Articles | Volume 22, issue 2
https://doi.org/10.5194/we-22-75-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/we-22-75-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands
Fernando T. Maestre
CORRESPONDING AUTHOR
Instituto Multidisciplinar para el Estudio del Medio “Ramón
Margalef”, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
Departamento de Ecología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante,
Spain
David J. Eldridge
Centre for Ecosystem Science, School of Biological, Earth and
Environmental Sciences, University of New South Wales, Sydney, New South
Wales 2052, Australia
Nicolas Gross
INRAE, VetAgro Sup, Unité Mixte
de Recherche Ecosystème Prairial, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
Yoann Le Bagousse-Pinguet
Aix Marseille Univ., CNRS, Avignon Université, IRD, IMBE,
Technopôle Arbois-Méditerranée, Bât. Villemin – BP 80,
13545 Aix-en-Provence, CEDEX 04, France
Hugo Saiz
Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior, Universidad de Zaragoza, Huesca, Spain
Beatriz Gozalo
Instituto Multidisciplinar para el Estudio del Medio “Ramón
Margalef”, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
Victoria Ochoa
Instituto Multidisciplinar para el Estudio del Medio “Ramón
Margalef”, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
Juan J. Gaitán
Instituto
de Suelos-CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires, Argentina
Departamento de Tecnología,
Universidad Nacional de Luján, Luján 6700, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
Related authors
No articles found.
H. Saiz, C. L. Alados, and Y. Pueyo
Web Ecol., 14, 39–49, https://doi.org/10.5194/we-14-39-2014, https://doi.org/10.5194/we-14-39-2014, 2014
Related subject area
Ecosystem Ecology
Towards spatial predictions of disease transmission risk: classical scrapie spill-over from domestic small ruminants to wild cervids
Disturbance can slow down litter decomposition, depending on severity of disturbance and season: an example from Mount Kilimanjaro
Little evidence for land-use filters on intraspecific trait variation in three arthropod groups
Co-varying effects of vegetation structure and terrain attributes are responsible for soil respiration spatial patterns in a sandy forest–steppe transition zone
Morphometric traits of shells determine external attack and internal utilization marks in the Roman snail in eastern Germany
Unassisted establishment of biological soil crusts on dryland road slopes
Effects of agricultural practices on soil and microbial biomass carbon, nitrogen and phosphorus content: a preliminary case study
The rise of ecosystem ecology and its applications to environmental challenges
The effect of mixtures on colonisation of leaf litter decomposing in a stream and at its riparian zone
The "four-color issue" in ecology for considering ecosystem boundaries
The ecosystem: research and practice in North America
Millipede and centipede (Myriapoda: Diplopoda, Chilopoda) assemblages in secondary succession: variance and abundance in Western German beech and coniferous forests as compared to fallow ground
Nuno Mouta, Leonor Orge, Joana Vicente, João Alexandre Cabral, José Aranha, João Carvalho, Rita Tinoco Torres, Jorge Pereira, Renata Carvalho, Maria Anjos Pires, and Madalena Vieira-Pinto
Web Ecol., 24, 47–57, https://doi.org/10.5194/we-24-47-2024, https://doi.org/10.5194/we-24-47-2024, 2024
Short summary
Short summary
This study investigates classical scrapie (CS) and the risk of interspecies prion transmission by using presence data from wild cervids and infected small ruminant flocks. Employing remote sensing technologies, it derives vegetative and biophysical satellite indices to represent habitat features. A species distribution model integrates these data to identify suitable areas for CS and its hosts. The resultant consensus map and overlapping suitable areas create a detailed infection risk matrix.
Juliane Röder, Tim Appelhans, Marcell K. Peters, Thomas Nauss, and Roland Brandl
Web Ecol., 24, 11–33, https://doi.org/10.5194/we-24-11-2024, https://doi.org/10.5194/we-24-11-2024, 2024
Short summary
Short summary
We studied rates of litter decomposition in natural and disturbed vegetation on elevation gradients of Mount Kilimanjaro to disentangle effects of climate and disturbance. Decomposition was slower in disturbed than in natural forests, but we did not find a negative effect of disturbance for non-forest vegetation. Decomposition slowed down with increasing land-use intensity, but only in the warm wet season. Temperature and humidity were the most important drivers of decomposition in all analyses.
Katja Wehner, Matthias Brandt, Andrea Hilpert, Nadja K. Simons, and Nico Blüthgen
Web Ecol., 23, 35–49, https://doi.org/10.5194/we-23-35-2023, https://doi.org/10.5194/we-23-35-2023, 2023
Short summary
Short summary
We focus on the consequences of land-use intensity on functional trait variation within species. In general, only few effects on intraspecific trait variation were found showing a decreasing variation with increasing land-use intensity in forests but an increasing variation in grasslands. Although many studies confirmed strong land-use impacts on arthropod communities, we were not able to confirm similar effects at the intraspecific level.
