., Isaacs, R., Javorek, S. K., Kennedy, C. M., Krewenka, K. M., Krishnan, S., Mandelik, Y., Mayfield, M. M., Motzke, I., Munyuli, T., Nault, B. A., Otieno, M., Petersen, J., Pisanty, G., Potts, S. G., Rader, R., Ricketts, T. H., Rundlof, M., Seymour, C. L., Schuepp, C., Szentgyorgyi, H., Taki, H., Tscharntke, T., Vergara, C. H., Viana, B. F., Wanger, T. C., Westphal, C., Williams, N., and Klein, A. M.: Wild Pollinators
Enhance Fruit Set of Crops Regardless of Honey Bee Abundance, Science, 339,
1608–1611, https://doi.org/10.1126/science.1230200, 2013. a, b, c, d
Garibaldi, L. A., Carvalheiro, L. G., Vaissiere, B. E., Gemmill-Herren, B., Hipolito, J., Freitas, B. M., Ngo, H. T., Azzu, N., Saez, A., Astrom, J., An, J., Blochtein, B., Buchori, D., Garcia, F. J. C., da Silva, F. O., Devkota, K., d. F. Ribeiro, M., Freitas, L., Gaglianone, M. C., Goss, M., Irshad, M., Kasina, M., Filho, A. J. S. P., Kiill, L. H. P., Kwapong, P., Parra, G. N., Pires, C., Pires, V., Rawal, R. S., Rizali, A., Saraiva, A. M., Veldtman, R., Viana, B. F., Witter, S., and Zhang, H.: Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms, Science, 351,
388–391, https://doi.org/10.1126/science.aac7287, 2016. a
Gimenez-Garcia, A.: garciagimenezangel/OBServ_Models_Open: Pollination supply models from local to global scale. Open data and code (v2023.05-beta), Zenodo [data set and code], https://doi.org/10.5281/zenodo.7909258, 2023. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Grassini, P., Eskridge, K. M., and Cassman, K. G.: Distinguishing between yield advances and yield plateaus in historical crop production trends, Nat.
Commun., 4, 2918, https://doi.org/10.1038/ncomms3918, 2013. a
Greenleaf, S. S. and Kremen, C.: Wild bees enhance honey bees'
pollination of hybrid sunflower, P. Natl. Acad. Sci. USA, 103, 13890–13895, https://doi.org/10.1073/pnas.0600929103, 2006. a
Greenleaf, S. S., Williams, N. M., Winfree, R., and Kremen, C.: Bee foraging
ranges and their relationship to body size, Oecologia, 153, 589–596,
https://doi.org/10.1007/s00442-007-0752-9, 2007. a, b, c
Häussler, J., Sahlin, U., Baey, C., Smith, H. G., and Clough, Y.: Pollinator population size and pollination ecosystem service responses to enhancing floral and nesting resources, Ecol. Evol., 7, 1898–1908,
https://doi.org/10.1002/ece3.2765, 2017. a, b
Hengl, T.: Soil bulk density (fine earth) 10 x kg/m-cubic at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, Zenodo [data set], https://doi.org/10.5281/zenodo.2525665, 2018a. a
Hengl, T.: Clay content in % (kg/kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, Zenodo [data set], https://doi.org/10.5281/zenodo.2525663, 2018b. a
Hengl, T.: Soil pH in H2O at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, Zenodo [data set], https://doi.org/10.5281/zenodo.2525664, 2018c. a
Hengl, T.: Sand content in % (kg/kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, Zenodo [data set], https://doi.org/10.5281/zenodo.2525662, 2018d. a
Hengl, T. and Gupta, S.: Soil water content (volumetric %) for 33 kPa and
1500 kPa suctions predicted at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, Zenodo [data set], https://doi.org/10.5281/zenodo.2784001, 2019. a
Hengl, T. and Wheeler, I.: Soil organic carbon content in x 5 g/kg at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, Zenodo [data set], https://doi.org/10.5281/zenodo.2525553, 2018. a
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005. a
Hines, H. M.: Historical Biogeography, Divergence Times, and Diversification
Patterns of Bumble Bees (Hymenoptera: Apidae: Bombus), Syst. Biol.,
57, 58–75, https://doi.org/10.1080/10635150801898912, 2008. a
Holzschuh, A., Dormann, C. F., Tscharntke, T., and Steffan-Dewenter, I.:
Mass-flowering crops enhance wild bee abundance, Oecologia, 172, 477–484,
https://doi.org/10.1007/s00442-012-2515-5, 2012. a
Holzschuh, A., Dainese, M., González-Varo, J. P., Mudri-Stojnić, S., Riedinger, V., Rundlöf, M., Scheper, J., Wickens, J. B., Wickens, V. J.,
Bommarco, R., Kleijn, D., Potts, S. G., Roberts, S. P. M., Smith, H. G.,
