Articles | Volume 23, issue 2
https://doi.org/10.5194/we-23-71-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-23-71-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Invasive shallow-water foraminifera impacts local biodiversity mostly at densities above 20 %: the case of Corfu Island
Anna E. Weinmann
CORRESPONDING AUTHOR
Department of Geology and Paleontology, Natural History Museum
Vienna, 1030 Vienna, Austria
Olga Koukousioura
School of Geology, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
Maria V. Triantaphyllou
Faculty of Geology and Geoenvironment, National and Kapodistrian
University of Athens, Panepistimioupolis, 15784 Athens, Greece
Martin R. Langer
Institute of Geosciences, Section Paleontology, Rheinische
Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
Related authors
No articles found.
Skye Yunshu Tian, Martin Langer, Moriaki Yasuhara, and Chih-Lin Wei
Biogeosciences, 21, 3523–3536, https://doi.org/10.5194/bg-21-3523-2024, https://doi.org/10.5194/bg-21-3523-2024, 2024
Short summary
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Related subject area
Biodiversity
Revisiting the debate: documenting biodiversity in the age of digital and artificially generated images
Pollination supply models from a local to global scale
Effects of management cessation on hoverflies (Diptera: Syrphidae) across Austrian and Swiss mountain meadows
Ödenwinkel: an Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity
Pollen morphological variability correlates with a large-scale gradient of aridity
The influence of plant species richness on stress recovery of humans
The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands
Modelling plant invasion pathways in protected areas under climate change: implication for invasion management
Genetic diversity in the Alpine flatworm Crenobia alpina
Incorporating natural and human factors in habitat modelling and spatial prioritisation for the Lynx lynx martinoi
Relations between environmental gradients and diversity indices of benthic invertebrates in lotic systems of northern Italy
The first shoots of a modern morphometrics approach to the origins of agriculture
Do tree-species richness, stand structure and ecological factors affect the photosynthetic efficiency in European forests?
Comment on "Opinion paper: Forest management and biodiversity": the role of protected areas is greater than the sum of its number of species
Partitioning of diversity: the "within communities" component
Diversity did not influence soil water use of tree clusters in a temperate mixed forest
Diego Sousa Campos, Rafael Ferreira de Oliveira, Lucas de Oliveira Vieira, Pedro Henrique Negreiros de Bragança, Jorge Luiz Silva Nunes, Erick Cristofore Guimarães, and Felipe Polivanov Ottoni
Web Ecol., 23, 135–144, https://doi.org/10.5194/we-23-135-2023, https://doi.org/10.5194/we-23-135-2023, 2023
Short summary
Short summary
This study examines the risks of relying solely on images for biodiversity documentation. We conducted an experiment with 621 participants, revealing challenges in distinguishing artificial-intelligence-generated images. Trust is vital in biodiversity documentation, but eroded trust can hinder conservation. We call for improved communication, collaboration, and journal policies for data validation to preserve scientific credibility amidst technological advancements.
Angel Giménez-García, Alfonso Allen-Perkins, Ignasi Bartomeus, Stefano Balbi, Jessica L. Knapp, Violeta Hevia, Ben Alex Woodcock, Guy Smagghe, Marcos Miñarro, Maxime Eeraerts, Jonathan F. Colville, Juliana Hipólito, Pablo Cavigliasso, Guiomar Nates-Parra, José M. Herrera, Sarah Cusser, Benno I. Simmons, Volkmar Wolters, Shalene Jha, Breno M. Freitas, Finbarr G. Horgan, Derek R. Artz, C. Sheena Sidhu, Mark Otieno, Virginie Boreux, David J. Biddinger, Alexandra-Maria Klein, Neelendra K. Joshi, Rebecca I. A. Stewart, Matthias Albrecht, Charlie C. Nicholson, Alison D. O'Reilly, David William Crowder, Katherine L. W. Burns, Diego Nicolás Nabaes Jodar, Lucas Alejandro Garibaldi, Louis Sutter, Yoko L. Dupont, Bo Dalsgaard, Jeferson Gabriel da Encarnação Coutinho, Amparo Lázaro, Georg K. S. Andersson, Nigel E. Raine, Smitha Krishnan, Matteo Dainese, Wopke van der Werf, Henrik G. Smith, and Ainhoa Magrach
Web Ecol., 23, 99–129, https://doi.org/10.5194/we-23-99-2023, https://doi.org/10.5194/we-23-99-2023, 2023
Short summary
Short summary
Modelling tools may provide a method of measuring pollination supply and promote the use of ecological intensification techniques among farmers and decision-makers. This study benchmarks different modelling approaches to provide clear guidance on which pollination supply models perform best at different spatial scales. These findings are an important step in bridging the gap between academia and stakeholders in modelling ecosystem service delivery under ecological intensification.
