Articles | Volume 24, issue 2
https://doi.org/10.5194/we-24-115-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-24-115-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracking ranavirus infections: an integrative review of epidemiological research on pathogen dynamics in anurans
Davi dos Santos Rodrigues
CORRESPONDING AUTHOR
Veterinary Medicine Department, Federal Rural University of Pernambuco (UFRPE), Recife – PE, 52171-900, Brazil
Rita de Cássia Carvalho Maia
Veterinary Medicine Department, Federal Rural University of Pernambuco (UFRPE), Recife – PE, 52171-900, Brazil
Geraldo Jorge Barbosa de Moura
Biology Department, Federal Rural University of Pernambuco (UFRPE), Recife – PE, 52171-900, Brazil
Ricardo Luiz Moro de Sousa
Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga – SP, 13635-900, Brazil
José Wilton Pinheiro Junior
Veterinary Medicine Department, Federal Rural University of Pernambuco (UFRPE), Recife – PE, 52171-900, Brazil
Related subject area
Biodiversity
Revisiting the debate: documenting biodiversity in the age of digital and artificially generated images
Pollination supply models from a local to global scale
Invasive shallow-water foraminifera impacts local biodiversity mostly at densities above 20 %: the case of Corfu Island
Effects of management cessation on hoverflies (Diptera: Syrphidae) across Austrian and Swiss mountain meadows
Ödenwinkel: an Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity
Pollen morphological variability correlates with a large-scale gradient of aridity
The influence of plant species richness on stress recovery of humans
The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands
Modelling plant invasion pathways in protected areas under climate change: implication for invasion management
Genetic diversity in the Alpine flatworm Crenobia alpina
Incorporating natural and human factors in habitat modelling and spatial prioritisation for the Lynx lynx martinoi
Relations between environmental gradients and diversity indices of benthic invertebrates in lotic systems of northern Italy
The first shoots of a modern morphometrics approach to the origins of agriculture
Do tree-species richness, stand structure and ecological factors affect the photosynthetic efficiency in European forests?
Comment on "Opinion paper: Forest management and biodiversity": the role of protected areas is greater than the sum of its number of species
Partitioning of diversity: the "within communities" component
Diversity did not influence soil water use of tree clusters in a temperate mixed forest
Diego Sousa Campos, Rafael Ferreira de Oliveira, Lucas de Oliveira Vieira, Pedro Henrique Negreiros de Bragança, Jorge Luiz Silva Nunes, Erick Cristofore Guimarães, and Felipe Polivanov Ottoni
Web Ecol., 23, 135–144, https://doi.org/10.5194/we-23-135-2023, https://doi.org/10.5194/we-23-135-2023, 2023
Short summary
Short summary
This study examines the risks of relying solely on images for biodiversity documentation. We conducted an experiment with 621 participants, revealing challenges in distinguishing artificial-intelligence-generated images. Trust is vital in biodiversity documentation, but eroded trust can hinder conservation. We call for improved communication, collaboration, and journal policies for data validation to preserve scientific credibility amidst technological advancements.
Angel Giménez-García, Alfonso Allen-Perkins, Ignasi Bartomeus, Stefano Balbi, Jessica L. Knapp, Violeta Hevia, Ben Alex Woodcock, Guy Smagghe, Marcos Miñarro, Maxime Eeraerts, Jonathan F. Colville, Juliana Hipólito, Pablo Cavigliasso, Guiomar Nates-Parra, José M. Herrera, Sarah Cusser, Benno I. Simmons, Volkmar Wolters, Shalene Jha, Breno M. Freitas, Finbarr G. Horgan, Derek R. Artz, C. Sheena Sidhu, Mark Otieno, Virginie Boreux, David J. Biddinger, Alexandra-Maria Klein, Neelendra K. Joshi, Rebecca I. A. Stewart, Matthias Albrecht, Charlie C. Nicholson, Alison D. O'Reilly, David William Crowder, Katherine L. W. Burns, Diego Nicolás Nabaes Jodar, Lucas Alejandro Garibaldi, Louis Sutter, Yoko L. Dupont, Bo Dalsgaard, Jeferson Gabriel da Encarnação Coutinho, Amparo Lázaro, Georg K. S. Andersson, Nigel E. Raine, Smitha Krishnan, Matteo Dainese, Wopke van der Werf, Henrik G. Smith, and Ainhoa Magrach
Web Ecol., 23, 99–129, https://doi.org/10.5194/we-23-99-2023, https://doi.org/10.5194/we-23-99-2023, 2023
Short summary
Short summary
Modelling tools may provide a method of measuring pollination supply and promote the use of ecological intensification techniques among farmers and decision-makers. This study benchmarks different modelling approaches to provide clear guidance on which pollination supply models perform best at different spatial scales. These findings are an important step in bridging the gap between academia and stakeholders in modelling ecosystem service delivery under ecological intensification.
Anna E. Weinmann, Olga Koukousioura, Maria V. Triantaphyllou, and Martin R. Langer
Web Ecol., 23, 71–86, https://doi.org/10.5194/we-23-71-2023, https://doi.org/10.5194/we-23-71-2023, 2023
Short summary
Short summary
This study analyzes the diversity of benthic foraminifera at the range expansion front of the invasive species Amphistegina lobifera in Corfu (central Mediterranean). The species has been suggested to impact local diversity and community structures, and our results confirm these effects as soon as A. lobifera exceeds a specific abundance threshold (> 20 %). Nevertheless, we found that the study area reveals an overall high biodiversity that can be attributed to its unique location.
Ronnie Walcher, Raja Imran Hussain, Johannes Karrer, Andreas Bohner, David Brandl, Johann G. Zaller, Arne Arnberger, and Thomas Frank
Web Ecol., 20, 143–152, https://doi.org/10.5194/we-20-143-2020, https://doi.org/10.5194/we-20-143-2020, 2020
Short summary
Short summary
The abandonment of extensively managed mountainous meadows affects the diversity of both plants and associated pollinators. However, not much is known about the effects of abandonment on hoverflies which consitute an important pollinator group in grasslands. Our research suggests that extensive management is most beneficial in preserving hoverfly richness in mountainous grasslands.
Robert R. Junker, Maximilian Hanusch, Xie He, Victoria Ruiz-Hernández, Jan-Christoph Otto, Sabine Kraushaar, Kristina Bauch, Florian Griessenberger, Lisa-Maria Ohler, and Wolfgang Trutschnig
Web Ecol., 20, 95–106, https://doi.org/10.5194/we-20-95-2020, https://doi.org/10.5194/we-20-95-2020, 2020
Short summary
Short summary
We introduce the Alpine research platform Ödenwinkel to promote observational and experimental research on the emergence of multidiversity and ecosystem complexity. The Ödenwinkel platform will be available as a long-term ecological research site where researchers from various disciplines can contribute to the accumulation of knowledge on ecological successions and on how interactions between various taxonomic groups structure ecological complexity in this Alpine environment.