Vilà, M., Vujić, A., and Steffan-Dewenter, I.: Mass-flowering
crops dilute pollinator abundance in agricultural landscapes across Europe,
Ecol. Lett., 19, 1228–1236, https://doi.org/10.1111/ele.12657, 2016. a
Image, M., Gardner, E., Clough, Y., Smith, H. G., Baldock, K. C., Campbell, A., Garratt, M., Gillespie, M. A., Kunin, W. E., McKerchar, M., Memmott, J., Potts, S. G., Senapathi, D., Stone, G. N., Wackers, F., Westbury, D. B., Wilby, A., Oliver, T. H., and Breeze, T. D.: Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?, Agr. Ecosyst. Environ., 325, 107755, https://doi.org/10.1016/j.agee.2021.107755, 2022. a
IMP: k.Explorer online interface, IMP, https://observ.integratedmodelling.org/modeler/?app=observ_app.en (login required, last access: 13 January 2023), 2023. a
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe Version 4, CGIAR-CSI SRTM 90m Database, https://srtm.csi.cgiar.org (last access: 1 October 2021), 2008. a
Jha, S. and Kremen, C.: Resource diversity and landscape-level homogeneity
drive native bee foraging, P. Natl. Acad. Sci. USA, 110, 555–558, https://doi.org/10.1073/pnas.1208682110, 2012. a
Kammerer, M., Goslee, S. C., Douglas, M. R., Tooker, J. F., and Grozinger,
C. M.: Wild bees as winners and losers: Relative impacts of landscape
composition, quality, and climate, Glob. Change Biol., 27, 1250–1265,
https://doi.org/10.1111/gcb.15485, 2021. a, b, c
Kendall, L. K., Rader, R., Gagic, V., Cariveau, D. P., Albrecht, M., Baldock,
K. C. R., Freitas, B. M., Hall, M., Holzschuh, A., Molina, F. P., Morten,
J. M., Pereira, J. S., Portman, Z. M., Roberts, S. P. M., Rodriguez, J.,
Russo, L., Sutter, L., Vereecken, N. J., and Bartomeus, I.: Pollinator size
and its consequences: Robust estimates of body size in pollinating insects,
Ecol. Evol., 9, 1702–1714, https://doi.org/10.1002/ece3.4835, 2019. a, b
Kennedy, C. M., Lonsdorf, E., Neel, M. C., Williams, N. M., Ricketts, T. H., Winfree, R., Bommarco, R., Brittain, C., Burley, A. L., Cariveau, D., Carvalheiro, L. G., Chacoff, N. P., Cunningham, S. A., Danforth, B. N., Dudenhöffer, J. H., Elle, E., Gaines, H. R., Garibaldi, L. A., Gratton, C., Holzschuh, A., Isaacs, R., Javorek, S. K., Jha, S., Klein, A. M., Krewenka, K., Mandelik, Y., Mayfield, M. M., Morandin, L., Neame, L. A., Otieno, M., Park, M., Potts, S. G., Rundlöf, M., Saez, A., Steffan-Dewenter, I., Taki, H., Viana, B. F., Westphal, C., Wilson, J. K., Greenleaf, S. S., and Kremen, C.: A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems, Ecol. Lett., 16, 584–599, https://doi.org/10.1111/ele.12082, 2013. a
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., and Kiesecker, J.: Managing the middle: A shift in conservation priorities based on the global human modification gradient, Glob. Change Biol., 25, 811–826, https://doi.org/10.1111/gcb.14549, 2019. a
Kleijn, D., Bommarco, R., Fijen, T. P., Garibaldi, L. A., Potts, S. G., and
van der Putten, W. H.: Ecological Intensification: Bridging the Gap between
Science and Practice, Trends Ecol. Evol., 34, 154–166,
https://doi.org/10.1016/j.tree.2018.11.002, 2019. a
Klein, A., Steffan-Dewenter, I., and Tscharntke, T.: Fruit set of highland coffee increases with the diversity of pollinating bees, P. Roy. Soc. Lond. B Bio., 270, 955–961, https://doi.org/10.1098/rspb.2002.2306, 2003. a
Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., and Tscharntke, T.: Importance of pollinators in changing landscapes for world crops, P. Roy. Soc. Lond. B Bio., 274, 303–313, https://doi.org/10.1098/rspb.2006.3721, 2007. a, b
Klein, A.-M., Brittain, C., Hendrix, S. D., Thorp, R., Williams, N., and Kremen, C.: Wild pollination services to California almond rely on semi-natural habitat, J. Appl. Ecol., 49, 723–732, https://doi.org/10.1111/j.1365-2664.2012.02144.x, 2012. a
Kovács-Hostyánszki, A., Espíndola, A., Vanbergen, A. J.,
Settele, J., Kremen, C., and Dicks, L. V.: Ecological intensification to
mitigate impacts of conventional intensive land use on pollinators and
pollination, Ecol. Lett., 20, 673–689, https://doi.org/10.1111/ele.12762, 2017. a
