Articles | Volume 23, issue 1
https://doi.org/10.5194/we-23-17-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-23-17-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatio-temporal patterns of co-occurrence of tigers and leopards within a protected area in central India
Anindita Bidisha Chatterjee
CORRESPONDING AUTHOR
Department of Population Management, Capture and Rehabilitation, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Kalyansundaram Sankar
Department of Population Management, Capture and Rehabilitation, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Ex-director, Salim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu 641108, India
Yadvendradev Vikramsinh Jhala
Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Qamar Qureshi
Department of Population Management, Capture and Rehabilitation, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Related subject area
Conservation Ecology
Insights into the habitat associations, phylogeny, and diet of Pipistrellus maderensis in Porto Santo, northeastern Macaronesia
Models of poisoning effects on vulture populations show that small but frequent episodes have a larger effect than large but rare ones
Changes in the Cerrado vegetation structure: insights from more than three decades of ecological succession
Toward a new generation of effective problem solvers and project-oriented applied ecologists
Scientists' warning on endangered food webs
Towards the unravelling of the slug A. ater–A. rufus complex (Gastropoda Arionidae): new genetic approaches
Non-native invasive species as paradoxical ecosystem services in urban conservation education
Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant Drosophyllum lusitanicum
Leaf litter is essential for seed survival of the endemic endangered tree Pouteria splendens (Sapotaceae) from central Chile
Sand quarry wetlands provide high-quality habitat for native amphibians
Overview of the translocation of rupestrian ferruginous fields of Capão Xavier mine to the Serra do Rola Moça State Park, Minas Gerais – Brazil
Biodiversity offsetting in England: governance rescaling, socio-spatial injustices, and the neoliberalization of nature
Human population density and tenebrionid richness covary in Mediterranean islands
Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest
Biodiversity impacts of climate change – the PRONAS software as educational tool
Monitoring arthropods in protected grasslands: comparing pitfall trapping, quadrat sampling and video monitoring
Short Communication: Systems-based conservation and conflicts between species protection programs
The geography of high-value biodiversity areas for terrestrial vertebrates in Western Europe and their coverage by protected area networks
Eva K. Nóbrega, Nia Toshkova, Angelina Gonçalves, André Reis, Elena J. Soto, Sergio Puertas Ruiz, Vanessa A. Mata, Catarina Rato, and Ricardo Rocha
Web Ecol., 23, 87–98, https://doi.org/10.5194/we-23-87-2023, https://doi.org/10.5194/we-23-87-2023, 2023
Short summary
Short summary
We conducted an island-wide survey to investigate if the Madeiran pipistrelle still persists on the island of Porto Santo, where it was believed to be extinct. We detected bats in 28 out of 46 sampling sites, and their activity was particularly associated with water points. Furthermore, we found that bats from Porto Santo and Madeira have a close phylogenetic affinity and that they feed on a wide variety of insects, including several economically important pest species and disease vectors.
Rigas Tsiakiris, John M. Halley, Kalliopi Stara, Nikos Monokrousos, Chryso Karyou, Nicolaos Kassinis, Minas Papadopoulos, and Stavros M. Xirouchakis
Web Ecol., 21, 79–93, https://doi.org/10.5194/we-21-79-2021, https://doi.org/10.5194/we-21-79-2021, 2021
Short summary
Short summary
Despite frequent media references about the mass poisoning of vultures, this study shows that small but frequent poisoning events may be even worse. Using both mathematical and computer simulation approaches we show that a chain of small poisoning events is more likely to extirpate a newly established colony than a few massive ones with the same overall mortality. Survival also depends critically on the initial population size. These results are of great relevance for restocking initiatives.
Rogério Victor S. Gonçalves, João Custódio F. Cardoso, Paulo Eugênio Oliveira, and Denis Coelho Oliveira
Web Ecol., 21, 55–64, https://doi.org/10.5194/we-21-55-2021, https://doi.org/10.5194/we-21-55-2021, 2021
Short summary
Short summary
Cerrado savannas in Brazil are under increasing pressure. Long-term vegetation dynamics (1987–2019) of a Cerrado area showed marked woody plant encroachment (WPE) processes, possibly linked to fire and grazing suppression. Open shrubby grasslands and wetlands shrunk, while forest and denser woodlands increased, concurrently with vegetation indexes (NDVI). Decreasing open cerrado and wetlands may imply biodiversity and water supply losses. WPE should be considered for Cerrado conservation.
Corrado Battisti, Giovanni Amori, and Luca Luiselli
Web Ecol., 20, 11–17, https://doi.org/10.5194/we-20-11-2020, https://doi.org/10.5194/we-20-11-2020, 2020
Short summary
Short summary
In an era of environmental crises, conservation and management strategies need a new generation of applied ecologists. Here, we stimulate the next generation of applied ecologists to acquire a pragmatic mentality of problems solvers in real contexts, using the wide arsenal of concepts, approaches and techniques available in the project management (PM) arena and using a road map based on the main steps of the conservation project cycle.
Ruben H. Heleno, William J. Ripple, and Anna Traveset
Web Ecol., 20, 1–10, https://doi.org/10.5194/we-20-1-2020, https://doi.org/10.5194/we-20-1-2020, 2020
Short summary
Short summary
It is not only the climate that is changing. We are now also observing a global biological change. Here we revise the overwhelming evidence that these changes affect not only individual species but also simplify the structure of entire food webs, threatening long-term community persistence. We must take urgent action to protect the integrity of natural food webs, or we might rapidly push entire ecosystems outside their safe zones.
María L. Peláez, Antonio G. Valdecasas, Daniel Martinez, and Jose L. Horreo
Web Ecol., 18, 115–119, https://doi.org/10.5194/we-18-115-2018, https://doi.org/10.5194/we-18-115-2018, 2018
Short summary
Short summary
The Arion ater complex comprises two morphological forms: A. rufus and A. ater, and no consensus exists about their species status. Both forms belong to different phylogenetic clades, and we have investigated the correspondence to different species. To do it, we analysed three mitochondrial genes with two different genetic approaches (one classic, one cutting-edge). Results suggested that both clades, thus forms, are different species, and shed light on the taxonomic classification of the group.
Corrado Battisti, Giuliano Fanelli, Sandro Bertolino, Luca Luiselli, Giovanni Amori, and Spartaco Gippoliti
Web Ecol., 18, 37–40, https://doi.org/10.5194/we-18-37-2018, https://doi.org/10.5194/we-18-37-2018, 2018
Short summary
Short summary
Many practices have been proposed in conservation education to facilitate a re-connection between nature and young digitally dependent people in anthropized contexts. In this paper we suggest that, at least in some specific circumstances (urban and suburban areas), non-native invasive species may have a paradoxical and positive impact on conservation education strategies, playing a role as an experiential tool, which represents a cultural ecosystem service.
