Articles | Volume 21, issue 1
https://doi.org/10.5194/we-21-55-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-21-55-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes in the Cerrado vegetation structure: insights from more than three decades of ecological succession
Rogério Victor S. Gonçalves
Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia – INBIO, Universidade Federal de Uberlândia – UFU, Uberlândia, Brazil
João Custódio F. Cardoso
Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia – INBIO, Universidade Federal de Uberlândia – UFU, Uberlândia, Brazil
Paulo Eugênio Oliveira
Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia – INBIO, Universidade Federal de Uberlândia – UFU, Uberlândia, Brazil
Denis Coelho Oliveira
CORRESPONDING AUTHOR
Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Instituto de Biologia – INBIO, Universidade Federal de Uberlândia – UFU, Uberlândia, Brazil
Related subject area
Conservation Ecology
Insights into the habitat associations, phylogeny, and diet of Pipistrellus maderensis in Porto Santo, northeastern Macaronesia
Spatio-temporal patterns of co-occurrence of tigers and leopards within a protected area in central India
Models of poisoning effects on vulture populations show that small but frequent episodes have a larger effect than large but rare ones
Toward a new generation of effective problem solvers and project-oriented applied ecologists
Scientists' warning on endangered food webs
Towards the unravelling of the slug A. ater–A. rufus complex (Gastropoda Arionidae): new genetic approaches
Non-native invasive species as paradoxical ecosystem services in urban conservation education
Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant Drosophyllum lusitanicum
Leaf litter is essential for seed survival of the endemic endangered tree Pouteria splendens (Sapotaceae) from central Chile
Sand quarry wetlands provide high-quality habitat for native amphibians
Overview of the translocation of rupestrian ferruginous fields of Capão Xavier mine to the Serra do Rola Moça State Park, Minas Gerais – Brazil
Biodiversity offsetting in England: governance rescaling, socio-spatial injustices, and the neoliberalization of nature
Human population density and tenebrionid richness covary in Mediterranean islands
Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest
Biodiversity impacts of climate change – the PRONAS software as educational tool
Monitoring arthropods in protected grasslands: comparing pitfall trapping, quadrat sampling and video monitoring
Short Communication: Systems-based conservation and conflicts between species protection programs
The geography of high-value biodiversity areas for terrestrial vertebrates in Western Europe and their coverage by protected area networks
Eva K. Nóbrega, Nia Toshkova, Angelina Gonçalves, André Reis, Elena J. Soto, Sergio Puertas Ruiz, Vanessa A. Mata, Catarina Rato, and Ricardo Rocha
Web Ecol., 23, 87–98, https://doi.org/10.5194/we-23-87-2023, https://doi.org/10.5194/we-23-87-2023, 2023
Short summary
Short summary
We conducted an island-wide survey to investigate if the Madeiran pipistrelle still persists on the island of Porto Santo, where it was believed to be extinct. We detected bats in 28 out of 46 sampling sites, and their activity was particularly associated with water points. Furthermore, we found that bats from Porto Santo and Madeira have a close phylogenetic affinity and that they feed on a wide variety of insects, including several economically important pest species and disease vectors.
Anindita Bidisha Chatterjee, Kalyansundaram Sankar, Yadvendradev Vikramsinh Jhala, and Qamar Qureshi
Web Ecol., 23, 17–34, https://doi.org/10.5194/we-23-17-2023, https://doi.org/10.5194/we-23-17-2023, 2023
Short summary
Short summary
This study provides a record of co-occurrence patterns of tigers and leopards in a dry deciduous forest where both these sympatric predators coexist in high densities. Populations of large carnivores are decreasing on a global scale, and looking into their inter-species relationships is crucial to conserving these species. Our results show that leopards avoid tigers spatially in a dry deciduous system and show significant temporal overlap, with no fine-scale spatio-temporal avoidance.
Rigas Tsiakiris, John M. Halley, Kalliopi Stara, Nikos Monokrousos, Chryso Karyou, Nicolaos Kassinis, Minas Papadopoulos, and Stavros M. Xirouchakis
Web Ecol., 21, 79–93, https://doi.org/10.5194/we-21-79-2021, https://doi.org/10.5194/we-21-79-2021, 2021
Short summary
Short summary
Despite frequent media references about the mass poisoning of vultures, this study shows that small but frequent poisoning events may be even worse. Using both mathematical and computer simulation approaches we show that a chain of small poisoning events is more likely to extirpate a newly established colony than a few massive ones with the same overall mortality. Survival also depends critically on the initial population size. These results are of great relevance for restocking initiatives.