Lautenbach, S., Seppelt, R., Liebscher, J., and Dormann, C. F.: Spatial and
Temporal Trends of Global Pollination Benefit, PLoS ONE, 7, e35954,
https://doi.org/10.1371/journal.pone.0035954, 2012. a
Le Féon, V., Schermann-Legionnet, A., Delettre, Y., Aviron, S.,
Billeter, R., Bugter, R., Hendrickx, F., and Burel, F.: Intensification of
agriculture, landscape composition and wild bee communities: A large scale
study in four European countries, Agr. Ecosyst. Environ., 137, 143–150, https://doi.org/10.1016/j.agee.2010.01.015, 2010. a
Leong, M., Kremen, C., and Roderick, G. K.: Pollinator Interactions with Yellow Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes, PLoS ONE, 9, e86357, https://doi.org/10.1371/journal.pone.0086357, 2014. a
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019. a, b
O'Connor, S. A.: The Nesting Ecology of Bumblebees, CORE,
https://core.ac.uk/display/20443717 (last access: 12 December 2022), 2013. a
Olsson, O. and Bolin, A.: A model for habitat selection and species
distribution derived from central place foraging theory, Oecologia, 175,
537–548, https://doi.org/10.1007/s00442-014-2931-9, 2014. a
Osterman, J., Landaverde-González, P., Garratt, M. P., Gee, M., Mandelik, Y., Langowska, A., Miñarro, M., Cole, L. J., Eeraerts, M., Bevk, D., Avrech, O., Koltowski, Z., Trujillo-Elisea, F. I., Paxton, R. J., Boreux, V., Seymour, C. L., and Howlett, B. G.: On-farm experiences shape farmer knowledge, perceptions of pollinators, and management practices, Global Ecology and Conservation, 32, e01949, https://doi.org/10.1016/j.gecco.2021.e01949, 2021. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Polce, C., Termansen, M., Aguirre-Gutiérrez, J., Boatman, N. D., Budge, G. E., Crowe, A., Garratt, M. P., Pietravalle, S., Potts, S. G., Ramirez, J. A., Somerwill, K. E., and Biesmeijer, J. C.: Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain, PLoS
ONE, 8, e76308, https://doi.org/10.1371/journal.pone.0076308, 2013. a, b
Polce, C., Garratt, M. P., Termansen, M., Ramirez-Villegas, J., Challinor, A. J., Lappage, M. G., Boatman, N. D., Crowe, A., Endalew, A. M., Potts, S. G., Somerwill, K. E., and Biesmeijer, J. C.: Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of
pollination deficits, Glob. Change Biol., 20, 2815–2828,
https://doi.org/10.1111/gcb.12577, 2014. a
Polce, C., Maes, J., Rotllan-Puig, X., Michez, D., Castro, L., Cederberg, B.,
Dvorak, L., Fitzpatrick, Ú., Francis, F., Neumayer, J., Manino, A.,
Paukkunen, J., Pawlikowski, T., Roberts, S. P. M., Straka, J., and Rasmont,
P.: Distribution of bumblebees across europe, One Ecosystem, 3, e28143,
https://doi.org/10.3897/oneeco.3.e28143, 2018. a
Portman, Z. M., Bruninga-Socolar, B., and Cariveau, D. P.: The State of Bee Monitoring in the United States: A Call to Refocus Away From Bowl Traps and Towards More Effective Methods, Ann. Entomol. Soc. Am., 113, 337–342, https://doi.org/10.1093/aesa/saaa010, 2020. a, b
Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B. G., Winfree, R., Cunningham, S. A., Mayfield, M. M., Arthur, A. D., Andersson, G. K. S., Bommarco, R., Brittain, C., Carvalheiro, L. G., Chacoff, N. P., Entling, M. H., Foully, B., Freitas, B. M., Gemmill-Herren, B., Ghazoul, J., Griffin, S. R., Gross, C. L., Herbertsson, L., Herzog, F., Hipólito, J., Jaggar, S., Jauker, F., Klein, A.-M., Kleijn, D., Krishnan, S., Lemos, C. Q., Lindström, S. A. M., Mandelik, Y., Monteiro, V. M., Nelson, W., Nilsson, L., Pattemore, D. E., de O. Pereira, N., Pisanty, G., Potts, S. G., Reemer, M., Rundlöf, M., Sheffield, C. S., Scheper, J., Schüepp, C., Smith, H. G., Stanley, D. A., Stout, J. C., Szentgyörgyi, H., Taki, H., Vergara, C. H., Viana, B. F., and Woyciechowski, M.: Non-bee insects are important contributors to global crop pollination, P. Natl. Acad. Sci. USA, 113, 146–151, https://doi.org/10.1073/pnas.1517092112, 2015. a, b
Ricketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S. S., Klein, A. M., Mayfield, M. M., Morandin, L. A., Ochieng', A., and Viana, B. F.: Landscape
effects on crop pollination services: Are there general patterns?, Ecol.