Hindel Fatmi, Souhaïl Mâalem, Bouchra Harsa, Ahmed Dekak, and Haroun Chenchouni
Web Ecol., 20, 19–32, https://doi.org/10.5194/we-20-19-2020, https://doi.org/10.5194/we-20-19-2020, 2020
Short summary
Short summary
This study determines the diversity of pollen morphotypes of Atriplex halimus (Amaranthaceae) along a large-scale climatic gradient. Occurrences of 10 pollen grain shapes were quantified at seven climates across a humid-to-hyperarid gradient. We discuss how the evolutionary effects of climate gradients on pollen morphology and variability in dryland induce a high level of specialization to maximize trade-offs between adaptation to severe ecological conditions and pollination efficiency.
Petra Lindemann-Matthies and Diethart Matthies
Web Ecol., 18, 121–128, https://doi.org/10.5194/we-18-121-2018, https://doi.org/10.5194/we-18-121-2018, 2018
Short summary
Short summary
We studied the influence of plant diversity on recovery from stress. The blood pressure of stressed people decreased more strongly when they were looking at species-rich vegetation instead of bare ground or vegetation consisting of only a few species during relaxation. Our results indicate that species-rich vegetation may contribute to recovery from stress, which should be considered in landscape management and planning.
Sølvi Wehn, Knut Anders Hovstad, and Line Johansen
Web Ecol., 18, 55–65, https://doi.org/10.5194/we-18-55-2018, https://doi.org/10.5194/we-18-55-2018, 2018
Short summary
Short summary
We studied the effect of abandonment of extensively managed semi-natural grasslands on indicators of ecosystem services (ES) and found both positive and negative effects. We also studied relationships between ESs and plant species richness and whether abandonment affect these relationships. For several ESs we observed positive relationships. However, the relationships differed often between the abandoned and managed grasslands because the relationships were less pronounced in the managed.
Chun-Jing Wang, Ji-Zhong Wan, Hong Qu, and Zhi-Xiang Zhang
Web Ecol., 17, 69–77, https://doi.org/10.5194/we-17-69-2017, https://doi.org/10.5194/we-17-69-2017, 2017
Short summary
Short summary
We used an original global approach to explore the potential relationship between PAs and the intentional movement of IPS based on climate change. Climate change developed the potential pathways for IPS in PAs, and the ability of natural dispersal encourages IPS to invade non-native habitats in the potential movement pathways in PAs. This study shows the importance of the development of global conservation planning for PAs and biological invasion.
Martin Brändle, Jan Sauer, Lars Opgenoorth, and Roland Brandl
Web Ecol., 17, 29–35, https://doi.org/10.5194/we-17-29-2017, https://doi.org/10.5194/we-17-29-2017, 2017
K. Laze and A. Gordon
Web Ecol., 16, 17–31, https://doi.org/10.5194/we-16-17-2016, https://doi.org/10.5194/we-16-17-2016, 2016
Short summary
Short summary
We show areas for extending current protected areas and creating new ones for endangered sub-species of the Lynx lynx martinoi in the Albania–Macedonia–Kosovo and Montenegro–Albania–Kosovo cross-border areas. Our results highlight the importance international cooperation can have for lynx conservation. We used local knowledge on forests in the study area, our analytical skills, and our full interest in the lynx conservation. We did this study working remotely.
V. G. Aschonitis, G. Castaldelli, and E. A. Fano
Web Ecol., 16, 13–15, https://doi.org/10.5194/we-16-13-2016, https://doi.org/10.5194/we-16-13-2016, 2016
Short summary
Short summary
The relations between environmental gradients and traditional diversity indices (taxonomic richness, diversity and evenness) of benthic macroinvertebrate communities in the lotic systems of northern Italy were analyzed. Redundancy analysis (RDA) was used to describe the response of taxa to environmental gradients. Diversity indices were analyzed using generalized linear models (GLMs) with explanatory variables the first two major RDA axes.
V. Bonhomme, E. Forster, M. Wallace, E. Stillman, M. Charles, and G. Jones
Web Ecol., 16, 1–2, https://doi.org/10.5194/we-16-1-2016, https://doi.org/10.5194/we-16-1-2016, 2016
Short summary
Short summary
The transition from a mobile hunter-gatherer lifestyle to one of settled agriculture is arguably the most fundamental change in the development of human society (Lev-Yadun et al., 2000). The establishment of agricultural economies, emerging initially in the Fertile Crescent of the Near East (Nesbitt, 2002), required the domestication of crops; ancient plant remains recovered from early
farming sites provide direct evidence for this process of domestication.
F. Bussotti and M. Pollastrini
Web Ecol., 15, 39–41, https://doi.org/10.5194/we-15-39-2015, https://doi.org/10.5194/we-15-39-2015, 2015
Short summary
Short summary
The effects of tree diversity on the photosynthetic efficiency of tree species were assessed on six European mature forests (distributed along a latitudinal gradient) and in forest stands planted ad hoc with different levels of tree-species richness. The behaviour of Picea abies (spruce) was compared at the different sites. Site-specific responses were detected in relation to the age of the stands and their developmental stage.
M. Mikoláš, M. Svoboda, V. Pouska, R. C. Morrissey, D. C. Donato, W. S. Keeton, T. A. Nagel, V. D. Popescu, J. Müller, C. Bässler, J. Knorn, L. Rozylowicz, C. M. Enescu, V. Trotsiuk, P. Janda, H. Mrhalová, Z. Michalová, F. Krumm, and D. Kraus
Web Ecol., 14, 61–64, https://doi.org/10.5194/we-14-61-2014, https://doi.org/10.5194/we-14-61-2014, 2014
Short summary
Short summary
Clear-fellings to introduce heterogeneity can be an important component of a forest management plan. However, it is misleading to compare clear-fellings to protected areas dominated by old-growth forests using a simplistic measure of biodiversity and without a landscape perspective. To minimize the well-documented role of protected areas can have adverse effects on forested landscapes, primary forest remnants, and taxa that rely on forest structural elements characteristic of old-growth forests.