Corrado Battisti, Giovanni Amori, and Luca Luiselli
Web Ecol., 20, 11–17, https://doi.org/10.5194/we-20-11-2020, https://doi.org/10.5194/we-20-11-2020, 2020
Short summary
Short summary
In an era of environmental crises, conservation and management strategies need a new generation of applied ecologists. Here, we stimulate the next generation of applied ecologists to acquire a pragmatic mentality of problems solvers in real contexts, using the wide arsenal of concepts, approaches and techniques available in the project management (PM) arena and using a road map based on the main steps of the conservation project cycle.
Ruben H. Heleno, William J. Ripple, and Anna Traveset
Web Ecol., 20, 1–10, https://doi.org/10.5194/we-20-1-2020, https://doi.org/10.5194/we-20-1-2020, 2020
Short summary
Short summary
It is not only the climate that is changing. We are now also observing a global biological change. Here we revise the overwhelming evidence that these changes affect not only individual species but also simplify the structure of entire food webs, threatening long-term community persistence. We must take urgent action to protect the integrity of natural food webs, or we might rapidly push entire ecosystems outside their safe zones.
María L. Peláez, Antonio G. Valdecasas, Daniel Martinez, and Jose L. Horreo
Web Ecol., 18, 115–119, https://doi.org/10.5194/we-18-115-2018, https://doi.org/10.5194/we-18-115-2018, 2018
Short summary
Short summary
The Arion ater complex comprises two morphological forms: A. rufus and A. ater, and no consensus exists about their species status. Both forms belong to different phylogenetic clades, and we have investigated the correspondence to different species. To do it, we analysed three mitochondrial genes with two different genetic approaches (one classic, one cutting-edge). Results suggested that both clades, thus forms, are different species, and shed light on the taxonomic classification of the group.
Corrado Battisti, Giuliano Fanelli, Sandro Bertolino, Luca Luiselli, Giovanni Amori, and Spartaco Gippoliti
Web Ecol., 18, 37–40, https://doi.org/10.5194/we-18-37-2018, https://doi.org/10.5194/we-18-37-2018, 2018
Short summary
Short summary
Many practices have been proposed in conservation education to facilitate a re-connection between nature and young digitally dependent people in anthropized contexts. In this paper we suggest that, at least in some specific circumstances (urban and suburban areas), non-native invasive species may have a paradoxical and positive impact on conservation education strategies, playing a role as an experiential tool, which represents a cultural ecosystem service.
Susana Gómez-González, Maria Paniw, Kamila Antunes, and Fernando Ojeda
Web Ecol., 18, 7–13, https://doi.org/10.5194/we-18-7-2018, https://doi.org/10.5194/we-18-7-2018, 2018
Gastón Javier Sotes, Ramiro Osciel Bustamante, and Carolina Andrea Henríquez
Web Ecol., 18, 1–5, https://doi.org/10.5194/we-18-1-2018, https://doi.org/10.5194/we-18-1-2018, 2018
Short summary
Short summary
Pouteria splendens is an endemic endangered tree from central Chile. Natural regeneration in the species seems to be low and its distribution is restricted. We investigate seed dispersal and survival. Results indicated a low distance of seed dispersal, and the presence of leaf litter covering seeds increased survival. We suggest that future conservation programs should focus on protecting both adult plants and leaf litter under trees.
Michael Sievers
Web Ecol., 17, 19–27, https://doi.org/10.5194/we-17-19-2017, https://doi.org/10.5194/we-17-19-2017, 2017
Short summary
Short summary
Artificial wetlands are becoming critical habitats as natural wetlands continue to be degraded and destroyed. I surveyed quarry wetlands to assess how they provide habitat for frogs and the factors driving patterns. Quarry wetlands consistently harboured more species and healthier individuals than reference wetlands. We need to encourage wildlife utilisation of quarry wetlands, and the methods outlined here provide a powerful, yet simple, tool to assess the overall health of artificial wetlands.
