Articles | Volume 24, issue 2
https://doi.org/10.5194/we-24-47-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-24-47-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards spatial predictions of disease transmission risk: classical scrapie spill-over from domestic small ruminants to wild cervids
Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
CIBIO/InBIO – Research Centre in Biodiversity and Genetic Resources, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 7, 4485-661, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
Leonor Orge
Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal
Animal and Veterinary Research Centre (CECAV), and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Joana Vicente
Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
CIBIO/InBIO – Research Centre in Biodiversity and Genetic Resources, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 7, 4485-661, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
João Alexandre Cabral
Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
José Aranha
Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
João Carvalho
Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Rita Tinoco Torres
Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Jorge Pereira
Department of Genetics and Biotechnology, School of Life and Environmental Sciences (ECVA), UTAD, Vila Real, Portugal
Renata Carvalho
Direção Geral de Alimentação e Veterinária (DGAV), Division of Epidemiology and Animal Health, Directorate of Animal Protection Services, Lisbon, Portugal
Maria Anjos Pires
Animal and Veterinary Research Centre (CECAV), and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
Madalena Vieira-Pinto
Animal and Veterinary Research Centre (CECAV), and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Direção Geral de Alimentação e Veterinária (DGAV), Division of Epidemiology and Animal Health, Directorate of Animal Protection Services, Lisbon, Portugal
Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
Related subject area
Ecosystem Ecology
Disturbance can slow down litter decomposition, depending on severity of disturbance and season: an example from Mount Kilimanjaro
Little evidence for land-use filters on intraspecific trait variation in three arthropod groups
The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands
Co-varying effects of vegetation structure and terrain attributes are responsible for soil respiration spatial patterns in a sandy forest–steppe transition zone
Morphometric traits of shells determine external attack and internal utilization marks in the Roman snail in eastern Germany
Unassisted establishment of biological soil crusts on dryland road slopes
Effects of agricultural practices on soil and microbial biomass carbon, nitrogen and phosphorus content: a preliminary case study
The rise of ecosystem ecology and its applications to environmental challenges
The effect of mixtures on colonisation of leaf litter decomposing in a stream and at its riparian zone
The "four-color issue" in ecology for considering ecosystem boundaries
The ecosystem: research and practice in North America
Millipede and centipede (Myriapoda: Diplopoda, Chilopoda) assemblages in secondary succession: variance and abundance in Western German beech and coniferous forests as compared to fallow ground
Juliane Röder, Tim Appelhans, Marcell K. Peters, Thomas Nauss, and Roland Brandl
Web Ecol., 24, 11–33, https://doi.org/10.5194/we-24-11-2024, https://doi.org/10.5194/we-24-11-2024, 2024
Short summary
Short summary
We studied rates of litter decomposition in natural and disturbed vegetation on elevation gradients of Mount Kilimanjaro to disentangle effects of climate and disturbance. Decomposition was slower in disturbed than in natural forests, but we did not find a negative effect of disturbance for non-forest vegetation. Decomposition slowed down with increasing land-use intensity, but only in the warm wet season. Temperature and humidity were the most important drivers of decomposition in all analyses.
Katja Wehner, Matthias Brandt, Andrea Hilpert, Nadja K. Simons, and Nico Blüthgen
Web Ecol., 23, 35–49, https://doi.org/10.5194/we-23-35-2023, https://doi.org/10.5194/we-23-35-2023, 2023
Short summary
Short summary
We focus on the consequences of land-use intensity on functional trait variation within species. In general, only few effects on intraspecific trait variation were found showing a decreasing variation with increasing land-use intensity in forests but an increasing variation in grasslands. Although many studies confirmed strong land-use impacts on arthropod communities, we were not able to confirm similar effects at the intraspecific level.
Fernando T. Maestre, David J. Eldridge, Nicolas Gross, Yoann Le Bagousse-Pinguet, Hugo Saiz, Beatriz Gozalo, Victoria Ochoa, and Juan J. Gaitán
Web Ecol., 22, 75–96, https://doi.org/10.5194/we-22-75-2022, https://doi.org/10.5194/we-22-75-2022, 2022
Short summary
Short summary
Here we introduce the BIODESERT survey, the first systematic field survey devoted to evaluating the joint impacts of grazing by domestic livestock and climate on the structure and functioning of dryland ecosystems worldwide. We describe the major characteristics and the field protocols used in this survey and the organizational aspects followed to carry it out succesfully.