H.-R. Gregorius
Web Ecol., 14, 51–60, https://doi.org/10.5194/we-14-51-2014, https://doi.org/10.5194/we-14-51-2014, 2014
M. Meißner, M. Köhler, and D. Hölscher
Web Ecol., 13, 31–42, https://doi.org/10.5194/we-13-31-2013, https://doi.org/10.5194/we-13-31-2013, 2013
Cited articles
Akmentins, M. S. and Cardozo, D. E.: American bullfrog Lithobates catesbeianus (Shaw, 1802) invasion in Argentina, Biol. Invasions, 12, 735–737, https://doi.org/10.1007/s10530-009-9515-3, 2010.
Alroy, J.: Current extinction rates of reptiles and amphibians, P. Natl. Acad. Sci. USA, 112, 13003–13008, https://doi.org/10.1073/pnas.1508681112, 2015.
Bates, K. A., Friesen, J., Loyau, A., Butler, H., Vredenburg, V. T., Laufer, J., Chatzinotas, A., and Schmeller, D. S.: Environmental and Anthropogenic Factors Shape the Skin Bacterial Communities of a Semi-Arid Amphibian Species, Microb. Ecol., 86, 1393–1404, https://doi.org/10.1007/s00248-022-02130-5, 2023.
Batista, C. L. M., de Vieira, A. N. V. B., and Lopes, J. C. O.: Frog Virology: Biosafety in an Experimental Farm, in: Current Perspectives on Viral Disease Outbreaks-Epidemiology, Detection and Control, IntechOpen, 1–13, https://doi.org/10.5772/intechopen.96605, 2021.
Bielby, J., Price, S. J., Monsalve-Carcaño, C., and Bosch, J.: Host contribution to parasite persistence is consistent between parasites and over time, but varies spatially, Ecol. Appl., 31, e02256, https://doi.org/10.1002/eap.2256, 2021.
Bienentreu, J.-F., Schock, D. M., Greer, A. L., and Lesbarrères, D.: Ranavirus Amplification in Low-Diversity Amphibian Communities, Frontiers in Veterinary Science, 9, 755426, https://doi.org/10.3389/fvets.2022.755426, 2022.
Black, Y., Meredith, A., and Price, S. J.: Detection and reporting of ranavirus in amphibians: evaluation of the roles of the World Organisation for Animal Health and the published literature, J. Wildlife Dis., 53, 509–520, https://doi.org/10.7589/2016-08-176, 2017.
Blackburn, T. M., Essl F., Evans T., Hulme P. E., Jeschke J. M., Kühn I., Kumschick, S., Markova, Z., Mrugała, A., Nentwig W., Pergl, J., Pyšek, P., Rabitsch, W., Ricciardi, A., Richardson, D. M., Sendek A., Vilà, M., Wilson J. R. U., Winter M., Genovesi, P., and Bacher S.: A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts, PLoS Biol., 12, e1001850, https://doi.org/10.1371/journal.pbio.1001850, 2014.
Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., and Gervasi, S. S.: Direct and indirect effects of climate change on amphibian populations, Diversity, 2, 281–313, https://doi.org/10.3390/d2020281, 2010.
Bosch, J., Mora-Cabello de Alba, A., Marquínez, S., Price, S. J., Thumsová, B., and Bielby, J.: Long-Term Monitoring of Amphibian Populations of a National Park in Northern Spain Reveals Negative Persisting Effects of Ranavirus, but not Batrachochytrium dendrobatidis, Frontiers in Veterinary Science, 8, 645491, https://doi.org/10.3389/fvets.2021.645491, 2021.
Both, C., Lingnau, R., Santos Jr., A., Madalozzo, B., Lima, L. P., and Grant, T.: Widespread Occurrence of the American Bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil, S. Am. J. Herpetol., 6, 127–134, https://doi.org/10.2994/057.006.0203, 2011.
Box, E. K., Cleveland, C. A., Subramaniam, K., Waltzek, T. B., and Yabsley, M. J.: Molecular Confirmation of Ranavirus Infection in Amphibians from Chad, Africa, Frontiers in Veterinary Science, 8, 733939, https://doi.org/10.3389/fvets.2021.733939, 2021.
Bozzuto, C., Schmidt, B. R., and Canessa, S.: Active responses to outbreaks of infectious wildlife diseases: objectives, strategies and constraints determine feasibility and success, P. Roy. Soc. B-Biol. Sci., 287, 20202475, https://doi.org/10.1098/rspb.2020.2475, 2020.
Brenes, R., Gray, M. J., Waltzek, T. B., Wilkes, R. P., and Miller, D. L.: Transmission of Ranavirus between Ectothermic Vertebrate Hosts, PLoS ONE, 9, e92476, https://doi.org/10.1371/journal.pone.0092476, 2014.
Brunner, J., Olson, A., Rice, J., Meiners, S., Le Sage, M., Cundiff, J., Goldberg, C., and Pessier, A.: Ranavirus infection dynamics and shedding in American bullfrogs: consequences for spread and detection in trade, Dis. Aquat. Organ., 135, 135–150, https://doi.org/10.3354/dao03387, 2019.
Brunner, J. L., Olson, D. H., Gray, M. J., Miller, D. L., and Duffus, A. L. J.: Global patterns of ranavirus detections, FACETS, 6, 912–924, https://doi.org/10.1139/facets-2020-0013, 2021.
Bryan, L., Baldwin, C., Gray, M., and Miller, D.: Efficacy of select disinfectants at inactivating Ranavirus, Dis. Aquat. Organ., 84, 89–94, https://doi.org/10.3354/dao02036, 2009.
Chen, Z. Y., Li, T., Gao, X. C., Wanf, C. F., and Zhang, Q. Y.: Protective immunity induced by DNA vaccination against ranavirus infection in Chinese giant salamander Andrias davidianus, Viruses, 10, 52, https://doi.org/10.3390/v10020052, 2018.
Cheng, K., Jones, M. E., Jancovich, J. K., Burchell, J., Schrenzel, M. D., Reavill, D. R., Imai, D. M., Urban, A., Kirkendall, M., Woods, L. W., Chinchar, V. G., and Pessier, A. P.: Isolation of a Bohle-like iridovirus from boreal toads housed within a cosmopolitan aquarium collection, Dis. Aquat. Organ., 111, 139–152, https://doi.org/10.3354/dao02770, 2014.
Chinchar, V. G., Hick, P., Ince, I. A., Jancovich, J. K., Marschang, R., Qin, Q., Subramaniam, K., Waltzek, T. B., Whittington, R., Williams, T., and Zhang, Q. Y.: ICTV virus taxonomy profile: Iridoviridae, J. Gen. Virol., 98, 890–891, https://doi.org/10.1099/jgv.0.000818, 2017.