Alessandra F. Fernandes, Ana C. Maia, Juan F. S. Monteiro, João N. Condé, and Mauro Martins
Web Ecol., 16, 93–96, https://doi.org/10.5194/we-16-93-2016, https://doi.org/10.5194/we-16-93-2016, 2016
Short summary
Short summary
The Serra do Rola Moça State Park is located in Brazil and is home to Canga vegetation. The objective of the study was to conserve biodiversity. The species present mainly belong to the Asteraceae, Rubiaceae, Myrtaceae, Velloziaceae, Bromeliaceae, and Orchidaceae families. Approximately 15 000 individuals of Canga species were translocated and planted. This study indicates the possibility of nursery breeding of some of the native species and their use in the recovery of areas in mining regions.
Evangelia Apostolopoulou
Web Ecol., 16, 67–71, https://doi.org/10.5194/we-16-67-2016, https://doi.org/10.5194/we-16-67-2016, 2016
Short summary
Short summary
I use primary empirical data obtained through interviews in case studies around England to explore the neoliberal character of biodiversity offsetting, its interrelationship with governance rescaling, and the way the latter influences the distribution of offsetting’s costs and benefits. My results show that biodiversity offsetting in England has been a reactionary neoliberal policy characterized by important deficits from an environmental and socio-spatial justice perspective.
Simone Fattorini and Giovanni Strona
Web Ecol., 16, 63–65, https://doi.org/10.5194/we-16-63-2016, https://doi.org/10.5194/we-16-63-2016, 2016
Short summary
Short summary
An unexpected high biodiversity can be found even in densely inhabited areas, possibly as a result of a tendency of human settlements to be located in sites particularly favourable also for other organisms. We studied the relationship between human density and tenebrionid beetle richness in Italian islands. Tenebrionid richness increased with human population density. This suggests that islands that are more hospitable to humans are also those that can be more favourable for tenebrionids.
F. S. Campos, G. A. Llorente, L. Rincón, R. Lourenço-de-Moraes, and M. Solé
Web Ecol., 16, 9–12, https://doi.org/10.5194/we-16-9-2016, https://doi.org/10.5194/we-16-9-2016, 2016
Short summary
Short summary
This study evaluated the efficiency of the protected areas (PAs) from the Brazilian Atlantic Forest on the conservation of threatened amphibian species. This brief overview highlights not only the crisis faced by unprotected amphibians, but it also sounds the alarm regarding the situation of species covered by the PAs network. Such context can improve the environmental actions for the PAs integrity and reduce the extinction risk of threatened amphibian species in this region.
K. Ulbrich, O. Schweiger, S. Klotz, and J. Settele
Web Ecol., 15, 49–58, https://doi.org/10.5194/we-15-49-2015, https://doi.org/10.5194/we-15-49-2015, 2015
Short summary
Short summary
Only little of current biodiversity knowledge reaches the young generation. We developed the educational software PRONAS to show how scientists handle questions about the impact of climate change on species' habitats. About fifty European species have been used to demonstrate habitat losses and shifts and the mismatch of habitat dynamics of interacting species. We found that “educational software” is a useful format for scientific outreach. PRONAS is freely accessible in German and English.
J. G. Zaller, G. Kerschbaumer, R. Rizzoli, A. Tiefenbacher, E. Gruber, and H. Schedl
Web Ecol., 15, 15–23, https://doi.org/10.5194/we-15-15-2015, https://doi.org/10.5194/we-15-15-2015, 2015
Short summary
Short summary
Arthropod monitoring in protected areas often requires non-destructive methods in order to avoid detrimental effects on natural communities. Video monitoring recorded the highest number of individuals followed by quadrat sampling and pitfall trapping. Quadrat sampling showed the highest diversity followed by video monitoring and pitfall trapping. Thus, video monitoring has a great potential as a supplementary method for biodiversity assessments especially at the level of parataxonomic units.
F. Jordán and A. Báldi
Web Ecol., 13, 85–89, https://doi.org/10.5194/we-13-85-2013, https://doi.org/10.5194/we-13-85-2013, 2013
M. J. T. Assunção-Albuquerque, J. M. Rey Benayas, F. S. Albuquerque, and M. Á. Rodríguez
Web Ecol., 12, 65–73, https://doi.org/10.5194/we-12-65-2012, https://doi.org/10.5194/we-12-65-2012, 2012
Cited articles
Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A.: Bayesian networks in environmental modelling, Environ. Model. Softw., 26, 1376–1388, https://doi.org/10.1016/j.envsoft.2011.06.004, 2011.