Lett., 11, 499–515, https://doi.org/10.1111/j.1461-0248.2008.01157.x, 2008. a
Rogers, S. R., Tarpy, D. R., and Burrack, H. J.: Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop, PLoS ONE, 9, e97307, https://doi.org/10.1371/journal.pone.0097307, 2014. a
Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes Distributed Active Archive Center, [data set], https://doi.org/10.5067/MODIS/MOD16A2.006, 2017. a
Scrucca, L.: GA: A Package for Genetic Algorithms in R, J. Stat. Softw., 53, 1–37, https://doi.org/10.18637/jss.v053.i04, 2013. a
Scrucca, L.: On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution, R J., 9, 187–206, https://doi.org/10.32614/RJ-2017-008, 2017. a
Sexton, J. O., Song, X. P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D. H., Collins, K. M., Channan, S., DiMiceli, C., and Townshend, J. R.: Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error, Int. J. Digit. Earth, 6, 427–448, https://doi.org/10.1080/17538947.2013.786146, 2013. a
Sharp, R., Chaplin-Kramer, R., Wood, S., Guerry, A., Tallis, H., Ricketts, T., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C.-K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel, P., Vogl, A. L., Rogers, L., Bierbower, W., Denu, D., and Douglass, J.: InVEST
User's Guide, The Natural Capital Project, Stanford University, University
of Minnesota, The Nature Conservancy, and World Wildlife Fund,
https://doi.org/10.13140/RG.2.2.32693.78567, 2018. a
Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., and Albano, C. M.:
Ecologically-Relevant Maps of Landforms and Physiographic Diversity for
Climate Adaptation Planning, PLOS ONE, 10, 1–17,
https://doi.org/10.1371/journal.pone.0143619, 2015. a, b
The White House: Pollinator Research Action Plan (PRAP) 2015, The White House, https://obamawhitehouse.archives.gov (last access: 3 January 2022), 2015. a
Westphal, C., Steffan-Dewenter, I., and Tscharntke, T.: Mass flowering crops
enhance pollinator densities at a landscape scale, Ecol. Lett., 6,
961–965, https://doi.org/10.1046/j.1461-0248.2003.00523.x, 2003. a
Wik, M., Pingali, P., and Broca, S.: Global Agricultural Performance: Past Trends and Future Prospects, Background Paper for the World Development Report, Open Knowledge Repository, 1–39, http://hdl.handle.net/10986/9122 (last access: 23 April 2023), 2008. a
Woodcock, B. A., Garratt, M. P. D., Powney, G. D., Shaw, R. F., Osborne, J. L., Soroka, J., Lindström, S. A. M., Stanley, D., Ouvrard, P., Edwards, M. E., Jauker, F., McCracken, M. E., Zou, Y., Potts, S. G., Rundlöf, M., Noriega, J. A., Greenop, A., Smith, H. G., Bommarco, R., van der Werf, W., Stout, J. C., Steffan-Dewenter, I., Morandin, L., Bullock, J. M., and Pywell, R. F.: Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield, Nat. Commun., 10, 1481, https://doi.org/10.1038/s41467-019-09393-6, 2019. a
Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G., and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 6, 19124, https://doi.org/10.1038/srep19124, 2016. a
Zhang, Y., Kong, D., Gan, R., Chiew, F. H., McVicar, T. R., Zhang, Q., and Yang, Y.: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017, Remote Sens. Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
a
Short summary
Modelling tools may provide a method of measuring pollination supply and promote the use of ecological intensification techniques among farmers and decision-makers. This study benchmarks different modelling approaches to provide clear guidance on which pollination supply models perform best at different spatial scales. These findings are an important step in bridging the gap between academia and stakeholders in modelling ecosystem service delivery under ecological intensification.
Modelling tools may provide a method of measuring pollination supply and promote the use of...