Susana Gómez-González, Maria Paniw, Kamila Antunes, and Fernando Ojeda
Web Ecol., 18, 7–13, https://doi.org/10.5194/we-18-7-2018, https://doi.org/10.5194/we-18-7-2018, 2018
Gastón Javier Sotes, Ramiro Osciel Bustamante, and Carolina Andrea Henríquez
Web Ecol., 18, 1–5, https://doi.org/10.5194/we-18-1-2018, https://doi.org/10.5194/we-18-1-2018, 2018
Short summary
Short summary
Pouteria splendens is an endemic endangered tree from central Chile. Natural regeneration in the species seems to be low and its distribution is restricted. We investigate seed dispersal and survival. Results indicated a low distance of seed dispersal, and the presence of leaf litter covering seeds increased survival. We suggest that future conservation programs should focus on protecting both adult plants and leaf litter under trees.
Michael Sievers
Web Ecol., 17, 19–27, https://doi.org/10.5194/we-17-19-2017, https://doi.org/10.5194/we-17-19-2017, 2017
Short summary
Short summary
Artificial wetlands are becoming critical habitats as natural wetlands continue to be degraded and destroyed. I surveyed quarry wetlands to assess how they provide habitat for frogs and the factors driving patterns. Quarry wetlands consistently harboured more species and healthier individuals than reference wetlands. We need to encourage wildlife utilisation of quarry wetlands, and the methods outlined here provide a powerful, yet simple, tool to assess the overall health of artificial wetlands.
Alessandra F. Fernandes, Ana C. Maia, Juan F. S. Monteiro, João N. Condé, and Mauro Martins
Web Ecol., 16, 93–96, https://doi.org/10.5194/we-16-93-2016, https://doi.org/10.5194/we-16-93-2016, 2016
Short summary
Short summary
The Serra do Rola Moça State Park is located in Brazil and is home to Canga vegetation. The objective of the study was to conserve biodiversity. The species present mainly belong to the Asteraceae, Rubiaceae, Myrtaceae, Velloziaceae, Bromeliaceae, and Orchidaceae families. Approximately 15 000 individuals of Canga species were translocated and planted. This study indicates the possibility of nursery breeding of some of the native species and their use in the recovery of areas in mining regions.
Evangelia Apostolopoulou
Web Ecol., 16, 67–71, https://doi.org/10.5194/we-16-67-2016, https://doi.org/10.5194/we-16-67-2016, 2016
Short summary
Short summary
I use primary empirical data obtained through interviews in case studies around England to explore the neoliberal character of biodiversity offsetting, its interrelationship with governance rescaling, and the way the latter influences the distribution of offsetting’s costs and benefits. My results show that biodiversity offsetting in England has been a reactionary neoliberal policy characterized by important deficits from an environmental and socio-spatial justice perspective.
Simone Fattorini and Giovanni Strona
Web Ecol., 16, 63–65, https://doi.org/10.5194/we-16-63-2016, https://doi.org/10.5194/we-16-63-2016, 2016
Short summary
Short summary
An unexpected high biodiversity can be found even in densely inhabited areas, possibly as a result of a tendency of human settlements to be located in sites particularly favourable also for other organisms. We studied the relationship between human density and tenebrionid beetle richness in Italian islands. Tenebrionid richness increased with human population density. This suggests that islands that are more hospitable to humans are also those that can be more favourable for tenebrionids.
F. S. Campos, G. A. Llorente, L. Rincón, R. Lourenço-de-Moraes, and M. Solé
Web Ecol., 16, 9–12, https://doi.org/10.5194/we-16-9-2016, https://doi.org/10.5194/we-16-9-2016, 2016
Short summary
Short summary
This study evaluated the efficiency of the protected areas (PAs) from the Brazilian Atlantic Forest on the conservation of threatened amphibian species. This brief overview highlights not only the crisis faced by unprotected amphibians, but it also sounds the alarm regarding the situation of species covered by the PAs network. Such context can improve the environmental actions for the PAs integrity and reduce the extinction risk of threatened amphibian species in this region.
K. Ulbrich, O. Schweiger, S. Klotz, and J. Settele
Web Ecol., 15, 49–58, https://doi.org/10.5194/we-15-49-2015, https://doi.org/10.5194/we-15-49-2015, 2015
Short summary
Short summary
Only little of current biodiversity knowledge reaches the young generation. We developed the educational software PRONAS to show how scientists handle questions about the impact of climate change on species' habitats. About fifty European species have been used to demonstrate habitat losses and shifts and the mismatch of habitat dynamics of interacting species. We found that “educational software” is a useful format for scientific outreach. PRONAS is freely accessible in German and English.
J. G. Zaller, G. Kerschbaumer, R. Rizzoli, A. Tiefenbacher, E. Gruber, and H. Schedl
Web Ecol., 15, 15–23, https://doi.org/10.5194/we-15-15-2015, https://doi.org/10.5194/we-15-15-2015, 2015
Short summary
Short summary
Arthropod monitoring in protected areas often requires non-destructive methods in order to avoid detrimental effects on natural communities. Video monitoring recorded the highest number of individuals followed by quadrat sampling and pitfall trapping. Quadrat sampling showed the highest diversity followed by video monitoring and pitfall trapping. Thus, video monitoring has a great potential as a supplementary method for biodiversity assessments especially at the level of parataxonomic units.
F. Jordán and A. Báldi
Web Ecol., 13, 85–89, https://doi.org/10.5194/we-13-85-2013, https://doi.org/10.5194/we-13-85-2013, 2013
M. J. T. Assunção-Albuquerque, J. M. Rey Benayas, F. S. Albuquerque, and M. Á. Rodríguez
Web Ecol., 12, 65–73, https://doi.org/10.5194/we-12-65-2012, https://doi.org/10.5194/we-12-65-2012, 2012
Cited articles
Amarasekare, P.: Coexistence of intraguild predators and prey in
resource-rich environments, Ecology, 89, 2786–2797,
https://doi.org/10.1890/07-1508.1, 2008.
Athreya, V., Odden, M., Linnell, J. D., Krishnaswamy, J., and Karanth, U.:
Big cats in our backyards: persistence of large carnivores in a human
dominated landscape in India, PloS one, 8, e57872, https://doi.org/10.1371/journal.pone.0057872, 2013.
Balme, G. A., Pitman, R. T., Robinson, H. S., Miller, J. R. B., Funston, P.
J., and Hunter, L. T. B.: Leopard distribution and abundance is unaffected
by interference competition with lions, Behavl. Ecol., 28, 1348–1358, https://doi.org/10.1093/beheco/arx098, 2017.