Almeida, R. F., Fagg, C. W., De Oliveira, M. C., Beatriz, C., Munhoz, R., Lima, A. S. De, Soares, L., and Oliveira, B. De: Mudanças florísticas e estruturais no cerrado sensu stricto ao longo de 27 anos (1985–2012) na Fazenda Água Limpa, Brasília, DF, Rodriguésia, 65, 1–19, https://doi.org/10.1590/S2175-78602014000100001, 2014.
Alofs, K. M. and Fowler, N. L.: Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass, Ecology, 94, 751–760, https://doi.org/10.1890/12-0732.1, 2013.
Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., and Sparovek, G.: Köppen's climate classification map for Brazil, Meteorol. Z., 22, 711–728, https://doi.org/10.1127/0941-2948/2013/0507, 2013.
Araújo, G. M., Barbosa, A. A. A., Arantes, A. A., and Amaral, A. F.: Composição florística de veredas no Município de Uberlândia, MG, Rev. Bras. Botânica, 25, 475–493, https://doi.org/10.1590/s0100-84042002012000012, 2002.
Araújo, G. M., Amaral, A. F., Bruna, E. M., and Vasconcelos, H. L.: Fire drives the reproductive responses of herbaceous plants in a Neotropical swamp, Plant Ecol., 214, 1479–1484, https://doi.org/10.1007/s11258-013-0268-9, 2013.
Van Auken, O. W.: Causes and consequences of woody plant encroachment into western North American grasslands, J. Environ. Manag., 90, 2931–2942, https://doi.org/10.1016/j.jenvman.2009.04.023, 2009.
Bartoń, K.: Package “MuMIn”, v. 1.43.17, CRAN, available at: https://cran.r-project.org/web/packages/MuMIn/index.html (last access: 26 March 2021), 2020.
Bates, D., Maechler, M., Bolker, B., Walker, S., and Team, R. C.: lme4: Linear mixed-effects models using Eigen and S4, R Package, online, available at: https://cran.r-project.org/package=lme4 (24 March 2021), 2020.
Boaventura, R. S.: Vereda: Berço das Águas, Embrapa, Ecodinâmica, Belo Horizonte, 2007.
Börner, J., Schulz, D., Wunder, S., and Pfaff, A.: The effectiveness of forest conservation policies and programs, Annu. Rev. Resour. Econ., 12, 45–64, https://doi.org/10.1146/annurev-resource-110119-025703, 2020.
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., Van Der Werf, G. R., and Pyne, S. J.: Fire in the earth system, Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009.
Briske, D. D. (ed.): Rangeland Systems Processes, Management and Challenges, 1st ed., Springer International Publishing, Berlin, 2017.
Cardoso, E., Moreno, M. I. C., Bruna, E. M., and Vasconcelos, H. L.: Mudanças fitofisionômicas no cerrado: 18 anos de sucessão ecológica na Estação Ecológica do Panga, Uberlândia – MG, Caminhos Geogr., 10, 254–268, online, available at: http://www.seer.ufu.br/index.php/caminhosdegeografia/article/view/15980/9012 (last access: 24 March 2021), 2009.
Deus, F. F. and Oliveira, P. E.: Changes in floristic composition and pollination systems in a “Cerrado” community after 20 years of fire suppression, Rev. Bras. Bot., 39, 1051–1063, https://doi.org/10.1007/s40415-016-0304-9, 2016.
Dias, A. C. C., Serra, A. C., Sampaio, D. S., Borba, E. L., Bonetti, A. M., and Oliveira, P. E.: Unexpectedly high genetic diversity and divergence among populations of the apomictic Neotropical tree Miconia albicans, Plant Biol., 20, 244–251, https://doi.org/10.1111/plb.12654, 2018.
Durigan, G. and Ratter, J. A.: The need for a consistent fire policy for Cerrado conservation, J. Appl. Ecol., 53, 11–15, https://doi.org/10.1111/1365-2664.12559, 2016.
Gomes, L., Miranda, H. S., and Bustamante, M. M. C.: How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome?, For. Ecol. Manage., 417, 281–290, https://doi.org/10.1016/j.foreco.2018.02.032, 2018.
Gomes, L., Miranda, H. S., Silvério, D. V., and Bustamante, M. M.: Effects and behaviour of experimental fires in grasslands, savannas, and forests of the Brazilian Cerrado, Forest Ecol. Manag., 458, 117804, https://doi.org/10.1016/j.foreco.2019.117804, 2020.
Honda, E. A. and Durigan, G.: Woody encroachment and its consequences on hydrological processes in the savannah, Philos. T. Roy. Soc. B, 371, 20150313, https://doi.org/10.1098/rstb.2015.0313, 2016.