Gabriella Süle, Szilvia Fóti, László Körmöczi, Dóra Petrás, Levente Kardos, and János Balogh
Web Ecol., 21, 95–107, https://doi.org/10.5194/we-21-95-2021, https://doi.org/10.5194/we-21-95-2021, 2021
Short summary
Short summary
Forest–steppe habitats have contrasting canopy structure with strong influence on the spatio-temporal variability of ecosystem functions. In our study, environmental and functional variables were evaluated in this transition zone. We found that topography and vegetation structure have co-varying effects on abiotic–biotic factors. Our observations are valuable for assessing the dynamics of functional and driving variables in this natural transition zone of the temperate vegetation.
Claudia Tluste, Udo Bröring, Tomáš Němec, and Klaus Birkhofer
Web Ecol., 20, 87–94, https://doi.org/10.5194/we-20-87-2020, https://doi.org/10.5194/we-20-87-2020, 2020
Short summary
Short summary
The Roman snail has a high conservation status in Germany, and it is important to study the impact of predators and parasites on local populations. Morphometric traits and signs of external attack and internal utilization were studied in eight subpopulations. External attacks by predators were more frequently recorded on larger shells, while internal utilization depended on body density and local soil pH values. This highlights the value of abiotic habitat conditions and trophic interactions.
Laura Concostrina-Zubiri, Juan M. Arenas, Isabel Martínez, and Adrián Escudero
Web Ecol., 19, 39–51, https://doi.org/10.5194/we-19-39-2019, https://doi.org/10.5194/we-19-39-2019, 2019
Short summary
Short summary
Can organisms other than vascular plants establish and develop on road slopes? Yes, biological soil crusts (or biocrusts) can. Here, we found that lichen biocrusts are common and relatively abundant in road slopes after ~20 years of construction with no assistance needed. These findings are of critical importance for dryland restoration because biocrusts can speed up ecosystem recovery by stabilizing soil surface, improving soil fertility and facilitating vascular plant establishment.
F. Amaral and M. Abelho
Web Ecol., 16, 3–5, https://doi.org/10.5194/we-16-3-2016, https://doi.org/10.5194/we-16-3-2016, 2016
Short summary
Short summary
In this study we assessed carbon, nitrogen and phosphorus in soil and soil microbial biomass subject to conventional farming and three different organic farming practices. The results showed that microbial biomass was P-limited in soils subject to conventional farming and to organic farming with alfalfa green manure. Organic farming with compost amendment showed the best results in terms of microbial performance.
R. G. Woodmansee and S. R. Woodmansee
Web Ecol., 15, 43–44, https://doi.org/10.5194/we-15-43-2015, https://doi.org/10.5194/we-15-43-2015, 2015
Short summary
Short summary
The state of “ecosystem” ecology before 1970 is discussed briefly with emphasis on development of a new paradigm – systems ecology. The philosophy and theory embedded in ecosystem science, the methodologies introduced for conducting research, and the development of a vast warehouse of knowledge as they developed after 1970 are explored. The discussion ends with the contributions of the new paradigm to current and future local- to global-scale environmental and societal problems and solutions.
M. Abelho
Web Ecol., 14, 13–22, https://doi.org/10.5194/we-14-13-2014, https://doi.org/10.5194/we-14-13-2014, 2014
H. Doi
Web Ecol., 13, 91–93, https://doi.org/10.5194/we-13-91-2013, https://doi.org/10.5194/we-13-91-2013, 2013
S. Bocking
Web Ecol., 13, 43–47, https://doi.org/10.5194/we-13-43-2013, https://doi.org/10.5194/we-13-43-2013, 2013
A. Schreiner, P. Decker, K. Hannig, and A. Schwerk
Web Ecol., 12, 9–17, https://doi.org/10.5194/we-12-9-2012, https://doi.org/10.5194/we-12-9-2012, 2012
Cited articles
Aghababaei, M., Ebrahimi, A., Naghipour, A. A., Asadi, E., and Verrelst, J.: Vegetation types mapping using multi-temporal landsat images in the google earth engine platform, Remote Sens., 13, 1–15, https://doi.org/10.3390/rs13224683, 2021.
Alcaraz-Segura, D., Lomba, A., Sousa-Silva, R., Nieto-Lugilde, D., Alves, P., Georges, D., Vicente, J. R., and Honrado, J. P.: Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts, Int. J. Appl. Earth Obs. Geoinf., 57, 86–92, https://doi.org/10.1016/j.jag.2016.12.009, 2017.