Ronnie Walcher, Raja Imran Hussain, Johannes Karrer, Andreas Bohner, David Brandl, Johann G. Zaller, Arne Arnberger, and Thomas Frank
Web Ecol., 20, 143–152, https://doi.org/10.5194/we-20-143-2020, https://doi.org/10.5194/we-20-143-2020, 2020
Short summary
Short summary
The abandonment of extensively managed mountainous meadows affects the diversity of both plants and associated pollinators. However, not much is known about the effects of abandonment on hoverflies which consitute an important pollinator group in grasslands. Our research suggests that extensive management is most beneficial in preserving hoverfly richness in mountainous grasslands.
Robert R. Junker, Maximilian Hanusch, Xie He, Victoria Ruiz-Hernández, Jan-Christoph Otto, Sabine Kraushaar, Kristina Bauch, Florian Griessenberger, Lisa-Maria Ohler, and Wolfgang Trutschnig
Web Ecol., 20, 95–106, https://doi.org/10.5194/we-20-95-2020, https://doi.org/10.5194/we-20-95-2020, 2020
Short summary
Short summary
We introduce the Alpine research platform Ödenwinkel to promote observational and experimental research on the emergence of multidiversity and ecosystem complexity. The Ödenwinkel platform will be available as a long-term ecological research site where researchers from various disciplines can contribute to the accumulation of knowledge on ecological successions and on how interactions between various taxonomic groups structure ecological complexity in this Alpine environment.
Hindel Fatmi, Souhaïl Mâalem, Bouchra Harsa, Ahmed Dekak, and Haroun Chenchouni
Web Ecol., 20, 19–32, https://doi.org/10.5194/we-20-19-2020, https://doi.org/10.5194/we-20-19-2020, 2020
Short summary
Short summary
This study determines the diversity of pollen morphotypes of Atriplex halimus (Amaranthaceae) along a large-scale climatic gradient. Occurrences of 10 pollen grain shapes were quantified at seven climates across a humid-to-hyperarid gradient. We discuss how the evolutionary effects of climate gradients on pollen morphology and variability in dryland induce a high level of specialization to maximize trade-offs between adaptation to severe ecological conditions and pollination efficiency.
Petra Lindemann-Matthies and Diethart Matthies
Web Ecol., 18, 121–128, https://doi.org/10.5194/we-18-121-2018, https://doi.org/10.5194/we-18-121-2018, 2018
Short summary
Short summary
We studied the influence of plant diversity on recovery from stress. The blood pressure of stressed people decreased more strongly when they were looking at species-rich vegetation instead of bare ground or vegetation consisting of only a few species during relaxation. Our results indicate that species-rich vegetation may contribute to recovery from stress, which should be considered in landscape management and planning.
Sølvi Wehn, Knut Anders Hovstad, and Line Johansen
Web Ecol., 18, 55–65, https://doi.org/10.5194/we-18-55-2018, https://doi.org/10.5194/we-18-55-2018, 2018
Short summary
Short summary
We studied the effect of abandonment of extensively managed semi-natural grasslands on indicators of ecosystem services (ES) and found both positive and negative effects. We also studied relationships between ESs and plant species richness and whether abandonment affect these relationships. For several ESs we observed positive relationships. However, the relationships differed often between the abandoned and managed grasslands because the relationships were less pronounced in the managed.
Chun-Jing Wang, Ji-Zhong Wan, Hong Qu, and Zhi-Xiang Zhang
Web Ecol., 17, 69–77, https://doi.org/10.5194/we-17-69-2017, https://doi.org/10.5194/we-17-69-2017, 2017
Short summary
Short summary
We used an original global approach to explore the potential relationship between PAs and the intentional movement of IPS based on climate change. Climate change developed the potential pathways for IPS in PAs, and the ability of natural dispersal encourages IPS to invade non-native habitats in the potential movement pathways in PAs. This study shows the importance of the development of global conservation planning for PAs and biological invasion.