Hope, A. C. A.: A Simplified Monte Carlo Significance Test Procedure, J. R. Stat. Soc. Ser. B, 30, 582–598, https://doi.org/10.1111/j.2517-6161.1968.tb00759.x, 1968.
Klink, C. A. and Machado, R. B.: Conservation of the Brazilian Cerrado, Conserv. Biol., 19, 707–713, https://doi.org/10.1111/j.1523-1739.2005.00702.x, 2005.
Lehmann, C. E. R., Anderson, T. M., Sankaran, M., Higgins, S. I., Archibald, S., Hoffmann, W. A., Hanan, N. P., Williams, R. J., Fensham, R. J., Felfili, J., Hutley, L. B., Ratnam, J., San Jose, J., Montes, R., Franklin, D., Russell-Smith, J., Ryan, C. M., Durigan, G., Hiernaux, P., Haidar, R., Bowman, D. M. J. S., and Bond, W. J.: Savanna vegetation-fire-climate relationships differ among continents, Science, 343, 548–552, https://doi.org/10.1126/science.1247355, 2014.
Lenth, R. V., Buerkner, P., Herve, M., Love, J., Riebl, H., and Singmann, H.: Estimated Marginal Means, aka Least-Squares Means, R package version 1.3.2, available at: https://www.rdocumentation.org/packages/emmeans/versions/1.5.3 (last access: 24 March 2021), 2019.
Libano, A. M. and Felfili, J. M.: Mudanças temporais na composição florística e na diversidade de um cerrado sensu stricto do Brasil Central em um período de 18 anos (1985–2003), Acta Bot. Brasilica, 20, 927–936, https://doi.org/10.1590/s0102-33062006000400016, 2007.
Lima, M. de P. and Carpenedo, C. B.: Eventos extremos secos em Uberlândia-MG e circulação atmosférica associada, Rev. Bras. Climatol., 27, 158–180, available at: https://revistas.ufpr.br/revistaabclima/article/view/70256/41150 (last access: 24 March 2021), 2020.
Manchego, C. E., Hildebrandt, P., Cueva, J., Espinosa, C. I., Stimm, B., and Günter, S.: Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador, PLoS One, 12, 1–19, https://doi.org/10.1371/journal.pone.0190092, 2017.
Mangiafico, S.: Functions to Support Extension Education Program Evaluation, online, available at: https://cran.r-project.org/web/packages/rcompanion/index.html (last access: 26 March 2021), 2019.
Meirelles, M. L., Guimarães, A. J. M., Oliveira, R. C., Araújo, G. M., and Ribeiro, J. F.: Impactos sobre o estrato herbáceo de áreas úmidas do Cerrado, in Cerrado: ecologia e caracterização, edited by: Aguiar, L. M. S. and Camargo, A. J. A., 41–68, EMBRAPA, Brasília, 2004.
Miranda, H. S., Bustamante, M. M., and Miranda, A. C.: The fire factor, in: The cerrados of Brazil:
ecology and natural history of a neotropical savanna, edited by: Oliveira, P. S. and Marquis, R., Columbia University Press, New York, 51–68, 2002.
Mistry, J. and Beradi, A.: World savannas: ecology and human use, 1st ed., Routledge, Abingdon, England, 2014.
Mitchard, E. T. A., Saatchi, S. S., Gerard, F. F., Lewis, S. L., and Meir, P.: Measuring woody encroachment along a forest-savanna boundary in Central Africa, Earth Interact., 13, 1–29, https://doi.org/10.1175/2009EI278.1, 2009.
Moreira, A. G.: Effects of fire protection on savanna structure in central Brazil, J. Biogeogr., 27, 1021–1029, https://doi.org/10.1046/j.1365-2699.2000.00422.x, 2000.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. da, and Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403, 853, https://doi.org/10.1038/35002501, 2000.
Nakagawa, S. and Schielzeth, H.: A general and simple method for obtaining R2 from generalized linear mixed-effects models, Methods Ecol. Evol., 4, 133–142, https://doi.org/10.1111/j.2041-210x.2012.00261.x, 2013.
Neves, A. K., Korting, T. S., Neto, C. D. G., Soares, A. R., and Fonseca, L. M. G.: Hierarchical classification of Brazilian savanna physiognomies using very high spatial resolution image, superpixel and geobia, IGARSS 2019–2019, IEEE Int. Geosci. Remote Sens. Symp., 2019, 3716–3719, https://doi.org/10.1109/IGARSS.2019.8898649, 2019.