Gabriella Süle, Szilvia Fóti, László Körmöczi, Dóra Petrás, Levente Kardos, and János Balogh
Web Ecol., 21, 95–107, https://doi.org/10.5194/we-21-95-2021, https://doi.org/10.5194/we-21-95-2021, 2021
Short summary
Short summary
Forest–steppe habitats have contrasting canopy structure with strong influence on the spatio-temporal variability of ecosystem functions. In our study, environmental and functional variables were evaluated in this transition zone. We found that topography and vegetation structure have co-varying effects on abiotic–biotic factors. Our observations are valuable for assessing the dynamics of functional and driving variables in this natural transition zone of the temperate vegetation.
Claudia Tluste, Udo Bröring, Tomáš Němec, and Klaus Birkhofer
Web Ecol., 20, 87–94, https://doi.org/10.5194/we-20-87-2020, https://doi.org/10.5194/we-20-87-2020, 2020
Short summary
Short summary
The Roman snail has a high conservation status in Germany, and it is important to study the impact of predators and parasites on local populations. Morphometric traits and signs of external attack and internal utilization were studied in eight subpopulations. External attacks by predators were more frequently recorded on larger shells, while internal utilization depended on body density and local soil pH values. This highlights the value of abiotic habitat conditions and trophic interactions.
Laura Concostrina-Zubiri, Juan M. Arenas, Isabel Martínez, and Adrián Escudero
Web Ecol., 19, 39–51, https://doi.org/10.5194/we-19-39-2019, https://doi.org/10.5194/we-19-39-2019, 2019
Short summary
Short summary
Can organisms other than vascular plants establish and develop on road slopes? Yes, biological soil crusts (or biocrusts) can. Here, we found that lichen biocrusts are common and relatively abundant in road slopes after ~20 years of construction with no assistance needed. These findings are of critical importance for dryland restoration because biocrusts can speed up ecosystem recovery by stabilizing soil surface, improving soil fertility and facilitating vascular plant establishment.
F. Amaral and M. Abelho
Web Ecol., 16, 3–5, https://doi.org/10.5194/we-16-3-2016, https://doi.org/10.5194/we-16-3-2016, 2016
Short summary
Short summary
In this study we assessed carbon, nitrogen and phosphorus in soil and soil microbial biomass subject to conventional farming and three different organic farming practices. The results showed that microbial biomass was P-limited in soils subject to conventional farming and to organic farming with alfalfa green manure. Organic farming with compost amendment showed the best results in terms of microbial performance.
R. G. Woodmansee and S. R. Woodmansee
Web Ecol., 15, 43–44, https://doi.org/10.5194/we-15-43-2015, https://doi.org/10.5194/we-15-43-2015, 2015
Short summary
Short summary
The state of “ecosystem” ecology before 1970 is discussed briefly with emphasis on development of a new paradigm – systems ecology. The philosophy and theory embedded in ecosystem science, the methodologies introduced for conducting research, and the development of a vast warehouse of knowledge as they developed after 1970 are explored. The discussion ends with the contributions of the new paradigm to current and future local- to global-scale environmental and societal problems and solutions.
M. Abelho
Web Ecol., 14, 13–22, https://doi.org/10.5194/we-14-13-2014, https://doi.org/10.5194/we-14-13-2014, 2014
H. Doi
Web Ecol., 13, 91–93, https://doi.org/10.5194/we-13-91-2013, https://doi.org/10.5194/we-13-91-2013, 2013
S. Bocking
Web Ecol., 13, 43–47, https://doi.org/10.5194/we-13-43-2013, https://doi.org/10.5194/we-13-43-2013, 2013
A. Schreiner, P. Decker, K. Hannig, and A. Schwerk
Web Ecol., 12, 9–17, https://doi.org/10.5194/we-12-9-2012, https://doi.org/10.5194/we-12-9-2012, 2012
Cited articles
Adler, P. B. and Hall, S. A.: The development of forage production and
utilization gradients around livestock watering points, Landscape Ecol., 20,
319–333, https://doi.org/10.1007/s10980-005-0467-1, 2005.
Arshad, M. A., Lowery, B., and Grossman, B.: Physical Tests for Monitoring Soil Quality. In: Methods for assessing soil quality, edited by:, Doran, J. W. and Jones, A. J., SSSA Spec. Publ. 49, Madison, WI, 123–141, https://doi.org/10.2136/sssaspecpub49.c7, 1996.
Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E., and Harris, A. T.: Grazing systems, ecosystem responses, and global
change, Annu. Rev. Env. Resour., 29, 261–299,
https://doi.org/10.1146/annurev.energy.29.062403.102142, 2004.
Berdugo, M., Kéfi, S., Soliveres, S., and Maestre, F. T.: Plant spatial
patterns identify alternative ecosystem multifunctionality states in global
drylands, Nat. Ecol. Evol., 1, 003, https://doi.org/10.1038/s41559-016-0003, 2017.
Berdugo, M., Soliveres, S., Kéfi, S., and Maestre, F. T.: The interplay
between facilitation and habitat type drives spatial vegetation patterns in
global drylands, Ecography, 42, 755–767, https://doi.org/10.1111/ecog.03795, 2019.
