Belnap, J.: Biological soil crusts in deserts: a short review of their role
in soil fertility, stabilization, and water relations, Arch. Hydrobiol.
Suppl. Algol. Stud., 50, 113–126, https://doi.org/10.1127/1864-1318/2003/0109-0113,
2003.
Bianchi, E., Villalba, R., Viale, M., Couvreux, F., and Marticorena, R.: New
precipitation and temperature grids for Northern Patagonia: advances in
relation to global climate grids, J. Meteorol. Res., 30, 38–52,
https://doi.org/10.1007/s13351-015-5058-y, 2016.
Bowker, M. A., Soliveres, S., and Maestre, F. T.: Competition increases with
abiotic stress and regulates the diversity of biological soil crusts, J.
Ecol., 98, 551–560, https://doi.org/10.1111/j.1365-2745.2010.01647.x, 2010.
Breen, K. and Lévesque, E.: Proglacial succession of biological soil
crusts and vascular plants: biotic interactions in the High Arctic, Can. J.
Bot., 84, 1714–1731, https://doi.org/10.1139/b06-131, 2006.
Büdel, B.: Biological soil crusts in European temperate and mediterranean
regions, in Biological crusts: stracture, function and management, vol. 150,
edited by: Belnap, J. and Lange, O. L., 75–86, Springer-Verlag, Berlin
Heidelberg, Germany, 2001.
Bustamante-Sánchez, M. A., Armesto, J. J., and Halpern, C. B.: Biotic and
abiotic controls on tree colonization in three early successional communities
of Chiloé Island, Chile, J. Ecol., 99, 288–299,
https://doi.org/10.1111/j.1365-2745.2010.01737.x, 2011.
Butterfield, B. J. and Briggs, J. M.: Regeneration niche differentiates
functional strategies of desert woody plant species, Oecologia, 165, 477–87,
https://doi.org/10.1007/s00442-010-1741-y, 2011.
Butterfield, B. J., Bradford, J. B., Armas, C., Prieto, I., and Pugnaire, F.
I.: Does the stress-gradient hypothesis hold water? Disentangling spatial and
temporal variation in plant effects on soil moisture in dryland systems,
Funct. Ecol., 30, 10–19, https://doi.org/10.1111/1365-2435.12592, 2016.
del Valle, H. F.: Patagonian soils: a regional synthesis, Ecol. Austral., 8,
103–123, 1998.
Di Rienzo, J. A., Casanove, S., Balzarini, M. G., Gonzalez, L., Tablada, M.,
and Robledo, C.: InfoStat versión 2017, Universidad Nacional de
Córdoba, available at:
https://www.infostat.com.ar/?lang=en (last
access: 3 April 2019), 2017.
Doxford, S. W., Ooi, M. K. J., and Freckleton, R. P.: Spatial and temporal
variability in positive and negative plant – bryophyte
interactions along a
latitudinal gradient, J. Ecol., 101, 465–474, https://doi.org/10.1111/1365-2745.12036,
2012.
Dullinger, S., Kleinbauer, I., Pauli, H., Gottfried, M., Brooker, R., Nagy,
L., Theurillat, J., and Holten, J. I.: Weak and variable relationships
between environmental severity and small-scale co-occurrence in alpine plant
communities, J. Ecol., 95, 1284–1295, https://doi.org/10.1111/j.1365-2745.2007.01288.x,
2007.
Dvorský, M.: Ecology of alpine plants in NW Himalaya, University of South
Bohemia, Czech Republic, 2014.
Etchevehere, P. H.: Los Suelos de la Region Andino-Patagónica, in La
Region de los Bosques Andino-Patagonicos, edited by Milan Dimitri, pp.
83–95, Colección Científica de INTA, Buenos Aires, Argentina, 1972.
Funk, F. A., Loydi, A., and Peter, G.: Effects of biological soil crusts and
drought on emergence and survival of a Patagonian perennial grass in the
Monte of Argentina, J. Arid Land, 6, 735–741,
https://doi.org/10.1007/s40333-014-0022-8, 2014.
Garibotti, I. A., Pissolito, C. I., Villalba, R., Garibotti, I. A.,
Pissolito, C. I., and Villalba, R.: Spatiotemporal pattern of primary
succession in relation to meso-topographic gradients on recently deglaciated
terrains in the Patagonian Andes, Arct. Antarct. Alp. Res., 43, 555–567,
https://doi.org/10.1657/1938-4246-43.4.555, 2011.
