Articles | Volume 20, issue 1
https://doi.org/10.5194/we-20-1-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-20-1-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scientists' warning on endangered food webs
Centre for Functional Ecology, Department of Life Sciences,
University of Coimbra, 3000-456 Coimbra, Portugal
William J. Ripple
Global Trophic Cascades Program, Department of Forest Ecosystems and
Society, Oregon State University, Corvallis, Oregon 97330, USA
Anna Traveset
Global Change Research Group, Instituto Mediterráneo de Estudios
Avanzados, CSIC-UIB, 07190 Esporles, Mallorca, Spain
Related authors
Mauro Nereu, Ruben H. Heleno, Francisco Lopez-Núñez, Mário Agostinho, and Jaime A. Ramos
Web Ecol., 18, 15–27, https://doi.org/10.5194/we-18-15-2018, https://doi.org/10.5194/we-18-15-2018, 2018
R. H. Heleno
Web Ecol., 14, 23–25, https://doi.org/10.5194/we-14-23-2014, https://doi.org/10.5194/we-14-23-2014, 2014
Mauro Nereu, Ruben H. Heleno, Francisco Lopez-Núñez, Mário Agostinho, and Jaime A. Ramos
Web Ecol., 18, 15–27, https://doi.org/10.5194/we-18-15-2018, https://doi.org/10.5194/we-18-15-2018, 2018
R. H. Heleno
Web Ecol., 14, 23–25, https://doi.org/10.5194/we-14-23-2014, https://doi.org/10.5194/we-14-23-2014, 2014
Related subject area
Conservation Ecology
Insights into the habitat associations, phylogeny, and diet of Pipistrellus maderensis in Porto Santo, northeastern Macaronesia
Spatio-temporal patterns of co-occurrence of tigers and leopards within a protected area in central India
Models of poisoning effects on vulture populations show that small but frequent episodes have a larger effect than large but rare ones
Changes in the Cerrado vegetation structure: insights from more than three decades of ecological succession
Toward a new generation of effective problem solvers and project-oriented applied ecologists
Towards the unravelling of the slug A. ater–A. rufus complex (Gastropoda Arionidae): new genetic approaches
Non-native invasive species as paradoxical ecosystem services in urban conservation education
Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant Drosophyllum lusitanicum
Leaf litter is essential for seed survival of the endemic endangered tree Pouteria splendens (Sapotaceae) from central Chile
Sand quarry wetlands provide high-quality habitat for native amphibians
Overview of the translocation of rupestrian ferruginous fields of Capão Xavier mine to the Serra do Rola Moça State Park, Minas Gerais – Brazil
Biodiversity offsetting in England: governance rescaling, socio-spatial injustices, and the neoliberalization of nature
Human population density and tenebrionid richness covary in Mediterranean islands
Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest
Biodiversity impacts of climate change – the PRONAS software as educational tool
Monitoring arthropods in protected grasslands: comparing pitfall trapping, quadrat sampling and video monitoring
Short Communication: Systems-based conservation and conflicts between species protection programs
The geography of high-value biodiversity areas for terrestrial vertebrates in Western Europe and their coverage by protected area networks
Eva K. Nóbrega, Nia Toshkova, Angelina Gonçalves, André Reis, Elena J. Soto, Sergio Puertas Ruiz, Vanessa A. Mata, Catarina Rato, and Ricardo Rocha
Web Ecol., 23, 87–98, https://doi.org/10.5194/we-23-87-2023, https://doi.org/10.5194/we-23-87-2023, 2023
Short summary
Short summary
We conducted an island-wide survey to investigate if the Madeiran pipistrelle still persists on the island of Porto Santo, where it was believed to be extinct. We detected bats in 28 out of 46 sampling sites, and their activity was particularly associated with water points. Furthermore, we found that bats from Porto Santo and Madeira have a close phylogenetic affinity and that they feed on a wide variety of insects, including several economically important pest species and disease vectors.
Anindita Bidisha Chatterjee, Kalyansundaram Sankar, Yadvendradev Vikramsinh Jhala, and Qamar Qureshi
Web Ecol., 23, 17–34, https://doi.org/10.5194/we-23-17-2023, https://doi.org/10.5194/we-23-17-2023, 2023
Short summary
Short summary
This study provides a record of co-occurrence patterns of tigers and leopards in a dry deciduous forest where both these sympatric predators coexist in high densities. Populations of large carnivores are decreasing on a global scale, and looking into their inter-species relationships is crucial to conserving these species. Our results show that leopards avoid tigers spatially in a dry deciduous system and show significant temporal overlap, with no fine-scale spatio-temporal avoidance.