Bisigato, A. J. and Bertiller, M. B.: Grazing effects on patchy dryland
vegetation in northern Patagonia, J. Arid. Environ., 36, 639–653,
https://doi.org/10.1006/jare.1996.0247, 1997.
Borer, E. T., Harpole, W. S., Adler, P. B., Lind, E. M., Orrock, J. L.,
Seabloom, E. W., and Smith, M. D.: Finding generality in ecology: a model
for globally distributed experiments, Methods Ecol. Evol., 5, 65–73,
https://doi.org/10.1111/2041-210X.12125, 2014.
Briske, D. D., Coppock, D. L., Illius, A. W., and Fuhlendorf, S. D.:
Strategies for global rangeland stewardship: Assessment through the lens of
the equilibrium–non-equilibrium debate, J. Appl. Ecol., 57, 1056–1067,
https://doi.org/10.1111/1365-2664.13610, 2020.
Castillo-Monroy, A. P., Maestre, F. T., Delgado-Baquerizo, M., and Gallardo,
A.: Biological soil crusts modulate nitrogen availability in semi-arid
ecosystems: Insights from a Mediterranean grassland, Plant Soil, 333, 21–34,
https://doi.org/10.1007/s11104-009-0276-7, 2010.
Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., and von Maltitz, G.: World Atlas of Desertification, Publication Office of the European Union, Luxembourg, 248 pp., https://doi.org/10.2760/9205, 2018
Chillo, V., Ojeda, R. A., Anand, M., and Reynolds, J. F.: A novel approach
to assess livestock management effects on biodiversity of drylands, Ecol.
Indic., 50, 69–78, https://doi.org/10.1016/j.ecolind.2014.10.009, 2015.
Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T., and
García-Palacios, P.: Soil microbial respiration adapts to ambient
temperature in global drylands, Nat. Ecol. Evol., 3, 232–238,
https://doi.org/10.1038/s41559-018-0770-5, 2019.
Delgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A.,
Wallenstein, M., Quero, J. L., Soliveres, S., Ochoa, V., Gozalo, B.,
García-Gómez, M., García-Palacios, P., Berdugo, M., Valencia,
E., Escolar, C., Escudero, A., Carreira, J. A., Arredondo, T.,
Barraza-Zepeda, C., Bran, D., Chaieb, M., Conceição, A. A.,
Contreras, J., Derak, M., Eldridge, D. J., Espinosa, C. I., Florentino, A.,
Gaitán, J., Ghiloufi, W., Gómez-González, S., Gutiérrez,
J.R., Hepper, E., Hernández, R. M., Huber-Sannwald, E., Jankju, M., Liu,
J., Mau, R. L., Miriti, M., Monerris, J., Morici, E., Muchane, M., Naseri,
K., Ospina, A., Polo, V., Pucheta, E., Quevedo-Robledo, L., Ramírez,
E., Ramírez-Collantes, D. A., Romão, R., Tighe, M., Torres, D.,
Torres-Díaz, C., Ungar, E. D., Val, J., Wamiti, W., Wang, D., and Zaady,
E.: Decoupling of soil nutrient cycles as a function of aridity in global
drylands, Nature, 502, 672–676, https://doi.org/10.1038/nature12670, 2013.
Delgado-Baquerizo, M., Maestre, F. T., Escolar, C., Gallardo, A., Ochoa, V.,
Gozalo, B., and Prado-Comesaña, A.: Direct and indirect impacts of
climate change on microbial and biocrust communities alter the resistance of
the N cycle in a semiarid grassland, J. Ecol., 102, 1592–1605,
https://doi.org/10.1111/1365-2745.12303, 2014.
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C.,
Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., and Singh, B. K.:
Microbial diversity drives multifunctionality in terrestrial ecosystems,
Nat. Commun., 7, 1–8, https://doi.org/10.1038/ncomms10541, 2016.
Delgado-Baquerizo, M., Eldridge, D. J., Ochoa, V., Gozalo, B., Singh, B. K., and Maestre, F. T.: Soil microbial communities drive the resistance of
ecosystem multifunctionality to global change in drylands across the globe,
Ecol. Lett., 20, 1295–1305. https://doi.org/10.1111/ele.12826, 2017.
Djukic, I., Kepfer-Rojas, S., Schmidt, I. K., et al.: Early stage litter
decomposition across biomes, Sci. Total Environ., 628–629, 1369–1394,
https://doi.org/10.1016/j.scitotenv.2018.01.012, 2018.
Djukic, I., Guerra, C. A., Maestre, F. T., Hagedorn, F., Oggioni, A.,
Bergami, C., Magagna, B., Kwon, T., Shibata, H., Eisenhauer, N., Patoine,
G., Bierbaumer, M., Kepfer-Rojas, S., Schmidt, I. K., Larsen, K. S., Beier,
C., Berg, B., Verheyen, K., Trevathan-Tackett, S. M., Macreadie, P. I., and
Initiative, T.: The TeaComposition Initiative: Unleashing the power of
international collaboration to understand litter decomposition, Soil Org.,
93, 73–78, https://doi.org/10.25674/so93iss1pp73, 2021.