Crespi, E. J., Rissler, L. J., Mattheus, N. M., Engbrecht, K., Duncan, S. I., Seaborn, T., Hall, E. M., Peterson, J. D., and Brunner, J. L.: Geophysiology of Wood Frogs: Landscape Patterns of Prevalence of Disease and Circulating Hormone Concentrations across the Eastern Range, Integr. Comp. Biol., 55, 602–617, https://doi.org/10.1093/icb/icv096, 2015.
Cunningham, A. A., Hyatt, A. D., Russell, P., and Bennett, P. M.: Experimental transmission of a ranavirus disease of common toads (Bufo bufo) to common frogs (Rana temporaria), Epidemiol. Infect., 135, 1213–1216, https://doi.org/10.1017/S0950268807007935, 2007.
Currylow, A. F., Johnson, A. J., and Williams, R. N.: Evidence of ranavirus infections among sympatric larval amphibians and box turtles, J. Herpetol., 48, 117–121, https://doi.org/10.1670/12-235, 2014.
D'Aoust-Messier, A., Echaubard, P., Billy, V., and Lesbarrères, D.: Amphibian pathogens at northern latitudes: presence of chytrid fungus and ranavirus in northeastern Canada, Dis. Aquat. Organ., 113, 149–155, https://doi.org/10.3354/dao02837, 2015.
Daszak, P., Cunningham, A. A., and Hyatt, A. D.: Infectious disease and amphibian population declines, Divers. Distrib., 9, 141–150, https://doi.org/10.1046/j.1472-4642.2003.00016.x, 2003.
Davis, D. R., Farkas, J. K., Kruisselbrink, T. R., Watters, J. L., Ellsworth, E. D., Kerby, J. L., and Siler, C. D.: Prevalence and distribution of ranavirus in amphibians from southeastern Oklahoma, USA, Herpetol. Conserv. Bio., 14, 360–369, 2019.
De, E., Leite, L., Santi, M., and Corrêa, A. C.: Mata Atlântica: a sobrevivência dos anfíbios/Atlantic Forest: the survival of the amphibians, FESPPR Publica, 2, 1–12, https://doi.org/10.1007/978-3-319-13755-1_2, 2018.
Duffus, A. L. J., Nichols, R. A., and Garner, T. W. J.: Detection of a Frog Virus 3-like Ranavirus in Native and Introduced Amphibians in the United Kingdom in 2007 and 2008, Herpetological Review, 45, 608–610, 2014.
Duffus, A. L. J., Waltzek, T. B., Stöhr, A. C., Allender, A. M., Gotesman, M., Whittington, R. J., Hick, P., Hines, M. K., and Marschang, R. E.: Distribution and Host Range of Ranaviruses, in: Ranaviruses Lethal Pathogens of Ectothermic Vertebrates, edited by: Gray, M. J. and Chinchar V. G., Springer, 9–57, 2015.
Earl, J. E., Chaney, J. C., Sutton, W. B., Lillard, C. E., Kouba, A. J., Langhorne, C., Krebs, J., Wilkes, R. P., Hill, R. D., Miller, D. L., and Gray, M. J.: Ranavirus could facilitate local extinction of rare amphibian species, Oecologia, 182, 611–623, https://doi.org/10.1007/s00442-016-3682-6, 2016.
Eustace, R., Wack, A., Mangus, L., and Bronson, E.: Causes of mortality in captive Panamanian Golden frogs (Atelopus zeteki) at the Maryland ZOO in Baltimore, 2001–2013, J. Zoo Wildlife Med., 49, 324–334, https://doi.org/10.1638/2016-0250.1, 2018.
Ford, C. E., Brookes, L. M., Skelly, E., Sergeant, C., Jordine, T., Balloux, F., Nichols, R. A., and Garner, T. W. J.: Non-Lethal Detection of Frog Virus 3-Like (RUK13) and Common Midwife Toad Virus-Like (PDE18) Ranaviruses in Two UK-Native Amphibian Species, Viruses, 14, 2635, https://doi.org/10.3390/v14122635, 2022.
Forzán, M. J. and Wood, J.: Low detection of ranavirus DNA in wild postmetamorphic green frogs, Rana (Lithobates) clamitans, despite previous or concurrent tadpole mortality, J. Wildlife Dis., 49, 879–886, https://doi.org/10.7589/2013-03-051, 2013.
Forzán, M. J., Jones, K. M., Vanderstichel, R. V., Wood, J., Kibenge, F. S. B., Kuiken, T., Wirth, W., Ariel, E., and Daoust, P.-Y.: Clinical signs, pathology and dose-dependent survival of adult wood frogs, Rana sylvatica, inoculated orally with frog virus 3 Ranavirus sp., Iridoviridae, J. Gen. Virol., 96, 1138–1149, https://doi.org/10.1099/vir.0.000043, 2015.
Forzán, M. J., Jones, K. M., Ariel, E., Whittington, R. J., Wood, J., Markham, R. J. F., and Daoust, P. Y.: Pathogenesis of Frog Virus 3 (Ranavirus, Iridoviridae) Infection in Wood Frogs (Rana sylvatica), Vet. Pathol., 54, 531–548, https://doi.org/10.1177/0300985816684929, 2017.
Forzán, M., Bienentreu, J., Schock, D., and Lesbarrères, D.: Multi-tool diagnosis of an outbreak of ranavirosis in amphibian tadpoles in the Canadian boreal forest, Dis. Aquat. Organ., 135, 33–41, https://doi.org/10.3354/dao03369, 2019.
Frost, D. R.: Amphibian Species of the World: an Online Reference, Version 6.2, American Museum of Natural History, New York, USA, https://amphibiansoftheworld.amnh.org/index.php (last access: 28 August 2024), 2024.
Galt, N., Atkinson, M., Glorioso, B. M., Hardin Waddle, J., Litton, M., and Savage, A.: Widespread ranavirus and perkinsea infections in Cuban treefrogs (Osteopilus septentrionalis) invading New Orleans, USA, Herpetol. Conserv. Biol., 16, 17–29, 2021.
Goodman, R. M., Tyler, J. A., Reinartz, D. M., and Wright, A. N.: Survey of Ranavirus and Batrachochytrium dendrobatidis in Introduced Frogs in Hawaii, USA, J. Wildlife Dis., 55, 668, https://doi.org/10.7589/2018-05-137, 2019.
Grant, S., Bienentreu, J., Vilaça, S., Brunetti, C., Lesbarrères, D., Murray, D., and Kyle, C. J.: Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada, Dis. Aquat. Organ., 134, 1–13 https://doi.org/10.3354/dao03354, 2019.