Rigas Tsiakiris, John M. Halley, Kalliopi Stara, Nikos Monokrousos, Chryso Karyou, Nicolaos Kassinis, Minas Papadopoulos, and Stavros M. Xirouchakis
Web Ecol., 21, 79–93, https://doi.org/10.5194/we-21-79-2021, https://doi.org/10.5194/we-21-79-2021, 2021
Short summary
Short summary
Despite frequent media references about the mass poisoning of vultures, this study shows that small but frequent poisoning events may be even worse. Using both mathematical and computer simulation approaches we show that a chain of small poisoning events is more likely to extirpate a newly established colony than a few massive ones with the same overall mortality. Survival also depends critically on the initial population size. These results are of great relevance for restocking initiatives.
Rogério Victor S. Gonçalves, João Custódio F. Cardoso, Paulo Eugênio Oliveira, and Denis Coelho Oliveira
Web Ecol., 21, 55–64, https://doi.org/10.5194/we-21-55-2021, https://doi.org/10.5194/we-21-55-2021, 2021
Short summary
Short summary
Cerrado savannas in Brazil are under increasing pressure. Long-term vegetation dynamics (1987–2019) of a Cerrado area showed marked woody plant encroachment (WPE) processes, possibly linked to fire and grazing suppression. Open shrubby grasslands and wetlands shrunk, while forest and denser woodlands increased, concurrently with vegetation indexes (NDVI). Decreasing open cerrado and wetlands may imply biodiversity and water supply losses. WPE should be considered for Cerrado conservation.
Corrado Battisti, Giovanni Amori, and Luca Luiselli
Web Ecol., 20, 11–17, https://doi.org/10.5194/we-20-11-2020, https://doi.org/10.5194/we-20-11-2020, 2020
Short summary
Short summary
In an era of environmental crises, conservation and management strategies need a new generation of applied ecologists. Here, we stimulate the next generation of applied ecologists to acquire a pragmatic mentality of problems solvers in real contexts, using the wide arsenal of concepts, approaches and techniques available in the project management (PM) arena and using a road map based on the main steps of the conservation project cycle.
María L. Peláez, Antonio G. Valdecasas, Daniel Martinez, and Jose L. Horreo
Web Ecol., 18, 115–119, https://doi.org/10.5194/we-18-115-2018, https://doi.org/10.5194/we-18-115-2018, 2018
Short summary
Short summary
The Arion ater complex comprises two morphological forms: A. rufus and A. ater, and no consensus exists about their species status. Both forms belong to different phylogenetic clades, and we have investigated the correspondence to different species. To do it, we analysed three mitochondrial genes with two different genetic approaches (one classic, one cutting-edge). Results suggested that both clades, thus forms, are different species, and shed light on the taxonomic classification of the group.
Corrado Battisti, Giuliano Fanelli, Sandro Bertolino, Luca Luiselli, Giovanni Amori, and Spartaco Gippoliti
Web Ecol., 18, 37–40, https://doi.org/10.5194/we-18-37-2018, https://doi.org/10.5194/we-18-37-2018, 2018
Short summary
Short summary
Many practices have been proposed in conservation education to facilitate a re-connection between nature and young digitally dependent people in anthropized contexts. In this paper we suggest that, at least in some specific circumstances (urban and suburban areas), non-native invasive species may have a paradoxical and positive impact on conservation education strategies, playing a role as an experiential tool, which represents a cultural ecosystem service.
Susana Gómez-González, Maria Paniw, Kamila Antunes, and Fernando Ojeda
Web Ecol., 18, 7–13, https://doi.org/10.5194/we-18-7-2018, https://doi.org/10.5194/we-18-7-2018, 2018
Gastón Javier Sotes, Ramiro Osciel Bustamante, and Carolina Andrea Henríquez
Web Ecol., 18, 1–5, https://doi.org/10.5194/we-18-1-2018, https://doi.org/10.5194/we-18-1-2018, 2018
Short summary
Short summary
Pouteria splendens is an endemic endangered tree from central Chile. Natural regeneration in the species seems to be low and its distribution is restricted. We investigate seed dispersal and survival. Results indicated a low distance of seed dispersal, and the presence of leaf litter covering seeds increased survival. We suggest that future conservation programs should focus on protecting both adult plants and leaf litter under trees.
Michael Sievers
Web Ecol., 17, 19–27, https://doi.org/10.5194/we-17-19-2017, https://doi.org/10.5194/we-17-19-2017, 2017
Short summary
Short summary
Artificial wetlands are becoming critical habitats as natural wetlands continue to be degraded and destroyed. I surveyed quarry wetlands to assess how they provide habitat for frogs and the factors driving patterns. Quarry wetlands consistently harboured more species and healthier individuals than reference wetlands. We need to encourage wildlife utilisation of quarry wetlands, and the methods outlined here provide a powerful, yet simple, tool to assess the overall health of artificial wetlands.