D'Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S., and Runyan, C. W.:
Global desertification: Drivers and feedbacks, Adv. Water Resour., 51,
326–344, https://doi.org/10.1016/j.advwatres.2012.01.013, 2013.
Drohan, P. J., Merkler, D. J., and Buck, B. J.: Suitability of the plant
root simulator probe for use in the Mojave Desert, Soil Sci. Soc. Am. J.,
69, 1482–1491, https://doi.org/10.2136/sssaj2004.0377, 2005.
Durán, J., Delgado-Baquerizo, M., Rodríguez, A., Covelo, F., and
Gallardo, A.: Ionic exchange membranes (IEMs): A good indicator of soil
inorganic N production, Soil Biol. Biochem., 57, 964–968,
https://doi.org/10.1016/j.soilbio.2012.07.016, 2013.
Eldridge, D. J., Bowker, M. A., Maestre, F. T., Roger, E., Reynolds, J. F.,
and Whitford, W. G.: Impacts of shrub encroachment on ecosystem structure
and functioning: towards a global synthesis, Ecol. Lett., 14, 709–722,
https://doi.org/10.1111/j.1461-0248.2011.01630.x, 2011.
Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M., and
Soliveres, S.: Ecosystem structure, function, and composition in rangelands
are negatively affected by livestock grazing, Ecol. Appl., 26, 1273–1283,
https://doi.org/10.1890/15-1234, 2016.
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, 2013.
Fensham, R. J. and Fairfax, R. J.: Water-remoteness for grazing relief in
Australian arid-lands, Biol. Conserv., 141, 1447–1460,
https://doi.org/10.1016/j.biocon.2008.03.016, 2008.
Fensham, R. J., Fairfax, R. J., and Dwyer, J. M.: Vegetation responses to
the first 20 years of cattle grazing in an Australian desert, Ecology, 91,
681–692, https://doi.org/10.1890/08-2356.1, 2010.
Frank, A. S. K., Dickman, C. R., and Wardle, G. M.: Habitat use and
behaviour of cattle in a heterogeneous desert environment in central
Australia, Rangel. J., 34, 319–328, https://doi.org/10.1071/RJ12032, 2012.
Fraser, L. H., Henry, H. A., Carlyle, C. N., White, S. R., Beierkuhnlein,
C., Cahill, J. F., Casper, B. B., Cleland, E., Collins, S. L., Dukes, J. S.,
Knapp, A. K., Lind, E., Long, R., Luo, Y., Reich, P. B., Smith, M. D.,
Sternberg, M., and Turkington, R.: Coordinated distributed experiments: an
emerging tool for testing global hypotheses in ecology and environmental
science, Front. Ecol. Environ., 11, 147–155, https://doi.org/10.1890/110279, 2013.
Fraser, L. H., Pither, J., Jentsch, A., Sternberg, M., Zobel, M.,
Askarizadeh, D., Bartha, S., Beierkuhnlein, C., Bennett, J. A., Bittel, A.,
Boldgiv, B., Boldrini, I. I., Bork, E., Brown, L., Cabido, M., Cahill, J.,
Carlyle, C. N., Campetella, G., Chelli, S., Cohen, O., Csergo, A.-M.,
Díaz, S., Enrico, L., Ensing, D., Fidelis, A., Fridley, J. D., Foster,
B., Garris, H., Goheen, J. R., Henry, H. A. L., Hohn, M., Jouri, M. H.,
Klironomos, J., Koorem, K., Lawrence-Lodge, R., Long, R., Manning, P.,
Mitchell, R., Moora, M., Müller, S. C., Nabinger, C., Naseri, K.,
Overbeck, G. E., Palmer, T. M., Parsons, S., Pesek, M., Pillar, V. D.,
Pringle, R. M., Roccaforte, K., Schmidt, A., Shang, Z., Stahlmann, R.,
Stotz, G. C., Sugiyama, S., Szentes, S., Thompson, D., Tungalag, R.,
Undrakhbold, S., Rooyen, M. van, Wellstein, C., Wilson, J. B., and Zupo, T.:
Worldwide evidence of a unimodal relationship between productivity and plant
species richness, Science, 349, 302–305, https://doi.org/10.1126/science.aab3916, 2015.
Gaitán, J. J., Bran, D., Oliva, G., Ciari, G., Nakamatsu, V., Salomone,
J., Ferrante, D., Buono, G., Massara, V., Humano, G., Celdrán, D.,
Opazo, W., and Maestre, F. T.: Evaluating the performance of multiple remote
sensing indices to predict the spatial variability of ecosystem structure
and functioning in Patagonian steppes, Ecol. Indic., 34, 181–191,
https://doi.org/10.1016/j.ecolind.2013.05.007, 2013.