Begon, M., Harper, J. L., and Townsend, C. R.: Ecology: Individuals,
Populations and Communities, Blackwell Scientific Publications, Oxford, 1068 pp., https://www.cabdirect.org/cabdirect/abstract/19870540497 (last access: 23 June 2022),
1990.
Bisht, S., Banerjee, S., Qureshi, Q., and Jhala, Y.: Demography of a
high-density tiger population and its implications for tiger recovery, J. Appl. Ecol., 56,
1725–1740, https://doi.org/10.1111/1365-2664.13410, 2019.
Borchers, D. L. and Efford, M. G.: Spatially explicit maximum likelihood
methods for capture–recapture studies, Biometrics, 64, 377–385, https://doi.org/10.1111/j.1541-0420.2007.00927.x, 2008.
Brawata, R. L.: Does management of a top carnivore influence the response of
mesopredators and prey to rainfall in arid ecosystems? Evidence for a
Baseline Density theory, Aust. Zool., 41, 417–432,
https://doi.org/10.7882/AZ.2021.007, 2021.
Broekhuis, F., Cozzi, G., Valeix, M., McNutt, J. W., and Macdonald, D. W.:
Risk avoidance in sympatric large carnivores: reactive or predictive?, J. Anim. Ecol., 82,
1098–1105, https://doi.org/10.1111/1365-2656.12077, 2013.
Burnham, K. P. and Anderson, D. R.: A practical information-theoretic
approach, Model selection and multimodel inference, 2, Second. NY: Springer-Verlag, 63.2020, 488 pp., https://caestuaries.opennrm.org/assets/06942155460a79991fdf1b57f641b1b4/application/pdf/burnham_anderson2002.pdf (last access: 22 January 2022), 2002.
Cade, B. S. and Noon, B. R.: A gentle introduction to quantile regression
for ecologists. Front, Ecol. Environ., 1, 412–420,
https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2, 2003.
Cade, B. S., Terrell, J. W., and Porath, M. T.: Estimating fish body condition
with quantile regression, N. Am. J. Fish. Manag., 28, 349–359,
https://doi.org/10.1577/M07-048.1, 2008.
Carbone, C., Du Toit, J. T., and Gordon, I. J.: Feeding success in African wild
dogs: does hunting by spotted hyenas influence kleptoparasitism group size?,
J. Anim. Ecol., 66, 318–326, https://doi.org/10.2307/5978, 1997.
Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J. L., Bielby, J., Mace,
G. M., and Moritz, C.: Human population density and extinction risk in the
world's carnivores, PLoS Biol., 2, p.e197, https://doi.org/10.1371/journal.pbio.0020197, 2004.
Caro, T. M. and Stoner, C. J.: The potential for interspecific competition
among African carnivores, Biol. Conserv., 110, 67–75, https://doi.org/10.1016/S0006-3207(02)00177-5, 2003.
Carter, N., Jasny, M., Gurung, B., and Liu, J.: Impacts of people and tigers
on leopard spatiotemporal activity patterns in a global biodiversity
hotspot, Glob. Ecol. Conserv., 3, 149–162, https://doi.org/10.1016/j.gecco.2014.11.013, 2015.
Champion, H. G. and Seth, S. K.: A revised survey of the forest types of India.
Manager of Publications, Govt. of India, New Delhi, p. 404, https://books.google.co.in/books?hl=en&lr=&id=hIjwAAAAMAAJ&oi=fnd&pg=PR15&dq=A+revised+survey+of+the+forest+types+of+India&ots=lDzT6Eo6tX&sig=NPK0eedpamn6Gp4K6ctkV0LCQxU#v=onepage&q=A revised survey of the forest types of India&f=false (last access: 28 July 2022), 1968.
Chapron, G., Kaczensky, P., Linnell, J. D., Von Arx, M., Huber, D.,
Andrén, H., López-Bao, V., Adamec, M., Álvares, F., Anders, O.,
and Balčiauskas, L.: Recovery of large carnivores in Europe's modern
human-dominated landscapes, Science, 346, 1517–1519, https://doi.org/10.1126/science.1257553, 2014.
Chatterjee, A. B., Sankar, K., and Qureshi, Q.: Density and Distribution of
Principal Prey Species of Tigers and Leopards in Pench Tiger Reserve, Madhya
Pradesh, J. Ecophysiol. Occup. Health, 22, 15–21, https://doi.org/10.18311/jeoh/2022/29182, 2022.
Crall, J. P., Stewart, C. V., Berger-Wolf, T. Y., Rubenstein, D. I., and
Sundaresan, S. R.: Hotspotter – patterned species instance recognition,
in: 2013 IEEE workshop on applications of computer vision (WACV), 230–237, IEEE, https://doi.org/10.1109/WACV.2013.6475023, 2013.
Creel, S. and Creel, N. M.: Limitation of African wild dogs by competition
with larger carnivores, Conser. Biol., 10, 526–538, https://doi.org/10.1046/j.1523-1739.1996.10020526.x, 1996.
Creel, S.: Four factors modifying the effect of competition on carnivore
population dynamics as illustrated by African wild dogs, Conserv. Biol., 15, 271–274,
https://doi.org/10.1111/j.1523-1739.2001.99534.x, 2001.
Crooks, K. R. and Soulé, M. E.: Mesopredator release and avifaunal
extinctions in a fragmented system, Nature, 400, 563–566, 1999.
Curveira-Santos, G., Gigliotti, L., Silva, A. P., Sutherland, C., Foord, S.,
Santos-Reis, M., and Swanepoel, L. H.: Broad aggressive interactions among
African carnivores suggest intraguild killing is driven by more than
competition, Ecology, 103, p. e03600, https://doi.org/10.1002/ecy.3600, 2021.
Cusack, J. J., Dickman, A. J., Kalyahe, M., Rowcliffe, J. M., Carbone, C.,
MacDonald, D. W., and Coulson, T.: Revealing kleptoparasitic and predatory
tendencies in an African mammal community using camera traps: a comparison
of spatiotemporal approaches, Oikos, 126, 812–822, https://doi.org/10.5061/dryad.br86d,
2017.
de Oliveira, T. G. and Pereira, J. A.: Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America, J. Mamm. Evolut., 21, 427–436, https://doi.org/10.1007/s10914-013-9251-4, 2014.
Di Minin, E., Slotow, R., Hunter, L. T. B., Montesino Pouzols, F., Toivonen,
T., Verburg, P. H., Williams, N., Lisanne, P., and Moilanen, A.: Global
priorities for national carnivore conservation under land use change, Sci. Rep., 6,
23814, https://doi.org/10.1038/srep23814, 2016.