Alessandra F. Fernandes, Ana C. Maia, Juan F. S. Monteiro, João N. Condé, and Mauro Martins
Web Ecol., 16, 93–96, https://doi.org/10.5194/we-16-93-2016, https://doi.org/10.5194/we-16-93-2016, 2016
Short summary
Short summary
The Serra do Rola Moça State Park is located in Brazil and is home to Canga vegetation. The objective of the study was to conserve biodiversity. The species present mainly belong to the Asteraceae, Rubiaceae, Myrtaceae, Velloziaceae, Bromeliaceae, and Orchidaceae families. Approximately 15 000 individuals of Canga species were translocated and planted. This study indicates the possibility of nursery breeding of some of the native species and their use in the recovery of areas in mining regions.
Evangelia Apostolopoulou
Web Ecol., 16, 67–71, https://doi.org/10.5194/we-16-67-2016, https://doi.org/10.5194/we-16-67-2016, 2016
Short summary
Short summary
I use primary empirical data obtained through interviews in case studies around England to explore the neoliberal character of biodiversity offsetting, its interrelationship with governance rescaling, and the way the latter influences the distribution of offsetting’s costs and benefits. My results show that biodiversity offsetting in England has been a reactionary neoliberal policy characterized by important deficits from an environmental and socio-spatial justice perspective.
Simone Fattorini and Giovanni Strona
Web Ecol., 16, 63–65, https://doi.org/10.5194/we-16-63-2016, https://doi.org/10.5194/we-16-63-2016, 2016
Short summary
Short summary
An unexpected high biodiversity can be found even in densely inhabited areas, possibly as a result of a tendency of human settlements to be located in sites particularly favourable also for other organisms. We studied the relationship between human density and tenebrionid beetle richness in Italian islands. Tenebrionid richness increased with human population density. This suggests that islands that are more hospitable to humans are also those that can be more favourable for tenebrionids.
F. S. Campos, G. A. Llorente, L. Rincón, R. Lourenço-de-Moraes, and M. Solé
Web Ecol., 16, 9–12, https://doi.org/10.5194/we-16-9-2016, https://doi.org/10.5194/we-16-9-2016, 2016
Short summary
Short summary
This study evaluated the efficiency of the protected areas (PAs) from the Brazilian Atlantic Forest on the conservation of threatened amphibian species. This brief overview highlights not only the crisis faced by unprotected amphibians, but it also sounds the alarm regarding the situation of species covered by the PAs network. Such context can improve the environmental actions for the PAs integrity and reduce the extinction risk of threatened amphibian species in this region.
K. Ulbrich, O. Schweiger, S. Klotz, and J. Settele
Web Ecol., 15, 49–58, https://doi.org/10.5194/we-15-49-2015, https://doi.org/10.5194/we-15-49-2015, 2015
Short summary
Short summary
Only little of current biodiversity knowledge reaches the young generation. We developed the educational software PRONAS to show how scientists handle questions about the impact of climate change on species' habitats. About fifty European species have been used to demonstrate habitat losses and shifts and the mismatch of habitat dynamics of interacting species. We found that “educational software” is a useful format for scientific outreach. PRONAS is freely accessible in German and English.
J. G. Zaller, G. Kerschbaumer, R. Rizzoli, A. Tiefenbacher, E. Gruber, and H. Schedl
Web Ecol., 15, 15–23, https://doi.org/10.5194/we-15-15-2015, https://doi.org/10.5194/we-15-15-2015, 2015
Short summary
Short summary
Arthropod monitoring in protected areas often requires non-destructive methods in order to avoid detrimental effects on natural communities. Video monitoring recorded the highest number of individuals followed by quadrat sampling and pitfall trapping. Quadrat sampling showed the highest diversity followed by video monitoring and pitfall trapping. Thus, video monitoring has a great potential as a supplementary method for biodiversity assessments especially at the level of parataxonomic units.
F. Jordán and A. Báldi
Web Ecol., 13, 85–89, https://doi.org/10.5194/we-13-85-2013, https://doi.org/10.5194/we-13-85-2013, 2013
M. J. T. Assunção-Albuquerque, J. M. Rey Benayas, F. S. Albuquerque, and M. Á. Rodríguez
Web Ecol., 12, 65–73, https://doi.org/10.5194/we-12-65-2012, https://doi.org/10.5194/we-12-65-2012, 2012
Cited articles
Albrecht, M., Duelli, P., Schmid, B., and Muller, C. B.: Interaction
diversity within quantified insect food webs in restored and adjacent
intensively managed meadows, J. Anim. Ecol., 76, 1015–1025, 2007.
Anderson, S. H., Kelly, D., Ladley, J. J., Molloy, S., and Terry, J.:
Cascading effects of bird functional extinction reduce pollination and plant
density, Science, 331, 1068–1071, 2011.
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental,
T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., and Maguire, K. C.: Has
the Earth's sixth mass extinction already arrived?, Nature, 471, 51–57, 2011.
Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H.,
Fortelius, M., Getz, W. M., Harte, J., Hastings, A., Marquet, P. A.,
Martinez, N. D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J. W.,
Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D. P.,
Revilla, E., and Smith, A. B.: Approaching a state shift in Earth's
biosphere, Nature, 486, 52–58, 2012.
Bartomeus, I., Ascher, J. S., Gibbs, J., Danforth, B. N., Wagner, D. L.,
Hedtke, S. M., and Winfree, R.: Historical changes in northeastern US bee
pollinators related to shared ecological traits, P. Natl. Acad. Sci. USA,
110, 4656–4660, 2013.
Bascompte, J.: Disentangling the Web of Life, Science, 325, 416–419, 2009.
Bascompte, J. and Jordano, P.: Plant-animal mutualistic networks: The
architecture of biodiversity, Annu. Rev. Ecol. Evol. Syst., 38, 567–593,
2007.
Bascompte, J. and Jordano, P.: Mutualistic networks, Princeton University
Press, 2013.
Bascompte, J., Jordano, P., Melian, C. J., and Olesen, J. M.: The nested
assembly of plant-animal mutualistic networks, P. Natl. Acad. Sci. USA,
100, 9383–9387, 2003.
Bascompte, J., Jordano, P., and Olesen, J. M.: Asymmetric coevolutionary
networks facilitate biodiversity maintenance, Science, 312, 431–433, 2006.
Bidartondo, M. I.: The evolutionary ecology of myco-heterotrophy, New
Phytol., 167, 335–352, 2005.
Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W., Cline, T.,
Coloso, J., Hodgson, J. R., Kitchell, J. F., and Seekell, D. A.: Early
warnings of regime shifts: a whole-ecosystem experiment, Science, 332,
1079–1082, 2011.
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R.
M., and Palmer, T. M.: Accelerated modern human–induced species losses:
Entering the sixth mass extinction, Sci. Adv., 1, e1400253, https://doi.org/10.1126/sciadv.1400253, 2015.
Celedón-Neghme, C., Traveset, A., and Calviño-Cancela, M.:
Contrasting patterns of seed dispersal between alien mammals and native
lizards in a declining plant species, Plant Ecol., 214, 657–667, 2013.
Correia, M., Timóteo, S., Rodríguez-Echeverría, S.,
Mazars-Simon, A., and Heleno, R.: Refaunation and the reinstatement of the
seed-dispersal function in Gorongosa National Park, Conserv. Biol., 31,
76–85, 2017.
Costa, J. M., Ramos, J. A., da Silva, L. P., Timóteo, S., Andrade, P.,
Araújo, P. M., Carneiro, C., Correia, E., Cortez, P., and Felgueiras,
M.: Rewiring of experimentally disturbed seed dispersal networks might lead
to unexpected network configurations, Basic Appl. Ecol., 30, 11–22, 2018.
Cox, P. A.: Extinction of the Hawaiian avifauna resulted in a change of
pollinators for the ieie, Freycinetia arborea, Oikos, 1983, 195–199, 1983.
Darwin, C.: On the origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life, John Murrey,
London, 1859.
de Sassi, C., Staniczenko, P. P., and Tylianakis, J. M.: Warming and
nitrogen affect size structuring and density dependence in a
host–parasitoid food web, Philos. T. Roy. Soc.
B, 367, 3033–3041, 2012.
Derocles, S. A., Lunt, D. H., Berthe, S. C., Nichols, P. C., Moss, E. D.,
and Evans, D. M.: Climate warming alters the structure of farmland
tritrophic ecological networks and reduces crop yield, Mol. Ecol., 27, 4931–4946,
2018.
Elton, C. S.: The ecology of invasions by animals and plants, Methuen,
London, 1958.
Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J.,
Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., and Jackson,
J. B.: Trophic downgrading of planet Earth, Science, 333, 301–306, 2011.
Fontaine, C., Dajoz, I., Meriguet, J., and Loreau, M.: Functional diversity
of plant-pollinator interaction webs enhances the persistence of plant
communities, PLoS Biol., 4, 129–135, 2006.
Fortuna, M. A. and Bascompte, J.: Habitat loss and the structure of
plant-animal mutualistic networks, Ecol. Lett., 9, 278–283, 2006.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., and Heinsohn, R.:
Declining body size: a third universal response to warming?, Trends Ecol.
Evol., 26, 285–291, 2011.
Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan,
H., Stenmans, W., Müller, A., Sumser, H., and Hörren, T.: More than
75 percent decline over 27 years in total flying insect biomass in protected
areas, PloS one, 12, e0185809, https://doi.org/10.1371/journal.pone.0185809, 2017.
Hansen, D. M., Donlan, C. J., Griffiths, C. J., and Campbell, K. J.:
Ecological history and latent conservation potential: large and giant
tortoises as a model for taxon substitutions, Ecography, 33, 272–284, 2010.
Harvey, E., Gounand, I., Ward, C. L., and Altermatt, F.: Bridging ecology
and conservation: from ecological networks to ecosystem function, J. Appl.