Martin Brändle, Jan Sauer, Lars Opgenoorth, and Roland Brandl
Web Ecol., 17, 29–35, https://doi.org/10.5194/we-17-29-2017, https://doi.org/10.5194/we-17-29-2017, 2017
K. Laze and A. Gordon
Web Ecol., 16, 17–31, https://doi.org/10.5194/we-16-17-2016, https://doi.org/10.5194/we-16-17-2016, 2016
Short summary
Short summary
We show areas for extending current protected areas and creating new ones for endangered sub-species of the Lynx lynx martinoi in the Albania–Macedonia–Kosovo and Montenegro–Albania–Kosovo cross-border areas. Our results highlight the importance international cooperation can have for lynx conservation. We used local knowledge on forests in the study area, our analytical skills, and our full interest in the lynx conservation. We did this study working remotely.
V. G. Aschonitis, G. Castaldelli, and E. A. Fano
Web Ecol., 16, 13–15, https://doi.org/10.5194/we-16-13-2016, https://doi.org/10.5194/we-16-13-2016, 2016
Short summary
Short summary
The relations between environmental gradients and traditional diversity indices (taxonomic richness, diversity and evenness) of benthic macroinvertebrate communities in the lotic systems of northern Italy were analyzed. Redundancy analysis (RDA) was used to describe the response of taxa to environmental gradients. Diversity indices were analyzed using generalized linear models (GLMs) with explanatory variables the first two major RDA axes.
V. Bonhomme, E. Forster, M. Wallace, E. Stillman, M. Charles, and G. Jones
Web Ecol., 16, 1–2, https://doi.org/10.5194/we-16-1-2016, https://doi.org/10.5194/we-16-1-2016, 2016
Short summary
Short summary
The transition from a mobile hunter-gatherer lifestyle to one of settled agriculture is arguably the most fundamental change in the development of human society (Lev-Yadun et al., 2000). The establishment of agricultural economies, emerging initially in the Fertile Crescent of the Near East (Nesbitt, 2002), required the domestication of crops; ancient plant remains recovered from early
farming sites provide direct evidence for this process of domestication.
F. Bussotti and M. Pollastrini
Web Ecol., 15, 39–41, https://doi.org/10.5194/we-15-39-2015, https://doi.org/10.5194/we-15-39-2015, 2015
Short summary
Short summary
The effects of tree diversity on the photosynthetic efficiency of tree species were assessed on six European mature forests (distributed along a latitudinal gradient) and in forest stands planted ad hoc with different levels of tree-species richness. The behaviour of Picea abies (spruce) was compared at the different sites. Site-specific responses were detected in relation to the age of the stands and their developmental stage.
M. Mikoláš, M. Svoboda, V. Pouska, R. C. Morrissey, D. C. Donato, W. S. Keeton, T. A. Nagel, V. D. Popescu, J. Müller, C. Bässler, J. Knorn, L. Rozylowicz, C. M. Enescu, V. Trotsiuk, P. Janda, H. Mrhalová, Z. Michalová, F. Krumm, and D. Kraus
Web Ecol., 14, 61–64, https://doi.org/10.5194/we-14-61-2014, https://doi.org/10.5194/we-14-61-2014, 2014
Short summary
Short summary
Clear-fellings to introduce heterogeneity can be an important component of a forest management plan. However, it is misleading to compare clear-fellings to protected areas dominated by old-growth forests using a simplistic measure of biodiversity and without a landscape perspective. To minimize the well-documented role of protected areas can have adverse effects on forested landscapes, primary forest remnants, and taxa that rely on forest structural elements characteristic of old-growth forests.
H.-R. Gregorius
Web Ecol., 14, 51–60, https://doi.org/10.5194/we-14-51-2014, https://doi.org/10.5194/we-14-51-2014, 2014
M. Meißner, M. Köhler, and D. Hölscher
Web Ecol., 13, 31–42, https://doi.org/10.5194/we-13-31-2013, https://doi.org/10.5194/we-13-31-2013, 2013
Cited articles
Abu Tair, N. K. and Langer, M. R.: Foraminiferal invasions: the effect of Lessepsian migration on the diversity and composition of benthic foraminiferal assemblage around Cyprus (Mediterranean Sea): Forams 2010 – International Symposium on Foraminifera, Bonn, Germany, 5–10 September 2010, Abstracts, Rheinische Friedrich-Wilhelms-Universität Bonn, p. 42, 2010.
Aiello, G., Barra, D., Coppa, M. G., Valente, A., and Zeni, F.: Recent
infralittoral Foraminiferida and Ostracoda from Porto Cesareo Lagoon (Ionian
Sea, Mediterranean), B. Soc. Paleontol. Ital., 45, 1–14, https://www.paleoitalia.it/wp-content/uploads/2022/04/001_014_AIELLO.pdf (last access: 31 August 2021), 2006.