Dinerstein, E., Loucks, C., Wikramanayake, E., Ginsberg, J., Sanderson, E.,
Seidensticker, J., Forrest, J., Bryja,G., Heydlauff,A., Klenzendorf, S.,
Leimgruber, P., Mills, J., O'Brien, T. G., Shrestha, M., Simons, R., and
Songer, M.: The fate of wild tigers, Bioscience, 57, 508–514, https://doi.org/10.1641/B570608, 2007.
Donadio, E. and Buskirk, S. W.: Diet, morphology, and interspecific killing
in Carnivora ,The Am. Nat., 167, 524–536, https://doi.org/10.1086/501033, 2006.
Du Preez, B., Purdon, J., Trethowan, P., Macdonald, D. W., and Loveridge, A. J.:
Dietary niche differentiation facilitates coexistence of two large
carnivores, J. Zool., 302, 149–156, https://doi.org/10.1111/jzo.12443, 2017.
Durant, S. M.: Competition refuges and coexistence: an example from Serengeti
carnivores, J. Anim. Ecol., 67, 370–386, https://doi.org/10.1046/j.1365-2656.1998.00202.x, 1998.
Durant, S. M., Craft, M. E., Foley, C., Hampson, K., Lobora, A. L., Msuha,
M., Eblate, E., Bukombe, J., Mchetto, J., and Pettorelli, N.: Does size
matter? An investigation of habitat use across a carnivore assemblage in the
Serengeti, Tanzania, J. Anim. Ecol., 79, 1012–1022, https://doi.org/10.1111/j.1365-2656.2010.01717.x, 2010.
Dutta, T., Sharma, S., Maldonado, J. E., Wood, T. C., Panwar, H. S., and
Seidensticker, J.: Gene flow and demographic history of leopards (Panthera
pardus) in the central Indian highlands, Evol. Appl., 6, 949–959, https://doi.org/10.1111/ddi.12024, 2013.
Dutta, T., Sharma, S., McRae, B. H., Roy, P. S., and DeFries, R.: Connecting
the dots: mapping habitat connectivity for tigers in central India, Reg. Environ. Change, 16,
53–67, https://doi.org/10.1007/s10113-015-0877-z, 2016.
Efford, M.: Density estimation in live-trapping studies, Oikos, 106, 598–610, https://doi.org/10.1111/j.0030-1299.2004.13043.x, 2004.
Efford, M.: SECR-spatially explicit capture-recapture in R., University of Otago, Dunedin, 20 pp., https://cran.r-project.org/web/packages/secr/vignettes/secr-overview.pdf (last access: 22 June 2022), 2011.
Efford, M.: secr 2.9-spatially explicit capture–recapture in R, 25 pp., https://cran.r-project.org/web/packages/secr/vignettes/secr-overview.pdf (last access: 22 June 2022), 2015.
Efford, M.: secr design-sampling design for spatially explicit
capture–recapture, https://link.springer.com/chapter/10.1007/978-0-387-78151-8_11 (last access: 22 June 2022), 2018.
Efford, M. G. and Mowat, G.: Compensatory heterogeneity in spatially
explicit capture–recapture data, Ecology,, 95, 1341–1348, https://doi.org/10.1890/13-1497.1,
2014.
Efford, M. G., Borchers, D. L., and Byrom, A. E.: Density estimation by
spatially explicit capture–recapture: likelihood-based methods,
in: Modeling demographic processes in marked populations, 255–269, Springer, Boston, MA, https://doi.org/10.1007/978-0-387-78151-8_11, 2009.
Elbroch, L. M., Allen, M. L., Lowrey, B. H., and Wittmer, H. U.: The difference between killing and eating: ecological shortcomings of puma energetic models, Ecosphere, 5, 1–16, https://doi.org/10.1890/ES13-00373.1, 2014.
Elmhagen, B. and Rushton, S. P.: Trophic control of mesopredators in
terrestrial ecosystems: top-down or bottom-up?, Ecol. Lett., 10, 197–206, https://doi.org/10.1111/j.1461-0248.2006.01010.x, 2007.
Farris, Z. J., Gerber, B. D., Karpanty, S., Murphy, A., Wampole, E.,
Ratelolahy, F., and Kelly, M. J.: Exploring and interpreting spatiotemporal
interactions between native and invasive carnivores across a gradient of
rainforest degradation, Biol. Invasions, 22, 2033–2047, https://doi.org/10.1007/s10530-020-02237-1,
2020.
Fenn, M. G. and Macdonald, D. W.: Use of middens by red foxes: risk reverses
rhythms of rats, J. Mammal., 76, 130–136, https://doi.org/10.2307/1382321, 1995.
Foster, V. C., Sarmento, P., Sollmann, R., Tôrres, N., Jácomo, A.
T., Negrões, N., Fonseca, C., and Silveira, L.: Jaguar and puma activity patterns
and predator-prey interactions in four Brazilian
biomes, Biotropica, 45, 373–379, https://doi.org/10.1111/btp.12021, 2013.
Halle, S.: Ecological relevance of daily activity patterns, in: Activity
Patterns in Small Mammals: An Ecological Approach, edited by: Halle, S. and Stenseth, N. C., Springer, New York, 67–90, https://link.springer.com/chapter/10.1007/978-3-642-18264-8_5 (last access: 30 June 2022), 2000.
Harihar, A., Pandav, B., and Goyal, S. P.: Responses of leopard Panthera
pardus to the recovery of a tiger Panthera tigris population, J. Appl. Ecol., 48,
806–814, https://doi.org/10.1111/j.1365-2664.2011.01981.x, 2011.
Hayward, M. W. and Slotow, R.: Temporal partitioning of activity in large
African carnivores: tests of multiple hypotheses, S. Afr. J. Wildl. Res.-24-month delayed open access, 39, 109–125, 2009.
Hayward, M. W., Hofmeyr, M., O'brien, J., and Kerley, G. I.: Prey preferences of
the cheetah (Acinonyx jubatus)(Felidae: Carnivora): morphological
limitations or the need to capture rapidly consumable prey before
kleptoparasites arrive?, J. Zool., 270, 615–627, https://doi.org/10.1111/j.1469-7998.2006.00184.x, 2006.
Hayward, M. W., O'Brien, J., and Kerley, G. I.: Carrying capacity of large
African predators: predictions and tests, Biol. Conserv., 139, 219–229, https://doi.org/10.1016/j.biocon.2007.06.018, 2007.
Henschel, P., Hunter, L., Breitenmoser, U., Purchase, N., Packer, C.,
Khorozyan, I., Bauer, H., Marker, L., Sogbohossou, E., and
Breitenmoser-Wursten, C.: Panthera pardus, The IUCN Red List of Threatened Species 2008, e.T15954A5329380, https://doi.org/10.2305/IUCN.UK.2008.RLTS.T15954A5329380.en, 2008.