Ecol., 54, 371–379, 2017.
Hastings, A. and Wysham, D. B.: Regime shifts in ecological systems can
occur with no warning, Ecol. Lett., 13, 464–472, 2010.
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., and Totland,
Ø.: How does climate warming affect plant-pollinator interactions?, Ecol.
Lett., 12, 184–195, 2009.
Heleno, R.: Publications data set for fig. 2, figshare, https://doi.org/10.6084/m9.figshare.12034143.v1, 2020.
Heleno, R., Ceia, R., Ramos, J., and Memmott, J.: The effect of alien plants
on insect abundance and biomass: a food web approach, Conserv. Biol., 23,
410–419, 2009.
Heleno, R., Ramos, J., and Memmott, J.: Integration of exotic seeds into an
Azorean seed dispersal network, Biol. Invasions, 15, 1143–1154, 2013.
Heleno, R., Garcia, C., Jordano, P., Traveset, A., Gómez, J. M.,
Blüthgen, N., Memmott, J., Moora, M., Cerdeira, J.,
Rodríguez-Echeverría, S., Freitas, H., and Olesen, J. M.:
Ecological networks: delving into the architecture of biodiversity, Biol.
Lett., 10, 20131000, https://doi.org/10.1098/rsbl.2013.1000, 2014.
Heleno, R. H., Lacerda, I., Ramos, J. A., and Memmott, J.: Evaluation of
restoration effectiveness: community response to the removal of alien
plants, Ecol. Appl., 20, 1191–1203, 2010.
IPBES, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: The IPBES Global Assessment Report on Biodiversity and Ecosystem Services, Paris, 2019.
James, A., Pitchford, J. W., and Plank, M. J.: Disentangling nestedness from
models of ecological complexity, Nature, 487, 227–230, 2012.
Kremen, C. and Hall, G.: Managing ecosystem services: what do we need to
know about their ecology?, Ecol. Lett., 8, 468–479, 2005.
Laliberté, E. and Tylianakis, J. M.: Deforestation homogenizes tropical
parasitoid–host networks, Ecology, 91, 1740–1747, 2010.
Lawton, J. H.: Webbing and WIWACS, Oikos, 72, 305–306, 1995.
Layman, C. A., Quattrochi, J. P., Peyer, C. M., and Allgeier, J. E.: Niche
width collapse in a resilient top predator following ecosystem
fragmentation, Ecol. Lett., 10, 937–944, 2007.
Ledger, M. E., Brown, L. E., Edwards, F. K., Milner, A. M., and Woodward,
G.: Drought alters the structure and functioning of complex food webs,
Nature Climate Change, 3, 223–227, 2013.
Leopold, A.: A sand county almanac, with essays on conservation from Roun
River, Oxford University Press, 1966.
Lever, J. J., Nes, E. H., Scheffer, M., and Bascompte, J.: The sudden
collapse of pollinator communities, Ecol. Lett., 17, 350–359, 2014.
López-Núñez, F. A., Heleno, R. H., Ribeiro, S., Marchante, H.,
and Marchante, E.: Four-trophic level food webs reveal the cascading impacts
of an invasive plant targeted for biocontrol, Ecology, 98, 782–793, 2017.
Lurgi, M., López, B. C., and Montoya, J. M.: Novel communities from
climate change, Philos. T. Roy. Soc. B, 367, 2913–2922, 2012.
Mayor, S. J., Guralnick, R. P., Tingley, M. W., Otegui, J., Withey, J. C.,
Elmendorf, S. C., Andrew, M. E., Leyk, S., Pearse, I. S., and Schneider, D.
C.: Increasing phenological asynchrony between spring green-up and arrival
of migratory birds, Scientific Reports, 7, 1902, https://doi.org/10.1038/s41598-017-02045-z, 2017.
McCann, K.: Protecting biostructure, Nature, 446, 29–29, 2007.
McCauley, D. J., DeSalles, P. A., Young, H. S., Dunbar, R. B., Dirzo, R.,
Mills, M. M., and Micheli, F.: From wing to wing: the persistence of long
ecological interaction chains in less-disturbed ecosystems, Scientific
Reports, 2, 409, https://doi.org/10.1038/srep00409, 2012.
McKinney, M. L. and Lockwood, J. L.: Biotic homogenization: a few winners
replacing many losers in the next mass extinction, Trends Ecol. Evol., 14,
450–453, 1999.
MEA: Millennium Ecosystem Assessment – Ecosystems and human well-being: A
synthesis, Island Press, Washington DC, USA, 2005.
Memmott, J.: Food webs: a ladder for picking strawberries or a practical
tool for practical problems?, Philos. T. Roy.
Soc. B, 364, 1693–1699, 2009.
Memmott, J., Waser, N. M., and Price, M. V.: Tolerance of pollination
networks to species extinctions, Proc. R. Soc. B, 271, 2605–2611, 2004.