Barbet-Massin, M., Jiguet, F., Albert, C. H., and Thuiller, W.: Selecting pseudo-absences for species distribution models: How, where and how many?, Methods Ecol. Evol., 3, 327–338, https://doi.org/10.1111/j.2041-210X.2011.00172.x, 2012.
Bastos, R., D'Amen, M., Marcos, B., Santos, M., Braz, L., Vicente, J., Honrado, J. P., Gonçalves, J., Monteiro, A., and Cabral, J. A.: Towards functional biodiversity predictions: a hierarchical modelling framework from primary productivity to biomass of upper trophic levels, Landsc. Ecol., 33, 2221–2237, https://doi.org/10.1007/s10980-018-0735-8, 2018.
Beringue, V. and Andreoletti, O.: Classical and atypical TSE in small ruminants, Anim. Front., 4, 33–43, https://doi.org/10.2527/af.2014-0005, 2014.
Carvalho, J., Torres, R. T., Acevedo, P., Santos, J. P. V., Barros, T., Serrano, E., and Fonseca, C.: Propagule pressure and land cover changes as main drivers of red and roe deer expansion in mainland Portugal, Divers. Distrib., 24, 551–564, https://doi.org/10.1111/ddi.12703, 2018.
Carvalho, P., Nogueira, A. J. A., Soares, A. M. V. M., and Fonseca, C.: Ranging behaviour of translocated roe deer in a Mediterranean habitat: seasonal and altitudinal influences on home range size and patterns of range use, Mammalia, 72, 89–94, https://doi.org/10.1515/mamm.2008.019, 2008.
Cassmann, E. D. and Greenlee, J. J.: Pathogenesis, detection, and control of scrapie in sheep, Am. J. Vet. Res., 81, 600–614, https://doi.org/10.2460/ajvr.81.7.600, 2020.
Cassmann, E. D., Frese, R. D., and Greenlee, J. J.: Second passage of chronic wasting disease of mule deer to sheep by intracranial inoculation compared to classical scrapie, J. Vet. Diagnostic Investig., 33, 711–720, https://doi.org/10.1177/10406387211017615, 2021.
Commission regulation: This document is meant purely as a documentation tool and the institutions do not assume any liability for its contents setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance), 1881, 1–5, 2006.
Dagleish, M. P., Martin, S., Steele, P., Finlayson, J., Sisó, S., Hamilton, S., Chianini, F., Reid, H. W., González, L., and Jeffrey, M.: Experimental transmission of bovine spongiform encephalopathy to European red deer (Cervus elaphus elaphus), BMC Vet. Res., 4, 1–8, https://doi.org/10.1186/1746-6148-4-17, 2008.
Domisch, S., Friedrichs, M., Hein, T., Borgwardt, F., Wetzig, A., Jähnig, S. C., and Langhans, S. D.: Spatially explicit species distribution models: A missed opportunity in conservation planning?, Divers. Distrib., 25, 758–769, https://doi.org/10.1111/ddi.12891, 2019.
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., and Trigo, I. F.: Google earth engine open-source code for land surface temperature estimation from the landsat series, Remote Sens., 12, 1–21, https://doi.org/10.3390/RS12091471, 2020.
Figueiredo, A. M., Dashti, A., Santín, M., Köster, P. C., Torres, R. T., Fonseca, C., Mysterud, A., Carvalho, J., Sarmento, P., Neves, N., Hipólito, D., Palmeira, J. D., Teixeira, D., Lima, C., Calero-Bernal, R., and Carmena, D.: Occurrence and molecular characterization of Enterocytozoon bieneusi in wild and domestic animal species in Portugal, Med. Mycol., 61, myad018, https://doi.org/10.1093/mmy/myad018, 2023.
Fontana, R., Calabrese, L., Lanzi, A., Armaroli, E., and Raganella Pelliccioni, E.: Spatial behavior of red deer (Cervus elaphus) in Northern Apennines: are we managing them correctly?, Anim. Biotelemetry, 10, 1–12, https://doi.org/10.1186/s40317-022-00300-3, 2022.
Forkuor, G., Benewinde Zoungrana, J. B., Dimobe, K., Ouattara, B., Vadrevu, K. P., and Tondoh, J. E.: LST, Remote Sens. Environ., 236, 111496, https://doi.org/10.1016/j.rse.2019.111496, 2020.