Hoeks, S., Huijbregts, M. A., Busana, M., Harfoot, M. B., Svenning, J. C.,
and Santini, L.: Mechanistic insights into the role of large carnivores for
ecosystem structure and functioning, Ecography, 43, 1752–1763, https://doi.org/10.1111/ecog.05191, 2020.
Iyengar, E. V.: Kleptoparasitic interactions throughout the animal kingdom and
a reevaluation, based on participant mobility, of the conditions promoting
the evolution of kleptoparasitism, Biol. J. Linn. Soc., 93, 745–762,
https://doi.org/10.1111/j.1095-8312.2008.00954.x, 2008.
Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M., and Van der
Hammen, T.: Habitat structure affects intraguild
predation, Ecology, 88, 2713–2719, https://doi.org/10.1890/06-1408.1, 2007.
Jhala, Y. V., Gopal, R., and Qureshi, Q. (Eds.): Status of tigers,
copredators and prey in India, National Tiger Conservation Authority,
Government of India, New Delhi and Wildlife Institute of India, Dehradun, TR
08/001, 151 pp., National Tiger Conservation Authority and Wildlife Institute of India, http://indiaenvironmentportal.org.in/files/tiger.pdf (last access: 30 June 2022), 2008.
Jhala, Y. V., Qureshi, Q., and Gopal, R. (Eds.): Status of tigers, copredators and prey in India 2014, National Tiger Conservation Authority, Government of India, New Delhi and Wildlife Institute of India, Dehradun, https://ntca.gov.in/assets/uploads/Reports/AITM/AITE_2014_fullreport.pdf (last access: 30 June 2022), 2015.
Jhala, Y. V., Qureshi, Q., and Nayak, A. K. (Eds.): Status of tigers,
copredators and prey in India, 2018. National Tiger Conservation Authority,
Government of India, New Delhi, and Wildlife Institute of India, Dehradun,
https://www.researchgate.net/publication/262561266_Niche-complementarity_of_South_American_foxes_Reanalysis_and_test_of_a_hypothesis (last access: 15 October 2022), 2020.
Jhala, Y. V., Qureshi, Q., and Yadav, S. P. (Eds.): Status of Leopards,
co-predators and megaherbivores in India, 2018, National Tiger Conservation
Authority, Government of India, New Delhi, and Wildlife Institute of India,
Dehradun, https://ntca.gov.in/assets/uploads/Reports/AITM/Status_Leopard_Report_2018_web.pdf (last access: 30 June 2022), 2021.
Jiménez, J.: Niche-complementarity of South American foxes: reanalysis
and test of a hypothesis, https://www.researchgate.net/publication/262561266_Niche-complementarity_of_South_American_foxes_Reanalysis_and_test_of_a_hypothesi (last access: 15 Ocotber 2022), 1996.
Johnsingh, A. J. T.: Prey selection in three large sympatric carnivores in
Bandipur, Mammalia, https://doi.org/10.1515/mamm.1992.56.4.517, 1992.
Johnson, W. E. and Franklin, W. L.: Role of body size in the diets of
sympatric gray and culpeo foxes, J. Mammal., 75, 163–174, https://doi.org/10.2307/1382248, 1994.
Kafley, H., Lamichhane, B. R., Maharjan, R., Khadka, M., Bhattarai, N., and
Gompper, M. E.: Tiger and leopard co-occurrence: intraguild interactions in
response to human and livestock disturbance, Basic Appl. Ecol., 40, 78–89,
https://doi.org/10.1016/j.baae.2019.07.007, 2019.
Karanth, K. U.: Estimating tiger Panthera tigris populations from camera-trap
data using capture – recapture models, Biol. Conserv., 71, 333–338,
https://doi.org/10.1016/0006-3207(94)00057-W, 1995.
Karanth, K. U. and Nichols, J. D.: Estimation of tiger densities in India
using photographic captures and recaptures, Ecology, 79, 2852–2862, https://doi.org/10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2, 1998.
Karanth, K. U. and Stith, B. M.: Prey depletion as a critical determinant of tiger
population viability, in: Riding the tiger: tiger conservation in human
dominated landscapes, edited by: Seidensticker, J., Christie, S., and
Jackson, P. Cambridge University Press, Cambridge, 100–132, https://go.gale.com/ps/i.do?id=GALE%7CA83451419&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=10813705&p=AONE&sw=w&userGroupName=anon%7E2b54c2c8 (last access: 10 October 2022), 1999.
Karanth, K. U. and Sunquist, M. E.: Prey selection by tiger, leopard and dhole
in tropical forests, J. Anim. Ecol., 64, 439–450, https://doi.org/10.2307/5647, 1995.
Karanth, K. U. and Sunquist, M. E.: Behavioural correlates of predation by
tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus)
in Nagarahole, India, J. Zool., 250, 255–265,
https://doi.org/10.1111/j.1469-7998.2000.tb01076.x, 2000.
Karanth, K. U., Gopalaswamy, A. M., Kumar, N. S., Vaidyanathan, S., Nichols,
J. D., and MacKenzie, D. I.: Monitoring carnivore populations at the landscape
scale: occupancy modelling of tigers from sign surveys, J. Appl. Ecol., 48, 1048–1056,
https://doi.org/10.1111/j.1365-2664.2011.02002.x, 2011.
Karanth, K. U., Srivathsa, A., Vasudev, D., Puri, M., Parameshwaran, R., and
Kumar, N. S.: Spatio-temporal interactions facilitate large carnivore sympatry
across a resource gradient, P. Royal Soc. B, 284, p. 20161860,
https://doi.org/10.1098/rspb.2016.1860, 2017.
Koenker, R.: Quantile regression. Cambridge University Press, New York, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=38bc067c8e6817ca75d20deeddca28eaddba55f4. (last access: 28 July 2022), 2005.
Koenker, R. and Bassett, G.: Regression quantiles, Econometrica, 46, 33–50,
https://doi.org/10.2307/1913643, 1978.
Kolipakam, V., Singh, S., Pant, B., Qureshi, Q., and Jhala, Y. V.: Genetic
structure of tigers (Panthera tigris tigris) in India and its implications
for conservation, Glob. Ecol. Conserv., 20, p. e00710, https://doi.org/10.1016/j.gecco.2019.e00710,
2019.
Kozlowski, A. J., Gese, E. M., and Arjo, W. M.: Niche overlap and resource
partitioning between sympatric kit foxes and coyotes in the Great Basin
Desert of western Utah, Am. Midl. Nat., 160, 191–208, https://doi.org/10.1674/0003-0031(2008)160[191:NOARPB]2.0.CO;2, 2008.
Kronfeld-Schor, N. and Dayan, T.: Activity patterns of rodents: the
physiological ecology of biological rhythms, Biol. Rhythm Res., 39, 193–211,
https://doi.org/10.1080/09291010701683268, 2008.