Gray, M., Miller, D., and Hoverman, J.: Reliability of non-lethal surveillance methods for detecting ranavirus infection, Dis. Aquat. Organ., 99, 1–6, https://doi.org/10.3354/dao02436, 2012.
Gray, M. J. and Miller, D. L.: The Rise of Ranavirus, The Wildlife Society, 51–55, 2013.
Hall, E. M., Goldberg, C. S., Brunner, J. L., and Crespi, E. J.: Seasonal dynamics and potential drivers of ranavirus epidemics in wood frog populations, Oecologia, 188, 1253–1262, https://doi.org/10.1007/s00442-018-4274-4, 2018.
Hall, E. M., Brunner, J. L., Hutzenbiler, B., and Crespi, E. J.: Salinity stress increases the severity of ranavirus epidemics in amphibian populations, P. Roy. Soc. B-Biol. Sci., 287, 20200062, https://doi.org/10.1098/rspb.2020.0062, 2020.
Harp, E. M. and Petranka, J. W.: Ranavirus in wood frogs (Rana sylvatica): potential sources of transmission within and between ponds, J. Wildlife Dis., 42, 307–318, https://doi.org/10.7589/0090-3558-42.2.307, 2006.
Hartmann, A. M., Maddox, M. L., Ossiboff, R. J., and Longo, A. V.: Sustained ranavirus outbreak causes mass mortality and morbidity of imperiled amphibians in Florida, EcoHealth, 19, 8–14, https://doi.org/10.1007/s10393-021-01572-6, 2022.
Horner, A. A., Hoffman, E. A., Tye, M. R., Hether, T. D., and Savage, A. E.: Cryptic chytridiomycosis linked to climate and genetic variation in amphibian populations of the southeastern United States, PLoS ONE, 12, e0175843, https://doi.org/10.1371/journal.pone.0175843, 2017.
Hoverman, J. T., Gray, M. J., Haislip, N. A., and Miller, D. L.: Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses, EcoHealth, 8, 301–319, https://doi.org/10.1007/s10393-011-0717-7, 2011.
Hsieh, C.-Y., Rairat, T., and Chou, C.-C.: Detection of Ranavirus by PCR and in situ hybridization in the American bullfrog (Rana catesbeiana) in Taiwan, Aquaculture, 543, 736955, https://doi.org/10.1016/j.aquaculture.2021.736955, 2021.
IUCN (International Union for Conservation of Nature): The IUCN Red list of threatened species, Version 2023-1, https://www.iucnredlist.org/, last access: 13 November 2023.
Jacinto-Maldonado, M., García-Peña, G. E., PParedes-León, R., Saucedo, B., Sarmiento-Silva, R. E., García, A., Martínez-Gómez, D., Ojeda, M., Del Callejo, E., and Suzán, G.: Chiggers (Acariformes: Trombiculoidea) do not increase rates of infection by Batrachochytrium dendrobatidis fungus in the endemic Dwarf Mexican Treefrog Tlalocohyla smithii (Anura: Hylidae), International Journal for Parasitology: Parasites and Wildlife, 11, 163–173, https://doi.org/10.1016/j.ijppaw.2019.12.005, 2020.
Jancovich, J. K., Chinchar, V. G., Hyatt, A., Miyazaki, T., Williams, T., and Zhang, Q. Y.: Family Iridoviridae, in: Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, edited by: King, A. M. S., Adams, M. J., Carstens, E. B., and Lefkowitz, E. J., Elsevier Academic Press, 193–210, ISBN 978-0-12-384684-6, 2012.
Jerrett, I. V., Whittington, R. J., and Weir, R. P.: Pathology of a Bohle-like virus infection in two Australian frog species (Litoria splendida and Litoria caerulea), J. Comp. Pathol., 152, 248–259, https://doi.org/10.1016/j.jcpa.2014.12.007, 2015.
Jorgewich-Cohen, G., Toledo, L. F., and Grant, T.: Genetic structure of American bullfrog populations in Brazil, Sci. Rep., 12, 9927, https://doi.org/10.1038/s41598-022-13870-2, 2022.
Julian, J. T., Brooks, R. P., Glenney, G. W., and Coll, J. A.: State-wide Survey of amphibian pathogens in green frog (Lithobates clamitans melanota) reveals high Chytrid infection intensities in constructed wetlands, Herpetol. Conserv. Bio., 14, 199–211, 2019.
Karwacki, E. E., Martin, K. R., and Savage, A. E.: One hundred years of infection with three global pathogens in frog populations of Florida, USA, Biol. Conserv., 257, 1–12, https://doi.org/10.1016/j.biocon.2021.109088, 2021.
Kolby, J. E., Smith, K. M., Berger, L., Karesh, W. B., Preston, A., Pessier, A. P., and Skerratt, L. F.: First Evidence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Hong Kong Amphibian Trade, PLoS ONE, 9, e90750, https://doi.org/10.1371/journal.pone.0090750, 2014.
Kolby, J. E., Smith, K. M., Ramirez, S. D., Rabemananjara, F., Pessier, A. P., Brunner, J. L., Goldberg, C. S., Berger, L., and Skerratt, L. F.: Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar, PLoS ONE, 10, e0125330, https://doi.org/10.1371/journal.pone.0125330, 2015.
Kostanjšek, R., Turk, M., Vek, M., Gutiérrez-Aguirre, I., and Cimerman, N. G.: First screening for Batrachochytrium dendrobatidis, B. salamandrivorans and Ranavirus infections in wild and captive amphibians in Slovenia, Salamandra, 57, 162–166, 2021.
Kraus, F.: Impacts from Invasive Reptiles and Amphibians, Annu. Rev. Ecol. Evol. S., 46, 75–97, https://doi.org/10.1146/annurev-ecolsys-112414-054450, 2015.
Kwon, S., Park, J., Choi, W.-J., Koo, K.-S., Lee, J.-G., and Park, D.: First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea, Anim. Cells Syst., 21, 358–364, https://doi.org/10.1080/19768354.2017.1376706, 2017.
Landsberg, J., Kiryu, Y., Tabuchi, M., Waltzek, T., Enge, K., Reintjes-Tolen, S., Preston, A., and Pessier, A.: Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA, Dis. Aquat. Organ., 105, 89–99, https://doi.org/10.3354/dao02625, 2013.
Latney, L. V. and Klaphake, E.: Selected Emerging Diseases of Amphibia, Vet. Clin. North Am. Exot. Anim. Pract., 16, 283–301, https://doi.org/10.1016/j.cvex.2013.01.005, 2013.