Gaitán, J. J., Bran, D. E., Oliva, G. E., Aguiar, M. R., Buono, G. G.,
Ferrante, D., Nakamatsu, V., Ciari, G., Salomone, J. M., Massara, V.,
Martínez, G. G., and Maestre, F. T.: Aridity and overgrazing have
convergent effects on ecosystem structure and functioning in Patagonian
rangelands, Land Degrad. Dev., 29, 210–218, https://doi.org/10.1002/ldr.2694, 2018.
García-Palacios, P., Gross, N., Gaitán, J. J., and Maestre, F. T.:
Climate mediates the biodiversity-ecosystem stability relationship globally,
P. Natl. Acad. Sci. USA, 115, 8400–8405, https://doi.org/10.1073/pnas.1800425115,
2018.
García-Vega, D. and Newbold, T.: Assessing the effects of land use on
biodiversity in the world's drylands and Mediterranean environments,
Biodivers. Conserv., 29, 393–408, https://doi.org/10.1007/s10531-019-01888-4, 2020.
Gross, N., Soriano, M. S., Börger, L., Le Bagousse-Pinguet, Y., Quero,
J. L., García-Gómez, M., Valencia-Gómez, E., and Maestre, F. T.:
Uncovering multi-scale effects of aridity and biotic interactions on the
functional structure of Mediterranean shrublands, J. Ecol., 101, 637–649,
https://doi.org/10.1111/1365-2745.12063, 2013.
Gross, N., Bagousse-Pinguet, Y. L., Liancourt, P., Berdugo, M., Gotelli, N.
J., and Maestre, F. T.: Functional trait diversity maximizes ecosystem
multifunctionality, Nat. Ecol. Evol, 1, 0132, https://doi.org/10.1038/s41559-017-0132,
2017.
Hanke, W., Böhner, J., Dreber, N., Jürgens, N., Schmiedel, U.,
Wesuls, D., and Dengler, J.: The impact of livestock grazing on plant
diversity: an analysis across dryland ecosystems and scales in southern
Africa, Ecol. Appl., 24, 1188–1203, https://doi.org/10.1890/13-0377.1, 2014.
Hesse, P. R.: The identification of the spoor and dung of East African
mammals. Part 1. The Antelopes, J. East Africa Nat. Hist. Soc., 22, 107–110,
1954.
Herrick, J. E., Van Zee, J. W., Havstad, K. M., Burkett, L. M., and Whitford, W. G.: Monitoring Manual for Grassland, Shrubland, and Savanna Ecosystems, Volume I: Quick Start. USDA-ARS, Las Cruces, 36 pp., ISBN 0-9755552-0-0, 2005.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland
expansion under climate change, Nat. Clim. Change, 6, 166–171,
https://doi.org/10.1038/nclimate2837, 2016.
Jenet, A., Buono, N., Di Lello, S., Gomarasca, M., Heine, C., Mason, S., Nori, M., Saavedra, R., and Troos, K.: The path to greener pastures. Pastoralism, the backbone of the world's drylands, Vétérinaires Sans Frontières International (VSF-International), Brussels, Belgium, 139 pp., available at: http://vsf-international.org/project/pastoralism-report/ (last access: 23 December 2021), 2016.
Johnson, C. N. and Jarman, P. J.: Macropod studies at Wallaby Creek. VI: A
validation of the use of dung-pellet counts for measuring absolute densities
of populations of Macropodidae, Aust. Wildfire Res., 14, 139–146,
https://doi.org/10.1071/WR9870139, 1987.
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and
Hefting, M. M.: Tea Bag Index: a novel approach to collect uniform
decomposition data across ecosystems, Methods Ecol. Evol., 4, 1070–1075,
https://doi.org/10.1111/2041-210X.12097, 2013.
Landsberg, J., Stol, J., and Muller, W.: Telling the sheep (dung) from the
goats, Range. J., 16, 122–134, https://doi.org/10.1071/RJ9940122, 1994.
Lange, R. T.: The piosphere: sheep track and dung patterns, J. Range Manage.,
22, 396–400, https://doi.org/10.2307/3895849, 1969.
Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R., and Fierer, N.: Effect of
storage conditions on the assessment of bacterial community structure in
soil and human-associated samples, FEMS Microbiol. Lett., 307, 80–86,
https://doi.org/10.1111/j.1574-6968.2010.01965.x, 2010.
Le Bagousse-Pinguet, Y., Gross, N., Maestre, F. T., Maire, V., de Bello, F.,
Fonseca, C. R., Kattge, J., Valencia, E., Leps, J., and Liancourt, P.: Testing
the environmental filtering concept in global drylands, J. Ecol., 105,
1058–1069, https://doi.org/10.1111/1365-2745.12735, 2017.
Le Bagousse-Pinguet, Y., Soliveres, S., Gross, N., Torices, R., Berdugo, M.,
and Maestre, F. T.: Phylogenetic, functional and taxonomic richness have both
positive and negative effects on ecosystem multifunctionality, P. Natl.
Acad. Sci. USA, 116, 8419–8424, https://doi.org/10.1073/pnas.1815727116, 2019.