Garreaud, R. D., Lopez, P., Minvielle, M., and Rojas, M.: Large-scale control
on the Patagonian climate, J. Climate, 26, 215–231,
https://doi.org/10.1175/JCLI-D-12-00001.1, 2013.
Gold, W. G., Glew, C., and Dickson, L. G.: Functional influences of
cryptobiotic surface crusts in an alpine tundra basin of the Olympic
Mountains, Washington, USA, Northewest Sci., 75, 315–326, 2001.
Gómez-Aparicio, L.: The role of plant interactions in the restoration of
degraded ecosystems: A meta-analysis across life-forms and ecosystems, J.
Ecol., 97, 1202–1214, https://doi.org/10.1111/j.1365-2745.2009.01573.x, 2009.
He, Q., Bertness, M. D., and Altieri, A.: Global shifts towards positive
species interactions increasing environmental stress, Ecol. Lett., 16,
695–706, https://doi.org/10.1111/ele.12080, 2013.
Henríquez, J. M. and Lusk, C. H.: Facilitation of
Nothofagus antarctica (Fagaceae) seedlings
by the prostrate shrub
Empetrum rubrum (Empetraceae) on glacial moraines in Patagonia,
Austral Ecol., 30, 877–882, 2005.
Hillerislambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R., and
Theobald, E. J.: How will biotic interactions influence climate change –
induced range shifts?, Ann. NY Acad. Sci., 1297, 112–125,
https://doi.org/10.1111/nyas.12182, 2013.
Hortal, S., Bastida, F., Moreno, J. L., and Garcia, C.: Benefactor and
allelopathic shrub species have different effects on the soil microbial
community along an environmental severity gradient, Soil Biol. Biochem., 88,
48–57, https://doi.org/10.1016/j.soilbio.2015.05.009, 2015.
Jacoby, W. G.: Loess: a nonparametric, graphical tool for depicting
relationships between variables, Elect. Stud., 19, 577–613, 2000.
Keeney, D. R. and Nelson, D. W.: Nitrogen-inorganic forms, in Methods of Soil
Analysis, Part 2, edited by: Miller, R. H. and Keeney, D. R., 643–698, Soil
Society of America, Madison, USA, 1982.
Kidron, G. J.: Do mosses serve as sink for rain in the Negev Desert? A
theoretical and experimental approach, Catena, 121, 31–39,
https://doi.org/10.1016/j.catena.2014.05.001, 2014.
Kuo, S.: Phosphorus, in Methods of Soil Analysis. Part 3. Chemical methods,
edited by: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H.,
Soltanpour, P. N., Tabatabai, M. A., and Johnston, C. T., 869–919, Soil
Society of America, Madison, USA, 1996.
Langhans, T. M., Storm, C., and Schwabe, A.: Biological soil crusts and their
microenvironment: impact on emergence, survival and establishment of
seedlings, Flora, 204, 157–168, https://doi.org/10.1016/j.flora.2008.01.001, 2009.
Lenaerts, J. T. M., van den broeke, M. R., van Wessem, J. M., van de Berg, W.
J., Van Meijgaard, E., van Ulft, L., and Schaefer, M.: Extreme precipitation
and climate gradients in Patagonia revealed by high-resolution regional
atmospheric Climate modeling, Am. Meteorol. Soc., 27, 4607–4621,
https://doi.org/10.1175/JCLI-D-13-00579.1, 2014.
Lett, S., Wardle, D., Nilsson, M., and Teuber, L. M.: The role of bryophytes
for tree seedling responses to winter climate change: Implications for the
stress gradient hypothesis, J. Ecol., 106, 1142–1155,
https://doi.org/10.1111/1365-2745.12898, 2018.
Li, X., Jia, R., Zhang, Z., Zhang, P., and Hui, R.: Hydrological response of
biological soil crusts to global warming: a ten-year simulative study, Glob.
Change Biol., 10, 4960–4971, https://doi.org/10.1111/gcb.14378, 2018.
Maestre, F. T., Valladares, F., and Reynolds, J. F.: Is the change of plant
– plant interactions with abiotic stress predictable?? A meta-analysis of
field results in arid environments, J. Ecol., 93, 748–757,
https://doi.org/10.1111/j.1365-2745.2005.01017.x, 2005.