Albano, P. G., Steger, J., Bošnjak, M., Dunne, B., Guifarro, Z.,
Turapova, E., Hua, Q., Kaufman, D. S., Rilov, G., and Zuschin, M.: Native
biodiversity collapse in the eastern Mediterranean, P. Roy. Soc. B. Biol.
Sci., 288, 20202469, https://doi.org/10.1098/rspb.2020.2469, 2021.
Barras, C., Jorissen, F. J., Labrune, C., Andral, B., and Boissery, P.: Live
benthic foraminiferal faunas from the French Mediterranean Coast: Towards a
new biotic index of environmental quality, Ecol. Indic., 36, 719–743,
https://doi.org/10.1016/j.ecolind.2013.09.028, 2014.
Berger, W. H. and Parker, F. L.: Diversity of planktonic foraminifera in
deep-sea sediments, Science, 168, 1345–1347, https://doi.org/10.1126/science.168.3937.1345, 1970.
Bianchi, C. N.: Biodiversity issues for the forthcoming tropical
Mediterranean Sea, Hydrobiologia, 580, 7–21, https://doi.org/10.1007/s10750-006-0469-5, 2007.
Bianchi, C. N., Morri, C., Chiantore, M., Montefalcone, M., Parravicini, V.,
and Rovere, A.: Mediterranean Sea biodiversity between the legacy from the
past and a future of change, in: Life in the Mediterranean Sea: A look at
habitat changes, edited by: Stambler, N., Nova Science Publishers, New York,
1–56, ISBN 978-1-61209-644-5, 2012.
Capotondi, L., Bergami, C., Orsini, G., Ravaioli, M., Colantoni, P., and
Galeotti, S.: Benthic foraminifera for environmental monitoring: A case
study in the central Adriatic continental shelf, Environ. Sci. Pollut. R.,
22, 6034–6049, https://doi.org/10.1007/s11356-014-3778-7, 2015.
Caruso, A. and Cosentino, C.: The first colonization of the Genus
Amphistegina and other exotic benthic foraminifera of the Pelagian Islands and south-eastern Sicily (central Mediterranean Sea), Mar. Micropaleontol., 111, 38–52, https://doi.org/10.1016/j.marmicro.2014.05.002, 2014.
Cimerman, F. and Langer, M. R.: Mediterranean foraminifera, Razred za
naravoslovne vede, classis IV, historia naturalis, opera 30, Slovenska
Akademia, Ljubljana, 118 pp., ISBN 8671310531, 1991.
Coletti, G., Bosio, G., and Collareta, A.: Lower Pliocene barnacle facies of
western Liguria (NW Italy): A peek into a warm past and a glimpse of our
incoming future, Riv. It. Paleontol. Strat., 127, 103–131, https://doi.org/10.13130/2039-4942/15202, 2021.
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F.,
Aguzzi, J., Ballesteros, E., Bianchi, C. N., Corbera, J., Dailianis, T.,
Danovaro, R., Estrada, M., Froglia, C., Galil, B. S., Gasol, J. M.,
Gertwagen, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Kitsos,, M.S.,
Koukouras, A., Lampadariou, N., Laxamana, E., López-Fé de la Cuadra,
C. M., Lotze, H. K., Martin, D., Mouillot, D., Oro, D., Raicevich, S.,
Rius-Barile, J., Saiz-Salinas, J. I., San Vicente, C., Somot, S., Templado,
J., Turon, X., Vafidis, D., Villanueva, R., and Voultsiadou, E.: The
biodiversity of the Mediterranean Sea: Estimates, patterns, and threats,
PLoS One, 5, e11842, https://doi.org/10.1371/journal.pone.0011842, 2010.
Debenay, J.-P., Millet, B., and Angelidis, M. O.: Relationships between
foraminiferal assemblages and hydrodynamics in the Gulf of Kalloni, Greece,
J. Foramin. Res., 35, 327–343, https://doi.org/10.2113/35.4.327, 2005.
Di Bella, L., Carboni, M. G., and Pignatti, J.: Paleoclimatic significance of
Pliocene Amphistegina levels from the Tyrrhenian margin of Central Italy, B. Soc. Paleontol. Ital., 44, 219–229, 2005.
Di Lorenzo, M., Sinerchia, M., and Colloca, F.: The North sector of the
Strait of Sicily: A priority area for conservation in the Mediterranean Sea,
Hydrobiologia, 821, 235–253, https://doi.org/10.1007/s10750-017-3389-7, 2018.
Dimiza, M. D., Koukousioura, O., Triantaphyllou, M. V., and Dermitzakis, M.