Le Bagousse-Pinguet, Y., Gross, N., Saiz, H., Maestre, F. T., Ruiz, S.,
Dacal, M., Asensio, S., Ochoa, V., Gozalo, B., Cornelissen, J. H. C.,
Deschamps, L., García, C., Maire, V., Milla, R., Salinas, N., Wang, J.,
Singh, B. K., and García-Palacios, P.: Functional rarity and evenness are
key facets of biodiversity to boost multifunctionality, P. Natl. Acad.
Sci. USA, 118, e2019355118, https://doi.org/10.1073/pnas.2019355118, 2021.
Levy, E. B. and Madden, E. A.: The point method of pasture analysis, New
Zeal. J. Agr., 46, 267–279, 1933.
Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z. X., Huang,
J., Sheffield, J., Berg, A. M., Keenan, T. F., McVicar, T. R., Wada, Y.,
Wang, X., Wang, T., Yang, Y., and Roderick, M. L.: Multifaceted
characteristics of dryland aridity changes in a warming world, Nat. Rev. Earth Environ., 2, 232–250, https://doi.org/10.1038/s43017-021-00144-0, 2021.
Maestre, F. T., Quero, J. L., Gotelli, N. J., Escudero, A., Ochoa, V.,
Delgado-Baquerizo, M., García-Gómez, M., Bowker, M. A., Soliveres,
S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E.,
Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken,
B., Bran, D., Conceicao, A., Cabrera, O., Chaieb, M., Derak, M., Eldridge,
D., Espinosa, C. I., Florentino, A., Gaitán, J., Gatica, M. G., Ghiloufi,
W., Gómez-González, S., Gutiérrez, J. R., Hernández, R. M.,
Huang, X., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau,
R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E.,
Ramírez-Collantes, D. A., Romão, R., Tighe, M., Torres-Díaz,
C., Val, J., Veiga, J. P., Wang, D., and Zaady, E.: Plant species richness
and ecosystem multifunctionality in global drylands, Science, 335, 214–218,
https://doi.org/10.1126/science.1215442, 2012.
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Ochoa, V., Gozalo,
B., Eldridge, D. J., Quero, J. L., García-Gómez, M., Gallardo, A.,
Ulrich, W., Bowker, M. A., Arredondo, T., Barraza, C., Bran, D., Florentino,
A., Gaitán, J., Gutiérrez, J. R., Huber-Sannwald, E., Jankju, M.,
Mau, R. L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods,
N. N., Yuan, X., Zaady, E., and Singh, B. K.: Increasing aridity reduces soil
microbial diversity and abundance in global drylands, P. Natl. Acad. Sci.
USA, 112, 15684–15689, https://doi.org/10.1073/pnas.1516684112, 2015.
Maestre, F. T. and Eisenhauer, N.: Ten rules for establishing global
collaborative networks in ecology, Soil Org., 91, 73–85,
https://doi.org/10.25674/so91iss3pp73, 2019.
Maestre, F. T., Eldridge, D. J., Soliveres, S., Kéfi, S.,
Delgado-Baquerizo, M., Bowker, M. A., García-Palacios, P., Gaitán,
J., Gallardo, A., Lázaro, R., and Berdugo, M.: Structure and functioning
of dryland ecosystems in a changing world, Annu. Rev. Ecol. Evol. Syst., 47,
215–237, https://doi.org/10.1146/annurev-ecolsys-121415-032311, 2016.
Maestre, F. T. and Guirado, E.: Coordinates of the sites surveyed in the BIODESERT survey, figshare [data set], https://doi.org/10.6084/m9.figshare.17427401, 2022.
Maestre, F. T., Le Bagousse-Pinguet, Y., Delgado-Baquerizo, M., et al.: Grazing and ecosystem service delivery in global drylands, Science, https://doi.org/10.1126/science.abq4062, 2022.
Manzano, P., Burgas, D., Cadahía, L., Eronen, J. T.,
Fernández-Llamazares, Á., Bencherif, S., Holand, Ø., Seitsonen,
O., Byambaa, B., Fortelius, M., Fernández-Giménez, M. E., Galvin, K.
A., Cabeza, M., and Stenseth, N. Chr.: Toward a holistic understanding of
pastoralism, One Earth, 4, 651–665, https://doi.org/10.1016/j.oneear.2021.04.012,
2021.
Marques, F. F. C., Buckland, S. T., Goffin, D., Dixon, C. E., Borchers, D. L.,
Mayle, B. A., and Peace, A. J.: Estimating deer abundance from line transect
surveys of dung: sika deer in southern Scotland, J. Appl. Ecol., 38,
349–363, https://doi.org/10.1046/j.1365-2664.2001.00584.x, 2001.
Mehrabi, Z., Gill, M., van Wijk, M., Herrero, M., and Ramankutty, N.:
Livestock policy for sustainable development, Nat. Food, 1, 160–165,
https://doi.org/10.1038/s43016-020-0042-9, 2020.