Maestre, F. T., Bowker, M. A., Escolar, C., Puche, M. D., Soliveres, S.,
Maltez-Mouro, S., García-Palacios, P., Castillo-Monroy, A. P., and
Martínez, I.: Do biotic interactions modulate ecosystem functioning
along stress gradients? Insights from semi-arid plant and biological soil
crust communities, Philos. T. Roy. Soc., 365, 2057–2070,
https://doi.org/10.1098/rstb.2010.0016, 2010.
Michalet, R. and Pugnaire, F. I.: Facilitation in communities: underlying
mechanisms , community and ecosystem implications, Funct. Ecol., 30, 3–9,
https://doi.org/10.1111/1365-2435.12602, 2016.
Mongelli, E., Desmarchelier, C., and Coussi, J.: The potential effects of
allelopathic mechanisms on plant species diversity and distribution
determined by the wheat rootlet growth inhibition bioassay in South American
plants, Rvista Chil. Hist. Nat., 70, 83–89, 1997.
Nilsson, M. and Wardle, D. A.: Understory vegetation as a forest ecosystem
driver: evidence from the northern Swedish boreal forest, Front. Ecol.
Environ., 3, 421–428, 2005.
Nuñez, C. I., Raffaele, E., Nuñez, M. A., and Cuassolo, F.: When do
nurse plants stop nursing? Temporal changes in water stress
levels in
Austrocedrus chilensis growing within and outside shrubs, J. Veg.
Sci., 20, 1064–1071, 2009.
Odén, P. christopher, Brandtberg, P.-O., Anderson, R., Gref, R.,
Zackrisson, O., and Nilsson, M.: Isolation and characterization of a
germination inhibitor from leaves of
Empetrum hermaphroditum
Hagerup, Scand. J. For. Reaserch, 7, 497–501, 1992.
Passioura, J. B.: The perils of pot experiments, Funct. Plant Biol., 33,
1075–1079, 2006.
Pendleton, R. L., Pendleton, B. K., Howard, G. L., and Warren, S. D.: Growth
and nutrient content of herbaceous seedlings associated with biological soil
crusts, Arid L. Res. Manag., 17, 271–281, https://doi.org/10.1080/15324980301598, 2003.
Piper, F. I., Corcuera, L. J., Alberdi, M., and Lusk, C. H.: Differential
photosynthetic and survival responses to soil drought in two evergreen
Nothofagus species, Ann. For. Sci., 64, 447–452, 2007.
Pugnaire, F. I. and Luque, M. T.: Changes in plant interactions along a
gradient of environmental stress, Oikos, 93, 42–49,
https://doi.org/10.1034/j.1600-0706.2001.930104.x, 2001.
Raffaele, E. and Veblen, T. T.: Facilitation by nurse shrubs of resprouting
behavior in a post-fire shrubland in northern Patagonia, Argentina, J. Veg.
Sci., 9, 693–698, https://doi.org/10.2307/3237287, 1998.
Rodríguez-Catón, M., Villalba, R., Morales, M. S., and Srur, A.:
Influence of droughts on
Nothofagus pumilio forest decline across
northern Patagonia, Argentina, Ecosphere, 7, 1–17, https://doi.org/10.1002/ecs2.1390,
2016.
Rolón, A., Mari, C., Fernández, H. M., Dezzotti, A., and Orlov, D.:
Efecto del ácido indolbutírico sobre el enraizamiento de estacas
juveniles de verano de
Nothofagus nervosa y
Nothofagus pumilio, Rev. la Fac. Agron. La Plata, 111, 91–98, 2013.
Schmidt, S. K., Reed, S. C., Nemergut, D. R., Grandy, A. S., Cleveland, C.
C., Weintraub, M. N., Hill, A. W., Costello, E. K., Meyer, A. F., Neff, J.
C., and Martin, A. M.: The earliest stages of ecosystem succession in
high-elevation (5000 metres above sea level), recently deglaciated soils, P.
Roy. Soc. B, 275, 2793–2802, https://doi.org/10.1098/rspb.2008.0808, 2008.
Serpe, M. D., Orm, J., Barkes, T., and Rosentreter, R.: Germination and seed
water status of four grasses on moss-dominated biological soil crusts from
arid lands, Plant Ecol., 185, 163–178, 2006.