Laufer, G., Canavero, A., Núñez, D., and Maneyro, R.: Bullfrog (Lithobates catesbeianus) invasion in Uruguay, Biol. Invasions, 10, 1183–1189, https://doi.org/10.1007/s10530-007-9178-x, 2008.
Lima, J. R. C., Pordeu, J. M. C., and Rouquayrol, M. Z.: Medida da Saúde Coletiva, in: Epidemiologia e Saúde, edited by: Rouquayrol, M. Z. and Silva, M. G. C., 8th edn., Medbook, 108–200, 2018.
Love, C., Winzeler, M., Beasley, R., Scott, D., Nunziata, S., and Lance, S.: Patterns of amphibian infection prevalence across wetlands on the Savannah River Site, South Carolina, USA, Dis. Aquat. Organ., 121, 1–14, https://doi.org/10.3354/dao03039, 2016.
Longcore, J. E., Pessier, A. P., and Nichols, D. K.: Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians, Mycologia, 91, 219–227, 1999.
Maclachlan, N. J. and Dubovi, E. J. (Eds.): Asfarviridae and Iridoviridae. in: Fenner's Veterinary Virology, 5th edn., Elsevier, 175–188, ISBN: 9780128011706, 2016.
Martel, A., Vila-Escale, M., Fernández-Giberteau, D., Martinez-Silvestre, A., Canessa, S., Praet, S. V., Pannon, P., Chiers, K., Ferran, A., Kelly, M., Picart, M., Piulats, D., Li, Z., Pagone, V., Pérez-Sorribes, L., Molina, C., Tarragó-Guarro, A., Velarde-Nieto, R., Carbonell, F., Obon, E., Martinéz-Martinéz, D., Guinart, D., Casanovas, R., Carranza, S., and Pasmans, F.: Integral chain management of wildlife diseases, Conserv. Lett., 13, e12707, https://doi.org/10.1111/conl.12707, 2020.
Merchán-Hamann, E., Tauil, P. L., and Costa, M. P.: Terminologia das medidas e indicadores em epidemiologia: Subsídios para uma possível padronização da nomenclatura, Inf. Epidemiol. Sus, 9, 276–284, https://doi.org/10.5123/S0104-16732000000400006, 2000.
Miaud, C., Pozet, F., Gaudin, N. C. G., Martel, A., Pasmans, F., and Labrut, S.: Ranavirus causes mass die-offs of alpine amphibians in the southwestern Alps, France, J. Wildlife Dis., 52, 242–252, https://doi.org/10.7589/2015-05-113, 2016.
Miaud, C., Arnal, V., Poulain, M., Valentini, A., and Dejean, T.: eDNA Increases the Detectability of Ranavirus Infection in an Alpine Amphibian Population, Viruses, 11, 526, https://doi.org/10.3390/v11060526, 2019.
Miller, D. L., Rajeev, S., Gray, M. J., and Baldwin, C. A.: Frog virus 3 infection, cultured American bullfrogs, Emerg. Infect. Dis., 13, 342–343, https://doi.org/10.3201/eid1302.061073, 2007.
Mittermeier, R. A., Gil, P. R., Hoffmann, M., Pilgrim, J., Brooks, J., Mittermeier, C. G., Lamouroux, J., and Fonseca, G. A. B.: Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions, Cemex, Washington, DC, 390 pp., ISBN 968-6397-77-9, 2004.
Morales, H. D., Abramowitz, L., Gertz, J., Sowa, J., Vogel, A., and Robert, J.: Innate Immune Responses and Permissiveness to Ranavirus Infection of Peritoneal Leukocytes in the Frog Xenopus laevis, J. Virol., 84, 4912–4922, https://doi.org/10.1128/jvi.02486-09, 2010.
Mörner, T., Obendorf, D. L., Artois, M., and Woodford, M. H.: Surveillance and monitoring of wildlife diseases, Rev. Sci. Tech. OIE, 21, 67–76, https://doi.org/10.20506/rst.21.1.1321, 2002.
Mosher, B. A., Brand, A. B., Wiewel, A. N., Miller, D. A., Gray, M. J., Miller, D. L., and Grant, E. H. C.: Estimating occurrence, prevalence, and detection of amphibian pathogens: insights from occupancy models, J. Wildlife Dis., 55, 563–575, https://doi.org/10.7589/2018-02-042, 2019.
Munro, J., Bayley, A. E., McPherson, N. J., and Feist, S. W.: Survival of Frog Virus 3 in Freshwater and Sediment from an English Lake, J. Wildlife Dis., 52, 138–142, https://doi.org/10.7589/2015-02-033, 2016.
Nazir, J., Spengler, M., and Marschang, R.: Environmental persistence of amphibian and reptilian ranaviruses, Dis. Aquat. Organ., 98, 177–184, https://doi.org/10.3354/dao02443, 2012.
Oliveira, C. R., Alfaia, S. R., Ikari, F. L., Tavares, L. S., Sousa, R. L. M. de, Harakava, R., and Ferreira, C. M.: Detection and molecular characterization of Frog virus 3 in bullfrogs from frog farms in Brazil, Aquaculture, 516, 734575, https://doi.org/10.1016/j.aquaculture.2019.734575, 2020.
Olori, J., Netzband, R., McKean, N., Lowery, J., Parsons, K., and Windstam, S.: Multi-year dynamics of ranavirus, chytridiomycosis, and co-infections in a temperate host assemblage of amphibians, Dis. Aquat. Organis., 130, 187–197, https://doi.org/10.3354/dao03260, 2018.
Palomar, G., Jakóbik, J., Bosch, J., Kolenda, K., Kaczmarski, M., Jośko, P., Roces-Díaz, J., Stachyra, P., Thumsová, B., Zieliński, P., and Pabijan, M.: Emerging infectious diseases of amphibians in Poland: distribution and environmental drivers, Dis. Aquat. Organ., 147, 1–12, https://doi.org/10.3354/dao03631, 2021.
Park, J., Grajal-Puche, A., Roh, N.-H., Park, I.-K., Ra, N.-Y., and Park, D.: First detection of ranavirus in a wild population of Dybowski's brown frog (Rana dybowskii) in South Korea, Journal of Ecology and Environment, 45, 2, https://doi.org/10.1186/s41610-020-00179-2, 2021.
Picco, A. M. and Collins, J. P.: Amphibian Commerce as a Likely Source of Pathogen Pollution, Conserv. Biol., 22, 1582–1589, https://doi.org/10.1111/j.1523-1739.2008.01025.x, 2008.