Milchunas, D. G. and Lauenroth, W. K.: Quantitative Effects of Grazing on
Vegetation and Soils Over a Global Range of Environments, Ecol. Monogr., 63,
328–366, https://doi.org/10.2307/2937150, 1993.
Miyashita, T., Suzuki, M., Ando, D., Fujita, G., Ochiai, K., and Asada, M.:
Forest edge creates small-scale variation in reproductive rate of sika deer,
Popul. Ecol., 50, 111–120, https://doi.org/10.1007/s10144-007-0068-y, 2008.
Muir, J., Schmidt, M., Tindall, D., Trevithick, R., Scarth, P., and Stewart, J. B.: Field measurement of fractional ground cover: a technical handbook supporting ground cover monitoring for Australia, Prepared by the Queensland Department of Environment and Resource Management for the Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, 48 pp., ISBN 978-1-921192-84-5, 2011.
Neely, C., Bunning, S., and Wilkes, A.: Review of evidence on drylands pastoral
systems and climate change: implications and opportunities for mitigation
and adaptation, Land and Water Discussion Paper 8, Land Tenure and
Management Unit (NRLA), Land and Water Division, FAO, Rome, Italy, 2009.
Oliva, G., dos Santos, E., Sofía, O., Umaña, F., Massara, V.,
García Martínez, G., Cecilia, C., Cariac, G., Echevarria, D.,
Fantozzi, A., Butti, L., Bran, D., Gaitán, J. J., Ferrante, D., Paredes,
P., Domínguez, E., and Maestre, F. T.: The MARAS dataset, vegetation and
soil characteristics of dryland rangelands across Patagonia, Sci. Data, 7,
327, https://doi.org/10.1038/s41597-020-00658-0, 2020.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S., and Cornelissen, J. H. C.: New handbook for standardised measurement of
plant functional traits worldwide, Aust. J. Bot., 61, 167–234,
https://doi.org/10.1071/BT12225, 2013.
Petz, K., Alkemade, R., Bakkenes, M., Schulp, C. J. E., van der Velde, M.,
and Leemans, R.: Mapping and modelling trade-offs and synergies between
grazing intensity and ecosystem services in rangelands using global-scale
datasets and models, Global Environ. Change, 29, 223–234,
https://doi.org/10.1016/j.gloenvcha.2014.08.007, 2014.
Piana, R. P. and Marsden, S. J.: Impacts of cattle grazing on forest
structure and raptor distribution within a neotropical protected area,
Biodivers. Conserv., 23, 559–572, https://doi.org/10.1007/s10531-013-0616-z, 2014.
Plumptre, A. J. and Harris, S.: Estimating the biomass of large mammalian
herbivores in a tropical montane forest: a method of faecal counting that
avoids assuming a “steady state” system, J. Appl. Ecol., 32, 111–120,
https://doi.org/10.2307/2404420, 1995.
Pringle, H. J. R. and Landsberg, J.: Predicting the distribution of
livestock grazing pressure in rangelands, Austral Ecol., 29, 31–39,
https://doi.org/10.1111/j.1442-9993.2004.01363.x, 2004.
Qian, P. and Schoenau, J. J.: Use of Ion-Exchange Membrane to Assess
Nitrogen-Supply Power of Soils, J. Plant Nutr., 28, 2193–2200,
https://doi.org/10.1080/01904160500324717, 2007.
Reynolds, J. F., Maestre, F. T., Kemp, P. R., Stafford-Smith, D. M., and Lambin,
E.: Natural and human dimensions of land degradation in drylands: causes and
consequences, edited by: Canadell, J., Pataki, D., and Pitelka, L. F.,
Terrestrial Ecosystems in a Changing World, Springer-Verlag,
Berlin, 247–258, ISBN 978-3-540-32729-5, 2007.
Robinson, T. P., Wint, G. R. W., Conchedda, G., Boeckel, T. P. V., Ercoli,
V., Palamara, E., Cinardi, G., D'Aietti, L., Hay, S. I., and Gilbert, M.:
Mapping the Global Distribution of Livestock, PLoS One, 9, e96084,
https://doi.org/10.1371/journal.pone.0096084, 2014.
Saiz, H., Gómez-Gardeñes, J., Borda, J. P., and Maestre, F. T.: The
structure of plant spatial association networks is linked to plant diversity
in global drylands, J. Ecol., 108, 1443–1453, https://doi.org/10.1111/1365-2745.12935,
2018.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25
years of image analysis, Nat. Methods, 9, 671–675, https://doi.org/10.1038/nmeth.2089,
2012.
Soliveres, S., Maestre, F. T., Bowker, M. A., Torices, R., Quero, J. L.,
García-Gómez, M., Cabrera, O., Cea, A., Coaguila, D., Eldridge,
D. J., Espinosa, C. I., Monerris, J. J., Tighe, M., Delgado-Baquerizo, M.,
Escolar, C., García-Palacios, P., Ochoa, V., Blones, J., Derak, M.,
Ghiloufi, W., Gutiérrez, J. R., Hernández R. M., and Noumi, Z.:
Functional traits are more important than phylogeny or abiotic stress as
drivers of plant-plant interactions in global drylands, Perspect. Plant
Ecol., 16, 164–173, https://doi.org/10.1016/j.ppees.2014.05.001, 2014.