Nilsson, C., Jansson, R., and Zinko, U.: Long-Term Responses of River-Margin Vegetation to Water-Level Regulation, Science, 276, 798–800, https://doi.org/10.1126/science.276.5313.798, 1997.
Oliveira-Filho, A. T. and Fontes, M. A. L.: Patterns of floristic differentiation among atlantic forests in southeastern Brazil and the influence of climate, Biotropica, 32, 793–810, https://doi.org/10.1111/j.1744-7429.2000.tb00619.x, 2000.
Oliveira, P. T. S., Nearing, M. A., Moran, M. S., Goodrich, D. C., Wendland, E., and Gupta, H. V.: Trends in water balance components across the Brazilian Cerrado, Water Resources Researcher, 50, 7100–7114, https://doi.org/10.1002/2013WR014333, 2014.
Oliveira, P. T. S., Leite, M. B., Mattos, T., Nearing, M. A., Scott, R. L., de Oliveira Xavier, R., da Silva Matos, D. M., and Wendland, E.: Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado, Ecohydrology, 10, 1–8, https://doi.org/10.1002/eco.1759, 2017.
Overbeck, G. E., Vélez-Martin, E., Scarano, F. R., Lewinsohn, T. M., Fonseca, C. R., Meyer, S. T., Müller, S. C., Ceotto, P., Dadalt, L., Durigan, G., Ganade, G., Gossner, M. M., Guadagnin, D. L., Lorenzen, K., Jacobi, C. M., Weisser, W. W., and Pillar, V. D.: Conservation in Brazil needs to include non-forest ecosystems, Divers. Distrib., 21, 1455–1460, https://doi.org/10.1111/ddi.12380, 2015.
Pereira, A. C., Oliveira, S. L. J., Pereira, J. M. C., and Turkman, M. A. A.: Modelling fire frequency in a Cerrado savanna protected area, PLoS One, 9, e102380, https://doi.org/10.1371/journal.pone.0102380, 2014.
Pinheiro, E. and Durigan, G.: Dinâmica espaço-temporal (1962–2006) das fitofisionomias em unidade de conservação do Cerrado no Sudeste do Brasil, Rev. Bras. Bot, 32, 441–454, https://doi.org/10.1590/S0100-84042009000300005, 2009.
Pinto-Ledezma, J. N. and Rivero Mamani, M. L.: Temporal patterns of deforestation and fragmentation in lowland Bolivia: implications for climate change, Clim. Change, 127, 43–54, https://doi.org/10.1007/s10584-013-0817-1, 2014.
R Core Team: R: A language and environment for statistical computing, online, available at: http://finzi.psych.upenn.edu/R/library/dplR/doc/intro-dplR.pdf (last access: 26 March 2021), 2019.
Ratajczak, Z., Nippert, J. B., and Collins, S. L.: Woody encroachment decreases diversity across North American grasslands and savannas, Ecology, 93, 697–703, https://doi.org/10.1890/10-1922.1, 2012.
Raymundo, D., Prado-Junior, J., Alvim Carvalho, F., Santiago do Vale, V., Oliveira, P. E., and van der Sande, M. T.: Shifting species and functional diversity due to abrupt changes in water availability in tropical dry forests, J. Ecol., 107, 253–264, https://doi.org/10.1111/1365-2745.13031, 2019.
Ribeiro, J. F. and Walter, B. M. T.: As prinfipais fitofisiononomias do bioma Cerrado, in Cerrado: ambiente e flora, edited by: Sano, S. M. and de Almeida, S. P., Embrapa Cerrados, Planaltina, online, available at: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/136069/1/fitofisionomias-do-Bioma-Cerrado-2.pdf (last access: 26 March 2021), 2008.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., and Egorov, A.: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity, Remote Sens. Environ., 185, 57–70, https://doi.org/10.1016/j.rse.2015.12.024, 2016.
Saldan, R. A. and Fahrig, L.: Does forest fragmentation cause an increase in forest temperature?, Ecol. Res., 32, 81–88, https://doi.org/10.1007/s11284-016-1411-6, 2017.