D.: Live and dead benthic foraminiferal assemblages from coastal
environments of the Aegean Sea (Greece): Distribution and diversity, Rev.
Micropaleontol., 59, 19–32, https://doi.org/10.1016/j.revmic.2015.10.002, 2016a.
Dimiza, M. D., Triantaphyllou, M. V., Koukousioura, O., Hallock, P.,
Simboura, N., Karageorgis, A. P., and Papathanasiou, E.: The Foram Stress
Index: A new tool for environmental assessment of soft-bottom environments
using benthic foraminifera. A case study from the Saronikos Gulf, Greece,
Eastern Mediterranean Sea, Ecol. Indic., 60, 611–621, https://doi.org/10.1016/j.ecolind.2015.07.030, 2016b.
Dimiza, M. D., Ravani, A., Kapsimalis, V., Panagiotopoulos, I. P., Skampa,
E., and Triantaphyllou. M. V.: Benthic foraminiferal assemblages in the
severely polluted coastal environment of Drapetsona-Keratsini, Saronikos
Gulf (Greece), Rev. Micropaleontol., 62, 33–44, https://doi.org/10.1016/j.revmic.2018.09.001, 2018.
El Kateb, A., Stalder, C., Stainbank, S., Fentimen, R., and Spezzaferri, S.:
The genus Amphistegina (benthic foraminifera): distribution along the southern Tunisian coast, BioInvasions Rec., 7, 391–398, https://doi.org/10.3391/bir.2018.7.4.06, 2018.
Fischer, P., Finkler, C., Röbke, B. R., Baika, K., Hadler, H.,
Willershäuser, T., Rigakou, D., Metallinou, G., and Vött, A.: Impact
of Holocene tsunamis detected in lagoonal environments on Corfu (Ionian
Islands, Greece). Geomorphological, sedimentary and microfaunal evidence,
Quatern. Int., 401, 4–16, https://doi.org/10.1016/j.quaint.2015.07.019, 2016.
Fisher, R. A., Corbet, A. S., and Williams, C. B.: The relation between the
number of species and the number of individuals in a random sample of an
animal population, J. Animal Ecol., 12, 42–58, https://doi.org/10.2307/1411, 1943.
Gournelos, T., Evelpidou, N., Karkani, A., and Kardara, E.: Recognition of
erosion risk areas using Neural Network Technology. An application to the
Island of Corfu, Rev. Geomorfol., 20, 56–65, https://doi.org/10.21094/rg.2018.020, 2018.
Guastella, R., Marchini, A., Caruso, A., Cosentino, C., Evans, J., Weinmann,
A. E., Langer, M. R., and Mancin, N.: “Hidden invaders” conquer the Sicily
Channel and knock on the door of the Western Mediterranean Sea, Estuar.
Coast. Shelf S., 225, 106234, https://doi.org/10.1016/j.ecss.2019.05.016, 2019.
Guastella, R., Marchini, A., Caruso, A., Evans, J., Cobianchi, M.,
Cosentino, C., Langone, L., Lecci, R., and Mancin, N.: Reconstructing
Bioinvasion Dynamics Through Micropaleontologic Analysis Highlights the Role
of Temperature Change as a Driver of Alien Foraminifera Invasion, Front.
Mar. Sci., 8, 675807, https://doi.org/10.3389/fmars.2021.675807, 2021.
Hallock, P., Triantaphyllou, M. V., Dimiza, M. D., and Koukousioura, O.: An
invasive foraminifer in coastal ecosystems of the Eastern Mediterranean:
Implications for understanding larger foraminiferal-dominated biofacies in
the Cenozoic, 2011 GSA Annual Meeting, Minneapolis, Minnesota (USA), 9–12 October 2011, Geological Society of America, Paper No. 231-10, https://gsa.confex.com/gsa/2011AM/webprogram/Paper192992.html (last access: 10 June 2022), 2011.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for education and data analysis, Palaeontol.
Electron., 4, https://palaeo-electronica.org/2001_1/past/past.pdf (last access: 7 September 2021), 2001.
Hayek, L.-A. C. and Buzas, M. A.: On the proper and efficient use of
diversity measures with individual field samples, J. Foramin. Res., 43,
305–313, https://doi.org/10.2113/gsjfr.43.3.305, 2013.
Hayward, B. W., Le Coze, F., Vachard, D., and Gross, O.: World Foraminifera
database, World Register of Marine Species, https://doi.org/10.14284/305, 2022.