Soliveres, S., Maestre, F. T., Ulrich, W., Manning, P., Boch, S., Bowker,
M. A., Prati, D., Delgado-Baquerizo, M., Quero, J. L., Schöning, I.,
Gallardo, A., Weisser, W., Müller, J., Socher, S. A.,
García-Gómez, M., Ochoa, V., Schulze, E. D., Fischer, M., and Allan,
E.: Intransitive competition is widespread in plant communities and
maintains species richness, Ecol. Lett., 18, 790–798, https://doi.org/10.1111/ele.12456,
2015.
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., and de Haan, C.: Livestock's Long Shadow: Environmental Issues and Options, Food and Agriculture Organisation of the United Nations, Rome, 391 pp., ISBN 978-92-5-105571-7, 2006.
Subler, S., Blair, J. M., and Edwards, C. A.: Using anion-exchange membranes
to measure soil nitrate availability and net nitrification, Soil. Biol.
Biochem., 27, 911–917, https://doi.org/10.1016/0038-0717(95)00008-3, 1995.
Throop, H. L., Archer, S. R., Monger, H. C., and Waltman, S.: When bulk density
methods matter: Implications for estimating soil organic carbon pools in
rocky soils, J. Arid Environ., 77, 66–71, https://doi.org/10.1016/j.jaridenv.2011.08.020,
2012.
Tongway, D. J. and Hindley, N.: Assessment of Soil Condition of Tropical
Grasslands, CSIRO, Ecology and Wildlife, Canberra, ISBN 064305779X, 60 pp., 1995.
Tongway, D. J. and Hindley, N.: Landscape Function Analysis: Procedures for
Monitoring and Assessing Landscapes, CSIRO Publishing, Brisbane, ISBN 097517830X, 2004.
Triggs, B.: Tracks, Scats and Other Traces: a field Guide to Australian
Mammals, Oxford University Press, London, 352 pp., ISBN 0195536436, 2004.
Tuna, C., Nizam, I., and Altin, M.: Impact of watering points on vegetation
changes of a semi-arid natural pasture in Tekirdag Province, Turkey, Afr. J.
Agr. Res., 6, 896–900, 2011.
Val, J., Eldridge, D. J., Travers, S. K., and Oliver, I.: Livestock grazing
reinforces the competitive exclusion of small-bodied birds by large
aggressive birds, J. Appl. Ecol., 55, 1919–1929,
https://doi.org/10.1111/1365-2664.13078, 2018.
Valencia, E., Gross, N., Börger, L., García-Gómez, M., Le
Bagousse-Pinguet, Y., Quero, J. L., Tamme, R., and Maestre, F. T.: Functional
diversity enhances the resistance of ecosystem multifunctionality to aridity
in Mediterranean drylands, New Phytol., 206, 660–671, https://doi.org/10.1111/nph.13268, 2015.
Van Auken, O. W.: Shrub Invasions of North American Semiarid Grasslands,
Annu. Rev. Ecol. Evol. Syst., 31, 197–215,
https://doi.org/10.1146/annurev.ecolsys.31.1.197, 2000.
Weber, B., Büdel, B., and Belnap, J.: Biological Soil Crust: An Organizing
Principle in Drylands, Ecological studies, 226, Springer, Berlin,
Heidelberg, New York, 549 pp., https://doi.org/10.1007/978-3-319-30214-0, 2016.
Xu, C., Holmgren, M., Van Nes, E. H., Maestre, F. T., Soliveres, S., Berdugo, M., Kéfi, S., Marquet, P. A., Abades, S., and Scheffer, M.: Can we infer plant facilitation from remote sensing? a test across global drylands, Ecol. Appl., 25, 1456–1462, https://doi.org/10.1890/14-2358.1, 2015.
Xu, D., Li, Ch., Zhuang, D., and Pan, J.: Assessment of the relative role of climate change and human
activities in desertification: A review, J. Geogr. Sci., 21, 926–936, https://doi.org/10.1007/s11442-011-0890-1, 2011.
Zhao, Y., Wang, X., Novillo, C. J., Arrogante-Funes, P.,
Vázquez Jiménez, R., and Maestre, F. T.: Albedo estimated from
remote sensing correlates with ecosystem multifunctionality in global
drylands, J. Arid Environ., 157, 116–123, https://doi.org/10.1016/j.jaridenv.2018.05.010,
2018.
Short summary
Here we introduce the BIODESERT survey, the first systematic field survey devoted to evaluating the joint impacts of grazing by domestic livestock and climate on the structure and functioning of dryland ecosystems worldwide. We describe the major characteristics and the field protocols used in this survey and the organizational aspects followed to carry it out succesfully.
Here we introduce the BIODESERT survey, the first systematic field survey devoted to evaluating...
Special issue