Memmott, J., Craze, P. G., Waser, N. M., and Price, M. V.: Global warming
and the disruption of plant-pollinator interactions, Ecol. Lett., 10,
710–717, 2007.
Miller, J. R. and Hobbs, R. J.: Rewilding and restoration, Cambridge
University Press, 2019.
Millington, S. J. and Grant, P. R.: Feeding ecology and territoriality of
the cactus finch Geospiza scandens on Isla Daphne Major, Galapagos,
Oecologia, 58, 76–83, 1983.
Montoya, J. M. and Raffaelli, D.: Climate change, biotic interactions and
ecosystem services, The Royal Society, 2010.
Montoya, J. M., Pimm, S. L., and Solé, R. V.: Ecological networks and
their fragility, Nature, 442, 257–264, 2006.
Morrison, B. M., Brosi, B. J., and Dirzo, R.: Agricultural intensification
drives changes in hybrid network robustness by modifying network structure,
Ecol. Lett., 23, 359–369, https://doi.org/10.1111/ele.13440, 2020.
Moya-Laraño, J., Verdeny-Vilalta, O., Rowntree, J., Melguizo-Ruiz, N.,
Montserrat, M., and Laiolo, P.: Climate change and eco-evolutionary dynamics
in food webs, Adv. ecological research, Elsevier, 2012.
O'Gorman, E. J., Pichler, D. E., Adams, G., Benstead, J. P., Cohen, H.,
Craig, N., Cross, W. F., Demars, B. O., Friberg, N., and Gislason, G. M.:
Impacts of warming on the structure and functioning of aquatic communities:
individual-to ecosystem-level responses, Advances in ecological
research, Elsevier, 2012.
Pacheco, L. F., Altrichter, M., Beck, H., Buchori, D., and Owusu, E. H.:
Economic Growth as a Major Cause of Environmental Crisis: Comment to Ripple
et al., Bioscience, 68, 238–238, 2018.
Parmesan, C.: Ecological and evolutionary responses to recent climate
change, Annu. Rev. Ecol. Evol. Syst., 37, 637–669, 2006.
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change
impacts across natural systems, Nature, 421, 37–42, 2003.
Pilosof, S., Porter, M. A., Pascual, M., and Kéfi, S.: The multilayer
nature of ecological networks, Nat. Ecol. Evol., 1, 0101, https://doi.org/10.1038/s41559-017-0101, 2017.
Pimm, S. L., Lawton, J. H., and Cohen, J. E.: Food web patterns and their
consequences, Nature, 350, 669–674, 1991.
Plard, F., Gaillard, J.-M., Coulson, T., Hewison, A. M., Delorme, D.,
Warnant, C., and Bonenfant, C.: Mismatch between birth date and vegetation
phenology slows the demography of roe deer, PLoS Biol., 12, e1001828, https://doi.org/10.1371/journal.pbio.1001828,
2014.
Pocock, M. J. O., Evans, D. M., and Memmott, J.: The robustness and
restoration of a network of ecological networks, Science, 335, 973–977,
2012.
Pogoda, C. S., Keepers, K. G., Lendemer, J. C., Kane, N. C., and Tripp, E.
A.: Reductions in complexity of mitochondrial genomes in lichen-forming
fungi shed light on genome architecture of obligate symbioses, Mol. Ecol.,
27, 1155–1169, 2018.
Poisot, T., Mouquet, N., and Gravel, D.: Trophic complementarity drives the
biodiversity–ecosystem functioning relationship in food webs, Ecol. Lett.,
16, 853–861, 2013.
Reich, P. B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S. E., Flynn, D.
F., and Eisenhauer, N.: Impacts of biodiversity loss escalate through time
as redundancy fades, Science, 336, 589–592, 2012.
Ripple, W. J. and Beschta, R. L.: Linking a cougar decline, trophic cascade,
and catastrophic regime shift in Zion National Park, Biol. Conserv., 133,
397–408, 2006.
Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G.,
Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., and Nelson, M. P.:
Status and ecological effects of the world's largest carnivores, Science,
343, 1241484, https://doi.org/10.1126/science.1241484, 2014.
Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti,
M., Hayward, M. W., Kerley, G. I., Levi, T., and Lindsey, P. A.: Collapse of
the world's largest herbivores, Sci. Adv., 1, e1400103, https://doi.org/10.1126/sciadv.1400103, 2015.
Ripple, W. J., Estes, J. A., Schmitz, O. J., Constant, V., Kaylor, M. J.,
Lenz, A., Motley, J. L., Self, K. E., Taylor, D. S., and Wolf, C.: What is a
trophic cascade?, Trends Ecol. Evol., 31, 842–849, 2016.
Ripple, W. J., Wolf, C., Newsome, T. M., Galetti, M., Alamgir, M., Crist,
E., Mahmoud, M. I., and Laurance, W. F.: World scientists'
warning to humanity: A second notice, Bioscience, 67, 1026–1028, 2017.