Price, S. J., Garner, T. W. J., Nichols, R. A., Balloux, F., Ayres, C., Mora-Cabello de Alba, A., and Bosch, J.: Collapse of Amphibian Communities Due to an Introduced Ranavirus, Curr. Biol., 24, 2586–2591, https://doi.org/10.1016/j.cub.2014.09.028, 2014.
Price, S. J., Wadia, A., Wright, O. N., Leung, W. T. M., Cunningham, A. A., and Lawson, B.: Screening of a long-term sample set reveals two Ranavirus lineages in British herpetofauna, PLoS ONE, 12, e0184768, https://doi.org/10.1371/journal.pone.0184768, 2017.
Puschendorf, R., Wallace, M., Chavarría, M. M., Crawford, A. J., Wynne, F., Knight, M., Janzen, D. H., Hallwachs, W., Palmer, C. V., and Price, S. J.: Cryptic diversity and ranavirus infection of a critically endangered Neotropical frog before and after population collapse, Anim. Conserv., 22, 515–524, https://doi.org/10.1111/acv.12498, 2019.
Reshetnikov, A., Chestnut, T., Brunner, J., Charles, K., Nebergall, E., and Olson, D.: Detection of the emerging amphibian pathogens Batrachochytrium dendrobatidis and ranavirus in Russia, Dis. Aquat. Organ., 110, 235–240, https://doi.org/10.3354/dao02757, 2014.
Ribeiro, L. P. and Toledo, L. F.: An overview of the Brazilian frog farming, Aquaculture, 548, 737623, https://doi.org/10.1016/j.aquaculture.2021.737623, 2022.
Richter, S. C., Drayer, A. N., Strong, J. R., and Cross, C. S.: High prevalence of ranavirus infection in permanent constructed wetlands in eastern Kentucky, USA, Herpetological Review, 44, 464–466, 2013.
Rivera, B., Cook, K., Andrews, K., Atkinson, M. S., and Savage, A. E.: Pathogen Dynamics in an Invasive Frog Compared to Native Species, EcoHealth, 16, 222–234, https://doi.org/10.1007/s10393-019-01432-4, 2019.
Roh, N., Park, J., Kim, J., Kwon, H., and Park, D.: Prevalence of Ranavirus Infection in Three Anuran Species across South Korea, Viruses, 14, 1073, https://doi.org/10.3390/v14051073, 2022.
Rosa, G. M., Sabino-Pinto, J., Laurentino, T. G., Martel, A., Pasmans, F., Rebelo, R., Griffiths, R. A., Stöhr, A. C., Marschang, R. E., Price, S. J., Garner, T. W. J., and Bosch, J.: Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Sci. Rep., 7, 43260, https://doi.org/10.1038/srep43260, 2017.
Rothermel, B., Miller, D., Travis, E., Gonynor McGuire, J., Jensen, J., and Yabsley, M.: Disease dynamics of red-spotted newts and their anuran prey in a montane pond community, Dis. Aquat. Organ., 118, 113–127, https://doi.org/10.3354/dao02965, 2016.
Ruggeri, J., Ribeiro, L. P., Pontes, M. R., Toffolo, C., Candido, M., Carriero, M. M., Zanella, N., Sousa, R. L. M., and Toledo, L. F.: Discovery of Wild Amphibians Infected with Ranavirus in Brazil, J. Wildlife Dis., 55, 897, https://doi.org/10.7589/2018-09-224, 2019.
Sainsbury, A. W., Yu-Mei, R., Ågren, E., Vaughan-Higgins, R. J., Mcgill, I. S., Molenaar, F., Peniche, G., and Foster, J.: Disease Risk Analysis and Post-Release Health Surveillance for a Reintroduction Programme: The Pool Frog Pelophylax lessonae, Transbound. Emerg. Dis., 64, 1530–1548, https://doi.org/10.1111/tbed.12545, 2017.
Santi, E. de E. L. M. and Corrêa, A. C.: Mata Atlântica: a sobrevivência dos anfíbios/Atlantic Forest: the survival of the amphibians, FESPPR Publica, 2, 1–12, 2018.
Savage, A. E., Muletz-Wolz, C. R., Campbell Grant, E. H., Fleischer, R. C., and Mulder, K. P.: Functional variation at an expressed MHC class IIβ locus associates with Ranavirus infection intensity in larval anuran populations, Immunogenetics, 71, 335–346, https://doi.org/10.1007/s00251-019-01104-1, 2019.
Schock, D. M., Bollinger, T. K., Gregory Chinchar, V., Jancovich, J. K., and Collins, J. P.: Experimental Evidence that Amphibian Ranaviruses Are Multi-Host Pathogens, Copeia, 2008, 133–143, https://doi.org/10.1643/CP-06-134, 2008.
Sewell, T. R., Longcore, J., and Fisher, M. C.: Batrachochytrium dendrobatidis, Trends Parasitol., 37, 933–934, https://doi.org/10.1016/j.pt.2021.04.014, 2021.
Sluijs, A. S. der, van den Broek, J., Kik, M., Martel, A., Janse, J., van Asten, F., Pasmans, F., Gröne, A., and Rijks, J. M.: Monitoring ranavirus-associated mortality in a Dutch heathland in the aftermath of a ranavirus disease outbreak, J. Wildlife. Dis., 52, 817–827, https://doi.org/10.7589/2015-04-104, 2016.
Smith, T. C., Picco, A. M., and Knapp, R.: Ranaviruses infect mountain yellow-legged frogs (Rana muscosa and Rana sierrae) threatened by Batrachochytrium dendrobatidis, Herpetol. Conserv. Bio., 12, 149–159, 2017.
Soto-Azat, C., Peñafiel-Ricaurte, A., Price, S. J., Sallaberry-Pincheira, N., García, M. P., Alvarado-Rybak, M., and Cunningham, A. A.: Xenopus laevis and Emerging Amphibian Pathogens in Chile, EcoHealth, 13, 775–783, https://doi.org/10.1007/s10393-016-1186-9, 2016.
Stallknecht, D. E.: Impediments to wildlife disease surveillance, research, and diagnostics, in: Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission, edited by: Childs, J. E., Mackenzie, J. S., and Richt, J. A., Springer, Berlin, Heidelberg, 315, 445–461, https://doi.org/10.1007/978-3-540-70962-6_17, 2007.
Standish, I., Leis, E., Schmitz, N., Credico, J., Erickson, S., Bailey, J., Kerby, J., Phillips, K., and Lewis, T.: Optimizing, validating, and field testing a multiplex qPCR for the detection of amphibian pathogens, Dis. Aquat. Organ., 129, 1–13, https://doi.org/10.3354/dao03230, 2018.