Higgins, M. D.: Greek Islands, Geology, in: Encyclopedia of Islands, edited
by: Gillespie, R. and Clague, D., University of California Press, Berkeley,
392–396, https://doi.org/10.1525/9780520943728-092, 2009.
Hottinger, L., Halicz, E., and Reiss, Z.: Recent foraminiferida from the
Gulf of Aqaba, Red Sea. Razred za naravoslovne vede, classis IV, historia
naturalis, opera 33, Slovenska Akademia, Ljubljana, 179 pp., ISBN 8671310760, 1993.
Koukousioura, O., Dimiza, M. D., and Triantaphyllou, M. V.: Alien
foraminifers from Greek coastal areas (Aegean Sea, Eastern Mediterranean),
Medit. Mar. Sci., 11, 155–172, https://doi.org/10.12681/mms.98, 2010.
Koukousioura, O., Dimiza, M. D., Triantaphyllou, M. V., and Hallock, P.:
Living benthic foraminifera as an environmental proxy in coastal ecosystems:
A case study from the Aegean Sea (Greece, NE Mediterranean), J. Marine
Syst., 88, 489–501, https://doi.org/10.1016/j.jmarsys.2011.06.004, 2011.
Langer, M. R.: Recent Epiphytic Foraminifera from Vulcano (Mediterranean
Sea) – Rev. Paléobio, Vol. Spéc. 2, BENTHOS'86, Third International Symposium on Benthic Foraminifera, 22–28 September 1986, Muséum d'Histoire Naturelle, Genève, Switzerland, 827–832, 1988.
Langer, M. R.: Epiphytic foraminifera, Mar. Micropaleontol., 20, 235–265,
https://doi.org/10.1016/0377-8398(93)90035-V, 1993.
Langer, M. R. and Lipps, J. H.: Foraminiferal distribution and diversity,
Madang Reef and Lagoon, Papua New Guinea, Coral Reefs, 22, 143–154,
https://doi.org/10.1007/s00338-003-0298-1, 2003.
Langer, M. R. and Mouanga, G. H.: Invasion of amphisteginid foraminifera in
the Adriatic Sea, Biol. Invasions, 18, 1335–1349, https://doi.org/10.1007/s10530-016-1070-0, 2016.
Langer, M. R., Weinmann, A. E., Lötters, S., and Rödder, D.:
“Strangers” in paradise: modeling the biogeographic range expansion of the
foraminiferal Amphistegina in the Mediterranean Sea, J. Foramin. Res., 42, 234–244, https://doi.org/10.2113/gsjfr.42.3.234, 2012.
Larsen, A. R.: Studies of Recent Amphistegina, Taxonomy and some Ecological Aspects, Israel J. Earth Sci., 25, 1–26, 1976.
Maragoudakis, N.: The Neogene foraminifera of Corfu Island, Bulletin of the
Geological Society of Greece, 4, 65–68, 1961.
Maragoudakis, N.: Geology and micropaleontology of southern Corfu,
Geological and Geophysical Research, 12, 1–132, 1967 (in Greek).
Mateu-Vicens, G., Box, A., Deudero, S., and Rodriguez, B.: Comparative
analysis of epiphytic foraminifera in sediments colonized by seagrass
Posidonia oceanica and invasive macroalgae Caulerpa spp., J. Foramin. Res., 40, 134–147, https://doi.org/10.2113/gsjfr.40.2.134, 2010.
Mateu-Vicens, G., Khokhlova, A., and Sebastian-Pastor, T.: Epiphytic
foraminiferal indices as bioindicators in Mediterranean seagrass meadows, J.
Foramin. Res., 44, 325–339, https://doi.org/10.2113/gsjfr.44.3.325, 2014.
Meriç, E., Avşar, N., Nazik, A., Yokeş, M. B., and Dinçer,
F.: A Review of Benthic Foraminifers and Ostracodes of the Antalya Coast,
Micropaleontology, 54, 199–240, https://www.micropress.org/microaccess/micropaleontology/issue-251/article-1581 (last access: 13 July 2023), 2008.
Meriç, E., Avşar, N., Yokeş, M. B., and Dinçer, F.: Atlas of
recent benthic foraminifera from Turkey, Micropaleontology, 60, 211–398,
https://www.micropress.org/microaccess/micropaleontology/issue-309 (last access: 27 July 2021), 2014.
Milker, Y. and Schmiedl, G.: A taxonomic guide to modern benthic shelf
foraminifera of the western Mediterranean Sea, Palaeontol. Electron., 15,
15.2.16A, https://doi.org/10.26879/271, 2012.