Rogers, H. S., Buhle, E. R., HilleRisLambers, J., Fricke, E. C., Miller, R.
H., and Tewksbury, J. J.: Effects of an invasive predator cascade to plants
via mutualism disruption, Nature Commun., 8, 14557, https://doi.org/10.1038/ncomms14557, 2017.
Rohr, R. P., Saavedra, S., and Bascompte, J.: On the structural stability of
mutualistic systems, Science, 345, 1253497, https://doi.org/10.1126/science.1253497, 2014.
Rumeu, B., Devoto, M., Traveset, A., Olesen, J. M., Vargas, P., Nogales, M.,
and Heleno, R.: Predicting the consequences of disperser extinction:
richness matters the most when abundance is low, Funct. Ecol., 31,
1910–1920, 2017.
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B.:
Catastrophic shifts in ecosystems, Nature, 413, 591–596, 2001.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R.,
Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G.:
Early-warning signals for critical transitions, Nature, 461, 53–59, 2009.
Scheffers, B. R., Joppa, L. N., Pimm, S. L., and Laurance, W. F.: What we
know and don't know about Earth's missing biodiversity, Trends Ecol. Evol.,
27, 501–510, 2012.
Scherber, C., Eisenhauer, N., Weisser, W. W., Schmid, B., Voigt, W.,
Fischer, M., Schulze, E.-D., Roscher, C., Weigelt, A., and Allan, E.:
Bottom-up effects of plant diversity on multitrophic interactions in a
biodiversity experiment, Nature, 468, 553–556, 2010.
Smith, L. A.: What might we learn from climate forecasts?, P. Natl. Acad. Sci., 99, 2487–2492, 2002.
Sparks, T. and Yates, T.: The effect of spring temperature on the appearance
dates of British butterflies 1883–1993, Ecography, 20, 368–374, 1997.
Staniczenko, P. P., Lewis, O. T., Tylianakis, J. M., Albrecht, M., Coudrain,
V., Klein, A.-M., and Reed-Tsochas, F.: Predicting the effect of habitat
modification on networks of interacting species, Nature Commun., 8,
792, https://doi.org/10.1038/s41467-017-00913-w, 2017.
Steffan-Dewenter, I., Potts, S. G., and Packer, L.: Pollinator diversity and
crop pollination services are at risk, Trends Ecol. Evol., 20, 651–652,
2005.
Stiling, P. and Cornelissen, T.: How does elevated carbon dioxide (CO2)
affect plant–herbivore interactions? A field experiment and meta-analysis
of CO2-mediated changes on plant chemistry and herbivore performance, Glob.
Change Biol., 13, 1823–1842, 2007.
Thompson, R. M., Brose, U., Dunne, J. A., Hall, R. O., Hladyz, S., Kitching,
R. L., Martinez, N. D., Rantala, H., Romanuk, T. N., Stouffer, D. B., and
Tylianakis, J. M.: Food webs: reconciling the structure and function of
biodiversity, Trends Ecol. Evol., 27, 689–697, 2012.
Tilman, D., May, R. M., Lehman, C. L., and Nowak, M. A.: Habitat destruction
and the extinction debt, Nature, 371, 65–66, https://doi.org/10.1038/371065a0, 1994.
Traugott, M., Kamenova, S., Ruess, L., Seeber, J., and Plantegenest, M.:
Empirically characterising trophic networks: what emerging DNA-based
methods, stable isotope and fatty acid analyses can offer, Adv.
Ecol. Res., 49, 177–224, 2013.
Traveset, A. and Richardson, D. M.: Mutualistic interactions of invasive
species, Annu. Rev. Ecol. Evol. Syst., 45, 89–113, 2014.
Traveset, A., González-Varo, J. P., and Valido, A.: Long-term
demographic consequences of a seed dispersal disruption, Proc. R. Soc. B, 279, 3298–3303,
https://doi.org/10.1098/rspb.2012.0535, 2012.
Traveset, A., Heleno, R., Chamorro, S., Vargas, P., McMullen, C.,
Castro-Urgal, R., Nogales, M., Herrera, H. W., and Olesen, J. M.: Invaders
of pollination networks in the Galápagos Islands: emergence of novel
communities, Proc. R. Soc. B, 280, 20123040, https://doi.org/10.1098/rspb.2012.3040, 2013.
Traveset, A., Chamorro, S., Olesen, J. M., and Heleno, R.: Space, time and
aliens: charting the dynamic structure of Galápagos pollination
networks, AoB Plants, 7, plv068, https://doi.org/10.1093/aobpla/plv068, 2015.
Traveset, A., Tur, C., Trøjelsgaard, K., Heleno, R., Castro-Urgal, R.,
and Olesen, J. M.: Global patterns of mainland and insular pollination
networks, Glob. Ecol. Biogeogr., 25, 880–890, 2016.