Kumar, U., Awasthi, N., Qureshi, Q., and Jhala, Y.: Do conservation
strategies that increase tiger populations have consequences for other wild
carnivores like leopards?, Sci. Rep., 9, 1–8, https://doi.org/10.1038/s41598-019-51213-w, 2019.
Lahkar, D., Ahmed, M. F., Begum, R. H., Das, S. K., and Harihar, A.: Inferring
patterns of sympatry among large carnivores in Manas National Park–a
prey-rich habitat influenced by anthropogenic disturbances, Anim. Conserv. 24,
589–601, https://doi.org/10.1111/acv.12662, 2021.
Lamichhane, B. R., Leirs, H., Persoon, G. A., Subedi, N., Dhakal, M., Oli, B. N., Reynaert, S., Sluydts, V., Pokheral, C. P., Poudyal, L. P., and Malla, S.: Factors associated with co-occurrence of large carnivores in a human-dominated landscape, Biodi. Conserv., 28, 1473–1491, https://doi.org/10.1007/s10531-019-01737-4, 2019.
Levi, T. and Wilmers, C. C.: Wolves–coyotes–foxes: a cascade among
carnivores, Ecology, 93, 921–929, https://doi.org/10.1890/11-0165.1, 2012.
Li, Z., Wang, T., Smith, J. L., Feng, R., Feng, L., Mou, P., and Ge, J.:
Coexistence of two sympatric flagship carnivores in the human-dominated
forest landscapes of Northeast Asia, Landsc. Ecol., 34, 291–305, https://doi.org/10.1007/s10980-018-0759-0, 2018.
Lima, S. L.: Putting predators back into behavioral predator–prey
interactions, Trends Ecol. Evol., 17, 70–75,
https://doi.org/10.1016/S0169-5347(01)02393-X, 2002.
Linkie, M. and Ridout, M. S.: Assessing tiger–prey interactions in
Sumatran rainforests, J. Zool., 284, 224–229, https://doi.org/10.1111/j.1469-7998.2011.00801.x,
2011.
Linnell, J. D. and Strand, O.: Interference interactions, coexistence and
conservation of mammalian carnivores, Divers. Distrib., 6, 169–176, https://doi.org/10.1046/j.1472-4642.2000.00069.x, 2000.
Lucherini, M., Reppucci, J. I., Walker, R. S., Villalba, M. L., Wurstten, A.,
Gallardo, G., Iriarte, A., Villalobos, R., and Perovic, P.: Activity pattern
segregation of carnivores in the high Andes, J. Mammal., 90, 1404–1409,
https://doi.org/10.1644/09-MAMM-A-002R.1, 2009.
Majumder, A., Basu, S., Sankar, K., Qureshi, Q., Jhala, Y. V., and Gopal, R.:
Prey selection, food habits and temporal activity patterns of sympatric
carnivores in Pench Tiger Reserve, Madhya Pradesh, Central India, Sci. Trans. Env. Technovation, 5, 110–120,
2012a.
Majumder, A., Basu, S., Sankar, K., Qureshi, Q., Jhala, Y. V., Nigam, P., and
Gopal, R.: Home ranges of the radio-collared Bengal tigers (Panthera tigris
tigris L.) in Pench Tiger Reserve, Madhya Pradesh, Central India, Wildl Biol Pract, 8,
36–49, https://doi.org/10.2461/wbp.2012.8.4, 2012b.
Majumder, A., Sankar, K., Qureshi, Q., and Basu, S.: Predation ecology of
large sympatric carnivores as influenced by available wild ungulate prey in
a tropical deciduous forest of Central India, J. Trop. Ecol., 417–426, https://doi.org/10.1017/S0266467413000473, 2013.
Mann, H. B. and Whitney, D. R.: On a test of whether one of two random
variables is stochastically larger than the other, Ann. Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947.
Mayhew, P.: Discovering Evolutionary Ecology, Oxford University Press,
Oxford, https://global.oup.com/academic/product/discovering-evolutionary-ecology-9780198525288?cc=us&lang=en& (last access: 15 October 2022), 2006.
McDougal, C.: The face of the tiger. London, Rivington Books, p. 180, https://www.goodreads.com/en/book/show/4508934-the-face-of-the-tiger (last access: 15 October 2022), 1977.
Meredith, M. and Ridout, M.: Overview of the overlap package, R. Proj, 1–9, https://cran.r-project.org/web/packages/overlap/vignettes/overlap.pdf (last access: 14 June 2022), 2014.
Miller, J. R., Ament, J. M., and Schmitz, O. J.: Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response, J. Animal ecol., 83, 214–222, https://doi.org/10.1111/1365-2656.12111, 2014.
Mills, M. G. L., Freitag, S., and Van Jaarsveld, A. S.: Geographic
priorities for carnivore conservation in Africa, Conserv. Biol. Series-Cambridge, 467–483, 2001.
Mitchell, M. S., Hebblewhite, M., Boitani, L., and Powell, R. A.: Carnivore
habitat ecology: integrating theory and application, Carnivore ecology and conservation: a handbook of techniques, edited by: Boitani, L. and Powell, R. A., Oxford University Press, London, United Kingdom, 218–255,
https://doi.org/10.1093/acprof:oso/9780199558520.003.0010, 2012.
Mondal, K., Gupta, S., Bhattacharjee, S., Qureshi, Q., and Sankar, K.:
Response of leopards to re-introduced tigers in Sariska Tiger Reserve,
Western India, Int. J. Biodivers. Conserv., 4, 228–236, https://doi.org/10.5897/IJBC12.014, 2012.
Monterroso, P., Alves, P. C., and Ferreras, P.: Catch me if you can: diel
activity patterns of mammalian prey and predators, Ethology, 119, 1044–1056,
https://doi.org/10.1111/eth.12156, 2013.
Murray, D. L., Boutin, S., and O'Donoghue, M.: Winter habitat selection by
lynx and coyotes in relation to snowshoe hare abundance, Can. J. Zool., 72, 1444–1451,
https://doi.org/10.1139/z94-191, 1994.
Nowell, K. and Jackson, P.: Wild Cats. Status Survey and Conservation Action Plan, IUCN/SSC Cat Specialist Group, Gland,
Switzerland and Cambridge, UK, 421 pp., https://portals.iucn.org/library/node/6998 (last access: 14 June 2022), 1996.
Odden, M., Wegge, P., and Fredriksen, T.: Do tigers displace leopards? If
so, why?, Ecol. Res., 25, 875–881, https://doi.org/10.1007/s11284-010-0723-1, 2010.
Palomares, F. and Caro, T. M.: Interspecific killing among mammalian
carnivores, Am. Nat., 153, 492–508, https://doi.org/10.1086/303189, 1999.