Stöhr, A. C., Hoffmann, A., Papp, T., Robert, N., Pruvost, N. B. M., Reyer, H.-U., and Marschang, R. E.: Long-term study of an infection with ranaviruses in a group of edible frogs (Pelophylax kl. esculentus) and partial characterization of two viruses based on four genomic regions, Vet. J., 197, 238–244, https://doi.org/10.1016/j.tvjl.2013.02.014, 2013.
Strachinis, I., Marschang, R., Lymberakis, P., Karagianni, K., and Azmanis, P.: Infectious disease threats to amphibians in Greece: new localities positive for Batrachochytrium dendrobatidis, Dis. Aquat. Organ., 152, 127–138, https://doi.org/10.3354/dao03712, 2022.
Talbott, K., Wolf, T., Sebastian, P., Abraham, M., Bueno, I., McLaughlin, M., Harris, T., Thompson, R., Pessier, A., and Travis, D.: Factors influencing detection and co-detection of Ranavirus and Batrachochytrium dendrobatidis in Midwestern North American anuran populations, Dis. Aquat. Organ., 128, 93–103, https://doi.org/10.3354/dao03217, 2018.
Thumsová, B., Price, S. J., González-Cascón, V., Vörös, J., Martínez-Silvestre, A., Rosa, G. M., Machordom, A., and Bosch, J.: Climate warming triggers the emergence of native viruses in Iberian amphibians, IScience, 25, 105541, https://doi.org/10.1016/j.isci.2022.105541, 2022.
Titus, V. R. and Green, T. M.: Presence of Ranavirus in Green frogs and Eastern Tiger salamanders on Long Island, New York, Herpetological Review, 44, 266–267, 2013.
Tornabene, B. J., Blaustein, A. R., Briggs, C. J., Calhoun, D. M., Johnson, P. T. J., McDevitt-Galles, T., Rohr, J. R., and Hoverman, J. T.: The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage, Freshwater Biol., 63, 639–651, https://doi.org/10.1111/fwb.13100, 2018.
Tornabene, B. J., Crespi, E., Traversari, B., Stemp, K., Breuner, C., Goldberg, C., and Hossack, B.: Low occurrence of ranavirus in the Prairie Pothole Region of Montana and North Dakota (USA) contrasts with prior surveys, Dis. Aquat. Organ., 147, 149–154, https://doi.org/10.3354/dao03640, 2021.
Une, Y., Kudo, T., Tamukai, K. I., and Murakami, M.: Epidemic ranaviral disease in imported captive frogs (Dendrobates and Phyllobates spp.), Japan, 2012: a first report, JMM Case Reports, 1, e001198, https://doi.org/10.1099/jmmcr.0.001198, 2014.
Urgiles, V. L., Ramírez, E. R., Villalta, C. I., Siddons, D. C., and Savage, A. E.: Three Pathogens Impact Terrestrial Frogs from a High-Elevation Tropical Hotspot, EcoHealth, 18, 451–464, https://doi.org/10.1007/s10393-021-01570-8, 2021.
von Essen, M., Leung, W. T. M., Bosch, J., Pooley, S., Ayres, C., and Price, S. J.: High pathogen prevalence in an amphibian and reptile assemblage at a site with risk factors for dispersal in Galicia, Spain, PLoS ONE, 15, e0236803, https://doi.org/10.1371/journal.pone.0236803, 2020.
Vörös, J., Herczeg, D., Papp, T., Monsalve-Carcaño, C., and Bosch, J.: First detection of Ranavirus infection in amphibians in Hungary, Herpetology Notes, 13, 213–217, 2020.
Wagner, M. B.: Medindo a ocorrência da doença: prevalência ou incidência?, J. Pediatr., 74, 157–162, 1998.
Warne, R. W., LaBumbard, B., LaGrange, S., Vredenburg, V. T., and Catenazzi, A.: Co-Infection by Chytrid Fungus and Ranaviruses in Wild and Harvested Frogs in the Tropical Andes, PLoS ONE, 11, e0145864, https://doi.org/10.1371/journal.pone.0145864, 2016.
Watters, J. L., Davis, D. R., Yuri, T., and Siler, C. D.: Concurrent Infection of Batrachochytrium dendrobatidis and Ranavirus among Native Amphibians from Northeastern Oklahoma, USA, J. Aquat. Anim. Health, 30, 291–301, https://doi.org/10.1002/aah.10041, 2018.
Wheelwright, N. T., Gray, M. J., Hill, R. D., and Miller, D. L.: Sudden mass die-off of a large population of wood frog (Lithobates sylvaticus) tadpoles in Maine, USA, likely due to Ranavirus, Herpetological Review, 45, 240–242, 2014.
Whitfield, S., Geerdes, E., Chacon, I., Ballestero Rodriguez, E., Jimenez, R., Donnelly, M., and Kerby, J.: Infection and co-infection by the amphibian chytrid fungus and ranavirus in wild Costa Rican frogs, Dis. Aquat. Organ., 104, 173–178, https://doi.org/10.3354/dao02598, 2013.
Whitfield, S., Alvarado-Barboza, G., Abarca, J., Zumbado-Ulate, H., Jimenez, R., and Kerby, J.: Ranavirus is widespread in Costa Rica and co-occurs with threatened amphibians, Dis. Aquat. Organ., 144, 89–98, https://doi.org/10.3354/dao03576, 2021.
Wirth, W., Lesbarrères, D., and Ariel, E.: Ten years of ranavirus research (2010–2019): an analysis of global research trends, FACETS, 6, 44–57, https://doi.org/10.1139/facets-2020-0030, 2021.
World Organisation for Animal Health: Infection with Ranavirus, in: Aquatic Animal Health Code, 8th edn., World Organisation for Animal Health, 69–88, 2021.
Wynne, F. J.: Detection of ranavirus in endemic and threatened amphibian populations of the Australian Wet Tropics Region, Pacific Conservation Biology, 26, 93, https://doi.org/10.1071/PC19009, 2020.
Zhang, M., Hu, Y. H., Xiao, Z. Z., Sun, Y., and Sun, L.: Construction and analysis of experimental DNA vaccines against megalocytivirus, Fish Shellfish Immun., 33, 1192–1198, 2012.
Short summary
Ranavirus infections in amphibians, especially anurans, have been increasingly documented, raising concerns over their role in population declines. This integrative review examines the prevalence, epidemiology, and global distribution of ranavirus in anurans over the past decade. The study concludes with recommendations for enhancing global surveillance and risk assessment strategies, particularly in biodiversity hotspots, where vulnerable species face a high risk of extinction.
Ranavirus infections in amphibians, especially anurans, have been increasingly documented,...