Mouanga, G. H.: Impact and range extension of invasive foraminifera in the
NW Mediterranean Sea: implications for diversity and ecosystem functioning,
PhD thesis, University of Bonn (Germany), 169 pp., https://hdl.handle.net/20.500.11811/7491 (last access: 14 August 2020), 2018.
Mouanga, G. H. and Langer, M. R.: At the front of expanding ranges: Shifting
community structures at amphisteginid species range margins in the
Mediterranean Sea, Neues Jahrb. Geol. P.-A., 271, 141–150, https://doi.org/10.1127/0077-7749/2014/0381, 2014.
Murray, J. W.: Distribution and Ecology of Living Benthic Foraminiferids,
Crane, Russak & Co., New York, 274 pp., ISBN 0435624318, 1973.
Murray, J. W.: Ecology and Applications of Benthic Foraminifera, Cambridge
University Press, Cambridge, 426 pp., https://doi.org/10.1017/CBO9780511535529, 2006.
Murray, J. W. and Bowser, S. S.: Mortality, protoplasm decay rate and
reliability of staining techniques to recognize “living” foraminifera: a
review, J. Foramin. Res., 30, 66–70, https://doi.org/10.2113/0300066, 2000.
Parent, B., Barras, C., Bicchi, E., Charrieau, L. M., Choquel, C.,
Bénéteau, E., Maillet, G. M., and Jorissen, F. J.: Comparison of four
foraminiferal biotic indices assessing the environmental quality of coastal
Mediterranean soft bottoms, Water, 13, 3193, https://doi.org/10.3390/w13223193, 2021.
Pisano, A., Marullo, S., Artale, V., Falcini, F., Yang, C., Leonelli, F. E.,
Santoleri, R., and Buongiorno Nardelli, B.: New evidence of Mediterranean
climate change and variability from sea surface temperature observations,
Remote Sens., 12, 132, https://doi.org/10.3390/rs12010132, 2020.
Rögl, F., Antl-Weiser, W., Brandstätter, F., Dermitzakis, M. D.,
Papesch, W., Piller, W. E., Schultz, O., Symeonidis, N. K.,
Triantaphyllou, M. V., and Tsarpalis, V.: Late Pleistocene marine circles in
Southern Corfu, Annales Géologiques des Pays Helléniques, 37,
663–767, 1997.
Sariaslan, N. and Langer, M. R.: Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil, Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, 2021.
Shannon, C. E.: A mathematical theory of communication, Bell Syst.
Tech. J., 27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.
Stulpinaite, R., Hyams-Kaphzan, O., and Langer, M. R.: Alien and cryptogenic
Foraminifera in the Mediterranean Sea: A revision of taxa as part of the EU
2020 Marine Strategy Framework Directive, Mediterr. Mar. Sci., 21, 719–758,
https://doi.org/10.12681/mms.24673, 2020.
Triantaphyllou, M. and Dimiza, M.: Amphistegina lobifera in Zakynthos island, Ionian Sea, in: New
Mediterranean Marine biodiversity records (June 2013), edited by: Siokou, I.,
Ates, A. S., Ayas, D., Ben Souissi, J., Chatterjee, T., Dimiza, M., Durgham,
H., Dogrammatzi, K., Erguden, D., Gerakaris, V., Grego, M., Issaris, Y.,
Kadis, K., Katagan, T., Kapiris, K., Katsanevakis, S., Kerckhof, F.,
Papastergiadou, E., Pesic, V., Polychronidis, L., Rifi, M., Salomidi, M.,
Sezgin, M., Triantaphyllou, M., Tsiamis, K., Turan, C., Tziortzis, I.,
d'Udekem d'Acoz, C., Yaglioglu, D., Zaouali, J., and Zenetos, A., Mediterr.
Mar. Sci., 14, 242–243, https://doi.org/10.12681/mms.450, 2013.
Triantaphyllou, M. V., Drinia, H., and Dermitzakis, M. D.: Quantitative
micropaleontological analysis and paleoenvironmental interpretation of
Southern Kerkyra Pliocene deposits, Géologie Mediterranéenne, 22,
111–123, https://doi.org/10.3406/geolm.1995.1573, 1995.
Triantaphyllou, M. V., Tsourou, T., Koukousioura, O., and Dermitzakis, M. D.:
Foraminiferal and ostracod ecological patterns in coastal environments of SE
Andros Island (Middle Aegean Sea, Greece), Rev. Micropaleontol., 48,
279–302, https://doi.org/10.1016/j.revmic.2005.09.003, 2005.