Paquet, P. C.: Prey use strategies of sympatric wolves and coyotes in Riding
Mountain National Park, Manitoba, J. Mammal., 73, 337–343, https://doi.org/10.2307/1382067, 1992.
Paúl, M. J., Layna, J. F., Monterroso, P., and Álvares, F.: Resource
partitioning of sympatric African wolves (Canis lupaster) and side-striped
Jackals (Canis adustus) in an arid environment from West
Africa, Diversity, 12, p. 477, https://doi.org/10.3390/D12120477, 2020.
Pereira, L. M., Owen-Smith, N., and Moleón, M. Facultative predation
and scavenging by mammalian carnivores: Seasonal, regional and intra-guild
comparisons, Mammal Rev., 44, 44–55, https://doi.org/10.1111/mam.12005, 2014.
Polis, G. A., Myers, C. A., and Holt, R. D.: The ecology and evolution of
intraguild predation: potential competitors that eat each other, Annu. Rev. Ecol. Evol. Syst., 20,
297–330, https://doi.org/10.1146/annurev.es.20.110189.001501, 1989.
Prugh, L. R. and Sivy, K. J.: Enemies with benefits: integrating positive
and negative interactions among terrestrial
carnivores, Ecol. Lett., 23, 902–918, https://doi.org/10.1111/ele.13489, 2020.
Prugh, L. R., Stoner, C. J., Epps, C. W., Bean, W. T., Ripple, W. J.,
Laliberte, A. S., and Brashares, J. S.: The rise of the
mesopredator, Bioscience, 59, 779–791, https://doi.org/10.1525/bio.2009.59.9.9,
2009.
Qureshi, Q., Saini, S., Basu, P., Gopal, R., Raza, R., and Jhala, Y.:
Connecting tiger populations for long term conservation. National Tiger
Conservation Authority and Wildlife Institute of India, Technical Report TR
2014-02, 240 pp., https://wii.gov.in/images/images/documents/connecting_tiger.pdf (last access: 14 June 2022), 2014.
Ramesh, T., Kalle, R., Sankar, K., and Qureshi, Q.: Spatio-temporal
partitioning among large carnivores in relation to major prey species in
Western Ghats, J. Zool., 287, 269–275, https://doi.org/10.1111/j.1469-7998.2012.00908.x, 2012.
Rather, T. A., Kumar, S., and Khan, J. A.: Density estimation of tiger and
leopard using spatially explicit capture–recapture framework, PeerJ, 9, p.e10634,
https://doi.org/10.7717/peerj.10634, 2021.
Rayan, D. M. and Linkie, M.: Managing conservation flagship species in
competition: Tiger, leopard and dhole in Malaysia, Biol. Conserv., 204, 360–366, https://doi.org/10.1016/j.biocon.2016.11.009, 2016.
Ridout, M. S. and Linkie, M.: Estimating overlap of daily activity patterns
from camera trap data, J Agric. Biol. Environ. Stat., 14, 322–337, 2009.
Ripple, W. J., Larsen, E. J., Renkin, R. A., and Smith, D. W.: Trophic cascades
among wolves, elk and aspen on Yellowstone National Park's northern
range, Biol. Conserv., 102, 227–234, https://doi.org/10.1016/S0006-3207(01)00107-0,
2001.
Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G.,
Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., and
Schmitz, O. J.: Status and ecological effects of the world's largest
carnivores, Science, 343, 271–287, https://doi.org/10.1126/science.1241484, 2014.
Ritchie, E. G. and Johnson, C. N.: Predator interactions, mesopredator
release and biodiversity conservation, Ecol. Lett., 12, 982–998, https://doi.org/10.1111/j.1461-0248.2009.01347.x, 2009.
Roy, M., Qureshi, Q., Naha, D., Sankar, K., Gopal, R., and Jhala, Y. V.:
Demystifying the Sundarban tiger: novel application of conventional
population estimation methods in a unique ecosystem, Popul. Ecol., 58, 81–89, https://doi.org/10.1007/s10144-015-0527-9, 2016.
Royle, J. A., Chandler, R. B., Sollmann, R., and Gardner, B.: Spatial
capture-recapture, Academic Press, USA, 577 pp., https://www.sciencedirect.com/book/9780124059399/spatial-capture-recapture (last access: 14 June 2022), 2013.
Sadhu, A., Jayam, P. P. C., Qureshi, Q., Shekhawat, R. S., Sharma, S., and
Jhala, Y. V.: Demography of a small, isolated tiger (Panthera tigris tigris)
population in a semi-arid region of western India, BMC Zool., 2, 1–13, https://doi.org/10.1186/s40850-017-0025-y, 2017.
Saggiomo, L., Picone, F., Esattore, B., and Sommese, A.: An overview of
understudied interaction types amongst large carnivores, Food Webs, 12, 35–39,
https://doi.org/10.1016/j.fooweb.2017.01.001, 2017.
Sankar, K., Qureshi, Q., Majumder, A., and Basu, S.: Ecology of tigers (Panthera tigris tigris) in Pench Tiger Reserve, Madhya Pradesh, Final report,
Wildlife Institute of India, Dehradun, 355 pp., https://www.researchgate.net/publication/313799274_Ecology_of_Tigers_in_Pench_Tiger_Reserve_Madhya_Pradesh_and_Maharasta (last access: 14 June 2022), 2013.
Santos, F., Carbone, C., Wearn, O. R., Rowcliffe, J. M., Espinosa, S., Lima,
M. G. M., Ahumada, J. A., Gonçalves, A. L. S., Trevelin, L. C.,
Alvarez-Loayza, P., and Spironello, W. R.: Prey availability and temporal
partitioning modulate felid coexistence in Neotropical forests, PloS one, 14
p. e0213671, https://doi.org/10.1371/journal.pone.0213671, 2019.
Scantlebury, D. M., Mills, M. G. L., Wilson, R. P.,Wilson, J. W., Mills, M. E. J.,
Durant, S. M., Bennett, N. C., Bradford, P., Marks, N. J., and Speakman, J. R.:
Flexible energetics of cheetah hunting strategies provide resistance against
kleptoparasitism, Science, 346, 79–81, https://doi.org/10.1126/science.1256424,
2014.
Schaller, G. B.: The Deer and the Tiger, A study of Wildlife in India, The
University of Chicago Press, Chicago, p. 384, https://doi.org/10.1126/science.155.3766.1093.a, 1967.
Schoener, T. W.: Resource Partitioning in Ecological Communities: Research on
how similar species divide resources helps reveal the natural regulation of
species diversity, Science, 185, 27–39,
https://doi.org/10.1126/science.185.4145.27, 1974.