Santos, D. G. and Zuza, M. L. R.: Avaliação qualitativa das trilhas da RPPN Panga – Uberlândia – MG, Caminhos Geogr., 11, 22–33, available at: http://www.seer.ufu.br/index.php/caminhosdegeografia/article/view/16214, 2010.
Sawyer, D.: Ecosystem Profile Cerrado Biodiversity Hotspot, Crit. Ecossystem Partn. Fund, 61, available at: http://cepfcerrado.iieb.org.br/wp-content/uploads/2019/12/FINALVERSIONWEB_Full_report_25MAIO2019.pdf (last access: 23 March 2021), 2019.
Schiavini, I. and Araújo, G. M.: Considerações sobre a vegetação da Reserva Ecológica do Panga (Uberlândia), Soc. Nat. Resour., 1, 61–66, 1989.
Schmidt, I. B. and Eloy, L.: Fire regime in the Brazilian Savanna: Recent changes, policy and management, Flora, 268, 151613, https://doi.org/10.1016/j.flora.2020.151613, 2020.
Schwieder, M., Leitão, P. J., da Cunha Bustamante, M. M., Ferreira, L. G., Rabe, A., and Hostert, P.: Mapping Brazilian savanna vegetation gradients with Landsat time series, Int. J. Appl. Earth Obs. Geoinf., 52, 361–370, https://doi.org/10.1016/j.jag.2016.06.019, 2016.
Silva, B. da, Arieira, F. H., Parolin, J., Cunha, P. N. da, Junk, C., and Johannes, W.: Shrub encroachment influences herbaceous communities in flooded grasslands of a neotropical savanna wetland, Appl. Veg. Sci., 19, 391–400, https://doi.org/10.1111/avsc.12230, 2016.
Silveira, L., Henrique, F., Rodrigues, G., de Almeida Jácomo, A. T., and Filho, J. A. F. D.: Impact of wildfires on the megafauna of Emas National Park, central Brazil, Oryx, 33, 108, https://doi.org/10.1017/s0030605300030362, 1999.
Stevens, N., Lehmann, C. E. R., Murphy, B. P., and Durigan, G.: Savanna woody encroachment is widespread across three continents, Glob. Change Biol., 23, 235–244, https://doi.org/10.1111/gcb.13409, 2017.
Strassburg, B. B. N., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R., Latawiec, A. E., Oliveira Filho, F. J. B., De Scaramuzza, C. A. M., Scarano, F. R., Soares-Filho, B., and Balmford, A.: Moment of truth for the Cerrado hotspot, Nat. Ecol. Evol., 1, 1–3, https://doi.org/10.1038/s41559-017-0099, 2017.
Vale, V. S. do, Schiavini, I., Araújo, G. M., Gusson, A. E., Lopes, S. de F., Oliveira, A. P. de, Júnior, J. A. do P., de Arantes, C. S., and Neto, O. C. D.: Fast changes in seasonal forest communities due to soil moisture increase after damming, Int. J. Trop. Biol. Conserv., 61, 1901–1917, 2013.
Vasconcelos, H. L., Araújo, G. M., and Gonzaga, E. A. R.: Plano de manejo – RPPN Reseva Ecológica do Panga, Inst. Bras. do Meio Ambient. e dos Recur. Nat. Renov., Uberlândia, 2014.
Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., and Bond, W. J.: Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services, Bioscience, 65, 1011–1018, https://doi.org/10.1093/biosci/biv118, 2015.
Van Wilgen, B. w., Govender, N., Biggs, H. c., Ntsala, D., and Funda, X. n.: Response of Savanna Fire Regimes to Changing Fire-Management Policies in a Large African National Park, Conserv. Biol., 18, 1533–1540, https://doi.org/10.1111/j.1523-1739.2004.00362.x, 2004.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M.: Zero-Truncated and Zero-Inflated Models for Count Data, in Mixed Effects Models and Extensions in Ecology with R, vol. 1, edited by: Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M., 531–561, Springer US, New York, 2009.
Short summary
Cerrado savannas in Brazil are under increasing pressure. Long-term vegetation dynamics (1987–2019) of a Cerrado area showed marked woody plant encroachment (WPE) processes, possibly linked to fire and grazing suppression. Open shrubby grasslands and wetlands shrunk, while forest and denser woodlands increased, concurrently with vegetation indexes (NDVI). Decreasing open cerrado and wetlands may imply biodiversity and water supply losses. WPE should be considered for Cerrado conservation.
Cerrado savannas in Brazil are under increasing pressure. Long-term vegetation dynamics...