Triantaphyllou, M. V., Koukousioura O., and Dimiza, M. D.: The presence of the
Indo-Pacific symbiont-bearing foraminifer Amphistegina lobifera in Greek coastal ecosystems (Aegean Sea, Eastern Mediterranean), Medit. Mar. Sci., 10, 73–85, https://doi.org/10.12681/mms.111, 2009.
Triantaphyllou, M. V., Dimiza, M. D., Koukousioura, O., and Hallock, P.:
observations on the life cycle of the symbiont-bearing foraminifer
Amphistegina lobifera Larsen, an invasive species in coastal ecosystems of the Aegean Sea (Greece, E. Mediterranean), J. Foramin. Res., 42, 143–150, https://doi.org/10.2113/gsjfr.42.2.143, 2012.
Tserolas, P., Mpotziolis, C., Maravelis, A., and Zelilidis, A.: Preliminary
geochemical and sedimentological analysis In NW Corfu. The Miocene sediments
In Agios Georgios Pagon, Bulletin of the Geological Society of Greece, 50,
402–412, https://doi.org/10.12681/bgsg.11741, 2016.
Tsiamis, K., Azzurro, E., Bariche, M., Çinar, M. E., Crocetta, F., De
Clerk, O., Galil, B., Gómez, F., Hoffman, R., Jensen, K. R., Kamburska,
L., Langeneck, J., Langer, M. R., Levitt-Barmats, Y., Lezzi, M., Marchini,
A., Occhipinti-Ambrogi, A., Ojaveer, H., Piraino, S., Shenkar, N., Yonkova,
M., Zenetos, A., Žuljević, A., and Cardoso, A. C.: Prioritizing
marine invase alien species in the European Union through horizon scanning,
Aquat. Conserv., 30, 794–845, https://doi.org/10.1002/aqc.3267, 2020.
Vohník, M.: Bioerosion and fungal colonization of the invasive foraminiferan Amphistegina lobifera in a Mediterranean seagrass meadow, Biogeosciences, 18, 2777–2790, https://doi.org/10.5194/bg-18-2777-2021, 2021.
Weinmann, A., Koukousioura, O., Triantaphyllou, M., and Langer, M.: Datasets
to Weinmann et al.: Spatial distribution and diversity of benthic
shallow-water foraminifera from Corfu Island (Greece, Ionian Sea): An island
at the range front of an invasive species, NHMW Data Repository [data set], https://doi.org/10.57756/9uhty3, 2022.
Weinmann, A. E. and Langer, M. R.: Diverse thermotolerant assemblages of
benthic foraminiferal biotas from tropical tide and rock pools of eastern
Africa, Rev. Micropaleontol., 60, 511–523, https://doi.org/10.1016/j.revmic.2017.09.002, 2017.
Weinmann, A. E., Rödder, D., Lötters, S., and Langer, M. R.:
Traveling through time: The past, present and future biogeographic range of
the invasive foraminifera Amphistegina spp. in the Mediterranean Sea, Mar. Micropaleontol., 105, 30–39, https://doi.org/10.1016/j.marmicro.2013.10.002, 2013.
Weinmann, A. E., Goldstein, S. T., Triantaphyllou, M. V., and Langer, M. R.:
Effects of sampling site, season, and substrate on foraminiferal assemblages
grown from propagule banks from lagoon sediments of Corfu Island (Greece,
Ionian Sea), PLoS One, 14, e0219015, https://doi.org/10.1371/journal.pone.0219015, 2019.
Yokeş, M. B., Meriç, E., and Avşar, N.: On the Presence of Alien
Foraminifera Amphistegina lobifera Larsen on the coasts of the Maltese Islands, Aquat. Invasions, 2, 439–441, https://doi.org/10.3391/ai.2007.2.4.15, 2007.
Yokeş, M. B., Meriç, E., Avşar, N., Öncel, M. S., Eryilmaz,
M., and Barut, İ.: The expanded population of Amphistegina lobifera at Üç Adalar and Beş Adalar (Antalya, Turkey), Mar. Biodivers. Rec., 7, e52, https://doi.org/10.1017/S175526721400044X, 2014.
Short summary
This study analyzes the diversity of benthic foraminifera at the range expansion front of the invasive species Amphistegina lobifera in Corfu (central Mediterranean). The species has been suggested to impact local diversity and community structures, and our results confirm these effects as soon as A. lobifera exceeds a specific abundance threshold (> 20 %). Nevertheless, we found that the study area reveals an overall high biodiversity that can be attributed to its unique location.
This study analyzes the diversity of benthic foraminifera at the range expansion front of the...