Sharma, R. K. and Jhala, Y. V.: Monitoring tiger populations using
intensive search in a capture–recapture framework, Popul. Ecol. , 53, 373–381, https://doi.org/10.1007/s10144-010-0230-9 l, 2011.
Sherry, T. W.: Competitive interactions and adaptive strategies of American
redstarts and least flycatchers in a northern hardwoods forest, Auk, 96,
265–283, https://doi.org/10.1093/auk/96.2.265, 1979.
Silver, S. C., Ostro, L. E., Marsh, L. K., Maffei, L., Noss, A. J., Kelly, M. J.,
Wallace, R. B., Gomez, H., and Ayala, G.: The use of camera traps for
estimating jaguar Panthera onca abundance and density using
capture/recapture analysis, Oryx, 38, 148–154,
https://doi.org/10.1017/S0030605304000286, 2004.
Singh, P. and Macdonald, D. W.: Populations and activity patterns of clouded
leopards and marbled cats in Dampa Tiger Reserve, India, J. Mammal., 98, 1453–1462, https://doi.org/10.1093/jmammal/gyx104, 2017.
Sollmann, R., Furtado, M. M., Hofer, H., Jácomo, A. T., Tôrres, N. M.,
and Silveira, L.: Using occupancy models to investigate space partitioning
between two sympatric large predators, the jaguar and puma in central
Brazil, Mamm. Biol., 77, 41–46, https://doi.org/10.1016/j.mambio.2011.06.011, 2012.
Soulé, M. E., Bolger, D. T., Alberts, A. C., Wrights, J., Sorice, M.,
and Hill, S.: Reconstructed dynamics of rapid extinctions of
chaparral-requiring birds in urban habitat islands, Conserv. Biol., 2, 75–92, https://doi.org/10.1111/j.1523-1739.1988.tb00337.x, 1988.
Steinmetz, R., Seuaturien, N., and Chutipong, W.: Tigers, leopards, and dholes
in a half-empty forest: Assessing species interactions in a guild of
threatened carnivores, Biol. Conserv., 163, 68–78, https://doi.org/10.1016/j.biocon.2012.12.016,
2013.
Sunarto, S., Kelly, M. J., Parakkasi, K., and Hutajulu, M. B.: Cat coexistence
in central S umatra: ecological characteristics, spatial and temporal
overlap, and implications for management, J. Zool., 296, 104–115,
https://doi.org/10.1111/jzo.12218, 2015.
Sunquist, F. and Sunquist, M.: Tiger moon: tracking the great cats in Nepal, University of Chicago Press, https://press.uchicago.edu/ucp/books/book/chicago/T/bo3645000.html, last access: 14 June 2002.
Sunquist, M. E. and Sunquist, F. C.: Ecological Constraints on Predation by
Large Felids, in: Carnivore Behavior, Ecology, and Evolution, edited by:
Gittleman, J. L., Springer, Boston, MA, 283–301,
https://doi.org/10.1007/978-1-4757-4716-4_11, 1989.
Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D., and Zanette, L. Y.:
Fear of large carnivores causes a trophic cascade, Nat. Commun., 7, 1–7,
https://doi.org/10.1038/ncomms10698, 2016.
Svenning, J. C., Gravel, D., Holt, R. D., Schurr, F. M., Thuiller, W.,
Münkemüller, T., Schiffers, K. H., Dullinger, S., Edwards Jr, T. C.,
Hickler, T., and Higgins, S. I.: The influence of interspecific interactions on
species range expansion rates, Ecography, 37, 1198–1209,
https://doi.org/10.1111/j.1600-0587.2013.00574.x, 2014.
Swanson, A., Arnold, T., Kosmala, M., Forester, J., and Packer, C.: In the
absence of a “landscape of fear”: How lions, hyenas, and cheetahs
coexist, Ecol. Evol., 6, 8534–8545, https://doi.org/10.1002/ece3.2569, 2016.
Terborgh, J., Lopez, L., Nuñez, P., Rao, M., Shahabuddin, G., Orihuela,
G., Riveros, M., Ascanio, R., Adler, G. H., Lambert, T. D., and Balbas, L.:
Ecological meltdown in predator-free forest
fragments, Science, 294, 1923–1926, https://doi.org/10.1126/science.1064397,
2001.
Thompson, J. N.: Variation in interspecific interactions, Annu. Rev. Ecol. Evol. Syst., 19, 65–87, https://doi.org/10.1146/annurev.es.19.110188.000433, 1988.
Vanak, A. T., Fortin, D., Thaker, M., Ogden, M., Owen, C., Greatwood, S.,
and Slotow, R.: Moving to stay in place: behavioral mechanisms for
coexistence of African large carnivores, Ecology, 94, 2619–2631, https://doi.org/10.1890/13-0217.1, 2013.
Voigt, D. R. and Earle, B. D.: Avoidance of coyotes by red fox families, J. Wildl Manage., 47,
852–857, https://doi.org/10.2307/3808625, 1983.
Wikramanayake, E., Dinerstein, E., Seidensticker, J., Lumpkin, S., Pandav,
B., Shrestha, M., Ballou, J., Johnsingh, A. J. T., Chestin, I., Sunarto, S.,
Thinley, P., Thapa, K., Jiang, G., Elagupillay, S., Kafley, H., Pradhan, N.
M. B., Jigme, K., Teak, S., Cutter, P., Aziz, Md. A., and Than, U.: A
landscape-based conservation strategy to double the wild tiger
population, Conserv. Lett., 4, 219–227, https://doi.org/10.1111/j.1755-263X.2010.00162.x, 2011.
Wilcoxon, F.: Some uses of statistics in plant pathology, Bio. Bull., 1, 41–45,
https://doi.org/10.2307/3002011, 1945.
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M.,
and Jetz, W.: EltonTraits 1.0: Species-level foraging attributes of the
world's birds and mammals: Ecological Archives E095-178, Ecology, 95, 2027–2027,
https://doi.org/10.1890/13-1917.1, 2014.
Yang, H., Zhao, X., Han, B., Wang, T., Mou, P., Ge, J., and Feng, L.:
Spatiotemporal patterns of Amur leopards in northeast China: Influence of
tigers, prey, and humans, Mamm. Biol., 92, 120–128,
https://doi.org/10.1016/j.mambio.2018.03.009, 2018.
Short summary
This study provides a record of co-occurrence patterns of tigers and leopards in a dry deciduous forest where both these sympatric predators coexist in high densities. Populations of large carnivores are decreasing on a global scale, and looking into their inter-species relationships is crucial to conserving these species. Our results show that leopards avoid tigers spatially in a dry deciduous system and show significant temporal overlap, with no fine-scale spatio-temporal avoidance.
This study provides a record of co-occurrence patterns of tigers and leopards in a dry deciduous...