Georges, D.: Ensemble Platform for Species Distribution Modeling, The State of Data & AI Literacy 2024, Version 3.4.6, DataCamp [code], https://www.rdocumentation.org/packages/biomod2/versions/3.4.6 (last access: 26 February 2020), 2020.
Georgsson, G., Sigurdarson, S., and Brown, P.: Infectious agent of sheep scrapie may persist in the environment for at least 16 years, J. Gen. Virol., 87, 3737–3740, https://doi.org/10.1099/vir.0.82011-0, 2006.
Greenlee, J. J.: The Prion Diseases of Animals, in: Pathobiology of Human Disease, edited by: McManus, L. M. and Mitchell, R. N., Academic Press, San Diego, 1124–1133, https://doi.org/10.1016/B978-0-12-386456-7.03418-3, 2014.
Greenlee, J. J., Smith, J. D., and Kunkle, R. A.: White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation, Vet. Res., 42, 107, https://doi.org/10.1186/1297-9716-42-107, 2011.
Grilo, C., Afonso, B. C., Afonso, F., et al.: MAMMALS IN PORTUGAL: A data set of terrestrial, volant, and marine mammal occurrences in Portugal, Ecology, 103, ecy.3654, https://doi.org/10.1002/ecy.3654, 2022.
Hamir, A. N., Miller, J. M., Cutlip, R. C., Kunkle, R. A., Jenny, A. L., Stack, M. J., Chaplin, M. J., and Richt, J. A.: Transmission of sheep scrapie to elk (Cervus elaphus nelsoni) by intracerebral inoculation: final outcome of the experiment., J. Vet. diagnostic Investig. Off. Publ. Am. Assoc. Vet. Lab. Diagnosticians, Inc, 16, 316–321, https://doi.org/10.1177/104063870401600410, 2004.
Hao, T., Elith, J., Guillera-Arroita, G., and Lahoz-Monfort, J. J.: A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD, Divers Distrib., 25, 839–852, https://doi.org/10.1111/ddi.12892, 1 May 2019.
Hao, T., Elith, J., Lahoz-Monfort, J. J., and Guillera-Arroita, G.: Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models, Ecography (Cop.)., 43, 549–558, https://doi.org/10.1111/ecog.04890, 2020.
He, Y., Chen, G., Potter, C., and Meentemeyer, R. K.: Integrating multi-sensor remote sensing and species distribution modeling to map the spread of emerging forest disease and tree mortality, Remote Sens. Environ., 231, 111238, https://doi.org/10.1016/j.rse.2019.111238, 2019.
Janani, N., Kannan, B., Nagarajan, K., Thiyagarajan, G., and Duraisamy, M. R.: Soil moisture mapping for different land-use patterns of lower Bhavani river basin using vegetative index and land surface temperature, Environ. Dev. Sustain., 26, 4533–4549 (2024), https://doi.org/10.1007/s10668-022-02896-1, 2023.
Jarnemo, A., Nilsson, L., and Wikenros, C.: Home range sizes of red deer in relation to habitat composition: a review and implications for management in Sweden, Eur. J. Wildl. Res., 69, 1–16, https://doi.org/10.1007/s10344-023-01719-6, 2023.
Keough, K., Greenlee, J., and Caughey, B.: PRION 2019 emerging concepts, Prion, 13, 1–141, https://doi.org/10.1080/19336896.2019.1615197, 2019.
Khamdamov, R., Rakhmanov, K., and Fattaeva, D.: Algorithm for Calculating Vegetation Indices NDVI for Time Series of Landsat 8 Multisspectral Satellite Images on Google Earth Engine Platform, Int. Conf. Inf. Sci. Commun. Technol. Appl. Trends Oppor. ICISCT 2021, 1–3, https://doi.org/10.1109/ICISCT52966.2021.9670365, 2021.
Knott, J. A., Liknes, G. C., Giebink, C. L., Oh, S., Domke, G. M., McRoberts, R. E., Quirino, V. F., and Walters, B. F.: Effects of outliers on remote sensing-assisted forest biomass estimation: A case study from the United States national forest inventory, Methods Ecol. Evol., 14, 1587–1602, https://doi.org/10.1111/2041-210X.14084, 2023.
Kopsco, H. L., Smith, R. L., and Halsey, S. J.: A Scoping Review of Species Distribution Modeling Methods for Tick Vectors, Front. Ecol. Evol., 10, 893016, https://doi.org/10.3389/fevo.2022.893016, 2022.
Lastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., Hladky, R., and Stych, P.: Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation, Remote Sens., 12, 1914, https://doi.org/10.3390/rs12121914, 2020.
Li, H., Pan, H., Xu, L., Li, S., Li, S., Chen, S., Man, C., Du, L., Chen, Q., Xiao, J., Wang, H., Wang, F., and Gao, H.: Predicting Risk Areas of Classical Scrapie in China Based on Environmental Suitability, Transbound. Emerg. Dis., 2023, 1–10, https://doi.org/10.1155/2023/2826256, 2023.
Long, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., Zhang, X., Wang, G., and Yin, R.: 30 m resolution global annual burned area mapping based on landsat images and Google Earth Engine, Remote Sens., 11, 1–30, https://doi.org/10.3390/rs11050489, 2019.
Maddison, B. C., Owen, J. P., Taema, M. M., Shaw, G., and Gough, K. C.: Temperature influences the interaction of ruminant PrPTSEwith soil, Prion, 6, 302–308, https://doi.org/10.4161/pri.20025, 2012.
Marín-Moreno, A., Aguilar-Calvo, P., Espinosa, J. C., Zamora-Ceballos, M., Pitarch, J. L., González, L., Fernández-Borges, N., Orge, L., Andréoletti, O., Nonno, R., and Torres, J. M.: Classical scrapie in small ruminants is caused by at least four different prion strains, Vet. Res., 52, 1–15, https://doi.org/10.1186/s13567-021-00929-7, 2021.
Mathias, M. da L., Fonseca, C., Rodrigues, L., Grilo, C., Lopes-Fernandes, M., Palmeirim, J. M., Santos-Reis, M., Alves, P. C., Cabral, J. A., Ferreira, M., Mira, A., Eira, C., Negrões, N., Paupério, J., Pita, R., Rainho, A., Rosalino, L. M., Tapisso, J. T., and Vingada, J.: Livro Vermelho dos Mamíferos de Portugal Continental, Icnf, FCiências., 90–139, 2023.
Meneses, B. M., Reis, E., Vale, M. J., and Reis, R.: Modelling land use and land cover changes in Portugal: A multi-scale and multi-temporal approach, Finisterra, 53, 3–26, https://doi.org/10.18055/finis12258, 2018.
Monteiro, A. T., Gonçalves, J., Fernandes, R. F., Alves, S., Marcos, B., Lucas, R., Teodoro, A. C., and Honrado, J. P.: Estimating invasion success by non-native trees in a national park combining worldview-2 very high resolution satellite data and species distribution models, Diversity, 9, 6, https://doi.org/10.3390/d9010006, 2017.
Morales, R., Duran-Aniotz, C., Diaz-Espinoza, R., Camacho, M. V, and Soto, C.: Protein misfolding cyclic amplification of infectious prions, Nat. Protoc., 7, 1397–1409, https://doi.org/10.1038/nprot.2012.067, 2012.
Mouta, N., Silva, R., Pais, S., Alonso, J. M., Gonçalves, J. F., Honrado, J., and Vicente, J. R.: `The Best of Two Worlds' – Combining Classifier Fusion and Ecological Models to Map and Explain Landscape Invasion by an Alien Shrub, Remote Sens., 13, 1–25, https://doi.org/10.3390/rs13163287, 2021.
Naimi, B. and Araújo, M. B.: Sdm: A reproducible and extensible R platform for species distribution modelling, Ecography (Cop.)., 39, 368–375, https://doi.org/10.1111/ecog.01881, 2016.
Orge, L., Oliveira, A., Machado, C., Lima, C., Ochoa, C., Silva, J., Carvalho, R., Tavares, P., Almeida, P., Ramos, M., Pinto, M. J., and Simas, J. P.: Putative emergence of classical scrapie in a background of enzootic atypical scrapie, J. Gen. Virol., 91, 1646–1650, https://doi.org/10.1099/vir.0.018879-0, 2010.
Orge, L., Machado, C. G., Ramalho, L., Carvalho, R., Silva, J., Almeida, P., Tavares, P., Ochoa, C., Lima, C., Pinto, M. J. M., and Simas, J. P.: Identification of H-type BSE in Portugal, Prion, 9, 22–28, https://doi.org/10.1080/19336896.2014.997615, 2015.
Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Fernández Escámez, P. S., Gironés, R., Herman, L., Koutsoumanis, K., Lindqvist, R., Nørrung, B., Robertson, L., Ru, G., Sanaa, M., Skandamis, P., Snary, E., Speybroeck, N., Kuile, B. Ter, Threlfall, J., Wahlström, H., Benestad, S., Gavier-Widen, D., Miller, M. W., Telling, G. C., Tryland, M., Latronico, F., Ortiz-Pelaez, A., Stella, P., and Simmons, M.: Scientific opinion on chronic wasting disease (II), EFSA J., 16, 5132, https://doi.org/10.2903/j.efsa.2018.5132, 2018.
Rouan, M., Kerbiriou, C., Levrel, H., and Etienne, M.: A co-modelling process of social and natural dynamics on the isle of Ouessant: Sheep, turf and bikes, Environ. Model. Softw., 25, 1399–1412, https://doi.org/10.1016/j.envsoft.2009.10.010, 2010.
Simons, R. R. L., Croft, S., Rees, E., Tearne, O., Arnold, M. E., and Johnson, N.: Using species distribution models to predict potential hot-spots for Rift Valley Fever establishment in the United Kingdom, PLoS One, 14, e0225250, https://doi.org/10.1371/journal.pone.0225250, 2019.
Somerville, R. A., Fernie, K., Smith, A., Bishop, K., Maddison, B. C., Gough, K. C., and Hunter, N.: BSE infectivity survives burial for five years with only limited spread, Arch. Virol., 164, 1135–1145, https://doi.org/10.1007/s00705-019-04154-8, 2019.
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – A platform for ensemble forecasting of species distributions, Ecography (Cop.)., 32, 369–373, https://doi.org/10.1111/j.1600-0587.2008.05742.x, 2009.
Tonini, M., Parente, J., and Pereira, M. G.: Global assessment of rural–urban interface in Portugal related to land cover changes, Nat. Hazards Earth Syst. Sci., 18, 1647–1664, https://doi.org/10.5194/nhess-18-1647-2018, 2018.
Torres, R. T., Santos, J., Linnell, J. D. C., Virgós, E., and Fonseca, C.: Factors affecting roe deer occurrence in a Mediterranean landscape, Northeastern Portugal, Mamm. Biol., 76, 491–497, https://doi.org/10.1016/j.mambio.2010.10.013, 2011.
Union, T. E.: The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2021, EFSA J., 20, 7655, https://doi.org/10.2903/j.efsa.2022.7655, 2022.
Valente, A. M., Acevedo, P., Figueiredo, A. M., Martins, R., Fonseca, C., Torres, R. T., and Delibes-Mateos, M.: Dear deer? Maybe for now. People's perception on red deer (Cervus elaphus) populations in Portugal, Sci. Total Environ., 748, 141400, https://doi.org/10.1016/j.scitotenv.2020.141400, 2020.
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., and Raes, N.: Minimum required number of specimen records to develop accurate species distribution models, Ecography (Cop.)., 39, 542–552, https://doi.org/10.1111/ecog.01509, 2016.
Velastegui-Montoya, A., Montalván-Burbano, N., Carrión-Mero, P., Rivera-Torres, H., Sadeck, L., and Adami, M.: Google Earth Engine: A Global Analysis and Future Trends, Remote Sens., 15, 3675, https://doi.org/10.3390/rs15143675, 2023.
Wilson, J. W., Sexton, J. O., Todd Jobe, R., and Haddad, N. M.: The relative contribution of terrain, land cover, and vegetation structure indices to species distribution models, Biol. Conserv., 164, 170–176, https://doi.org/10.1016/j.biocon.2013.04.021, 2013.
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., Elith, J., Dudík, M., Ferrier, S., Huettmann, F., Leathwick, J. R., Lehmann, A., Lohmann, L., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. C., Phillips, S. J., Richardson, K. S., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S. E., and Zimmermann, N. E.: Effects of sample size on the performance of species distribution models, Divers. Distrib., 14, 763–773, https://doi.org/10.1111/j.1472-4642.2008.00482.x, 2008.
Short summary
This study investigates classical scrapie (CS) and the risk of interspecies prion transmission by using presence data from wild cervids and infected small ruminant flocks. Employing remote sensing technologies, it derives vegetative and biophysical satellite indices to represent habitat features. A species distribution model integrates these data to identify suitable areas for CS and its hosts. The resultant consensus map and overlapping suitable areas create a detailed infection risk matrix.
This study investigates classical scrapie (CS) and the risk of interspecies prion transmission...