Shi, W., Wang, X., Zhang, Y., Pan, Y., Hu, R., and Jin, Y.: The effect of
biological soil crusts on soil moisture dynamics under different rainfall
conditions in the Tengger Desert, China, Hydrol. Process., 32, 1–12,
https://doi.org/10.1002/hyp.11493, 2018.
Soudzilovskaia, N. A., Graae, B. J., Douma, J. C., Grau, O., Milbau, A.,
Shevtsova, A., Wolters, L., and Cornelissen, J. H. C.: How do bryophytes
govern generative recruitment of vascular plants??, New Phytol., 190,
1019–1031, https://doi.org/10.1111/j.1469-8137.2011.03644.x, 2011.
Srur, A. M., Villalba, R., Rodríguez-Catón, M., and Amoroso, M. M.:
Establishment of
Nothofagus pumilio at upper treelines across a
precipitation gradient in the Northern Patagonian Andes, Arct. Antarct. Alp.
Res., 48, 755–766, 2016.
Su, Y.-G., Li, X.-R., Cheng, Y.-W., Tan, H.-J., and Jia, R.-L.: Effects of
biological soil crusts on emergence of desert vascular plants in North China,
Plant Ecol., 191, 11–19, https://doi.org/10.1007/s11258-006-9210-8, 2007.
Thiet, R. K., Doshas, A., and Smith, S. M.: Effects of biocrusts and
lichen-moss mats on plant productivity in a US sand dune ecosystem, Plant
Soil, 377, 235–244, https://doi.org/10.1007/s11104-013-2002-8, 2014.
Tylianakis, J., Didham, R., Bascompte, J., and Wardle, D.: Global change and
species interactions in terrestrial ecosystems, Ecol. Lett., 11, 1351–1363,
https://doi.org/10.1111/j.1461-0248.2008.01250.x, 2008.
Varela, S. A., Gyenge, J. E., Fernández, M. E., and Schlichter, T.:
Seedling drought stress susceptibility in two deciduous
Nothofagus
species of NW Patagonia, Trees, 24, 443–453, https://doi.org/10.1007/s00468-010-0412-2,
2010.
Weber, B., Belnap, J., and Büdel, B.: Synthesis on Biological Soil Crust
Research, in: Biological Soil Crusts: An Organizing Principle in Drylands,
edited by: Webber, B., Büdel, B., and Belnap, J., 527–534, Springer
International Publishing, Switzerland, 2016.
Whitney, K. M., Bradford, J. B., Duniway, M. C., Vivoni, E. R., Belnap, J.,
and Reed, S. C.: Ecohydrological role of biological soil crusts across a
gradient in levels of development, Ecohydrology, 10, 1–18,
https://doi.org/10.1002/eco.1875, 2017.
Xiao, B. and Hu, K.: Moss-dominated biocrusts decrease soil moisture and
result in the degradation of artificially planted shrubs under semiarid
climate, Geoderma, 291, 47–54, https://doi.org/10.1016/j.geoderma.2017.01.009, 2017.
Xiao, B., Hu, K., Ren, T., and Li, B.: Moss-dominated biological soil crusts
significantly influence soil moisture and temperature regimes in semiarid
ecosystems, Geoderma, 263, 35–46, https://doi.org/10.1016/j.geoderma.2015.09.012, 2016.
Zaady, E., Gutterman, Y., and Boeken, B.: The germination of mucilaginous
seeds of
Plantago coronopus,
Reboudia pinnata, and
Carrichtera annua on cyanobacterial soil crust from the Negev
Desert, Plant Soil, 190, 247–252, https://doi.org/10.1023/A:1004269031844, 1997.
Zhang, Y. and Belnap, J.: Growth responses of five desert plants as
influenced by biological soil crusts from a temperate desert, China, Ecol.
Res., 30, 1037–1045, 2015.
Zhang, Y., Aradottir, A. L., Serpe, M., and Bertrand, B.: Interactions of
biological soil crusts with vascular plants, in: Biological Soil Crusts: An
Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and
Belnap, J., 385–406, Springer International Publishing, Switzerland, 2016.
Zhang, Z.-S., Liu, L.-C., Li, X.-R., Zhang, J.-G., He, M.-Z., and Tan, H.-J.:
Evaporation properties of a revegetated area of the Tengger Desert, North
China, J. Arid Environ., 72, 964–973, https://doi.org/10.1016/j.jaridenv.2007.11.010,
2008.