Traveset, A., Araújo, M. B., and Marquet, P. A.: Cambio global y su
impacto sobre las redes de interacciones ecológicas, in: Cambio Global.
Una mirada desde Iberoamérica, edited by: Marquet, P. A., Valladares, F., Magro,
S., Gaxiola, A., and Enrich-Prast, A., ACCI Ediciones, 2018.
Tylianakis, J. M. and Morris, R. J.: Ecological networks across
environmental gradients, Annual Review of Ecology, Evolution, and
Systematics, 48, 25–48, 2017.
Tylianakis, J. M., Tscharntke, T., and Lewis, O. T.: Habitat modification
alters the structure of tropical host-parasitoid food webs, Nature, 445,
202–205, 2007.
Tylianakis, J. M., Didham, R. K., Bascompte, J., and Wardle, D. A.: Global
change and species interactions in terrestrial ecosystems, Ecol. Lett., 11,
1351–1363, 2008.
Tylianakis, J. M., Laliberté, E., Nielsen, A., and Bascompte, J.:
Conservation of species interaction networks, Biol. Conserv., 143,
2270–2279, 2010.
UCS: https://www.ucsusa.org/about/1992-world-scientists.html (last access: February 2020), 1992.
UN: Transforming our world: The 2030 Agenda for Sustainable Development,
United Nations General Assembly, 2015.
Valiente-Banuet, A. and Verdú, M.: Human impacts on multiple ecological
networks act synergistically to drive ecosystem collapse, Front.
Ecol. Environ., 11, 408–413, 2013.
Valiente-Banuet, A., Aizen, M. A., Alcántara, J. M., Arroyo, J.,
Cocucci, A., Galetti, M., García, M. B., García, D., Gómez, J.
M., Jordano, P., Medel, R., Navarro, L., Obeso, J. R., Oviedo, R.,
Ramírez, N., Rey, P. J., Traveset, A., Verdú, M., and Zamora, R.:
Beyond species loss: the extinction of ecological interactions in a changing
world, Funct. Ecol., 29, 299–307, 2015.
Verdú, M. and Valiente-Banuet, A.: The nested assembly of plant
facilitation networks prevents species extinctions, Am. Nat., 172, 751–760,
2008.
Vidal, M. M., Hasui, E., Pizo, M. A., Tamashiro, J. Y., Silva, W. R., and
Guimarães Jr., P. R.: Frugivores at higher risk of extinction are the key
elements of a mutualistic network, Ecology, 95, 3440–3447, 2014.
Vilà, M., Bartomeus, I., Dietzsch, A. C., Petanidou, T.,
Steffan-Dewenter, I., Stout, J. C., and Tscheulin, T.: Invasive plant
integration into native plant-pollinator networks across Europe, Proc. R.
Soc. B, 276, 3887–3893, 2009.
Visser, M. E., Holleman, L. J., and Gienapp, P.: Shifts in caterpillar
biomass phenology due to climate change and its impact on the breeding
biology of an insectivorous bird, Oecologia, 147, 164–172, 2006.
Watts, D. J. and Strogatz, S. H.: Collective dynamics of 'small-world'
networks, Nature, 393, 440–442, 1998.
Woodward, G., Benstead, J. P., Beveridge, O. S., Blanchard, J., Brey, T.,
Brown, L., Cross, W. F., Friberg, N., Ings, T. C., Jacob, U., Jennings, S.,
Ledger, M. E., Milner, A. M., Montoya, J. M., O'Gorman, E., Olesen, J. M.,
Petchey, O. L., Pichler, D. E., Reuman, D. C., Thoompson, M. S., Veen, F. J.
F. V., and Yvon-Durocher, G.: Ecological networks in a changing climate, Adv. Ecol. Res., 42, 71–138, https://doi.org/10.1016/B978-0-12-381363-3.00002-2,
2011.
Woodward, G., Brown, L. E., Edwards, F. K., Hudson, L. N., Milner, A. M.,
Reuman, D. C., and Ledger, M. E.: Climate change impacts in multispecies
systems: drought alters food web size structure in a field experiment, Philos.
T. Roy. Soc. B, 367, 2990–2997, 2012.
Zavaleta, E. S., Thomas, B. D., Chiariello, N. R., Asner, G. P., Shaw, M.
R., and Field, C. B.: Plants reverse warming effect on ecosystem water
balance, P. Natl. Acad. Sci., 100, 9892–9893,
2003.
Short summary
It is not only the climate that is changing. We are now also observing a global biological change. Here we revise the overwhelming evidence that these changes affect not only individual species but also simplify the structure of entire food webs, threatening long-term community persistence. We must take urgent action to protect the integrity of natural food webs, or we might rapidly push entire ecosystems outside their safe zones.
It is not only the climate that is changing. We are now also observing a global biological...