Articles | Volume 24, issue 2
https://doi.org/10.5194/we-24-81-2024
https://doi.org/10.5194/we-24-81-2024
Comment/reply
 | 
21 Nov 2024
Comment/reply |  | 21 Nov 2024

Comment on “Pollination supply models from a local to global scale”: convolutional neural networks can improve pollination supply models at a global scale

Alfonso Allen-Perkins, Angel Giménez-García, Ainhoa Magrach, Javier Galeano, Ana María Tarquis, and Ignasi Bartomeus

Related authors

Pollination supply models from a local to global scale
Angel Giménez-García, Alfonso Allen-Perkins, Ignasi Bartomeus, Stefano Balbi, Jessica L. Knapp, Violeta Hevia, Ben Alex Woodcock, Guy Smagghe, Marcos Miñarro, Maxime Eeraerts, Jonathan F. Colville, Juliana Hipólito, Pablo Cavigliasso, Guiomar Nates-Parra, José M. Herrera, Sarah Cusser, Benno I. Simmons, Volkmar Wolters, Shalene Jha, Breno M. Freitas, Finbarr G. Horgan, Derek R. Artz, C. Sheena Sidhu, Mark Otieno, Virginie Boreux, David J. Biddinger, Alexandra-Maria Klein, Neelendra K. Joshi, Rebecca I. A. Stewart, Matthias Albrecht, Charlie C. Nicholson, Alison D. O'Reilly, David William Crowder, Katherine L. W. Burns, Diego Nicolás Nabaes Jodar, Lucas Alejandro Garibaldi, Louis Sutter, Yoko L. Dupont, Bo Dalsgaard, Jeferson Gabriel da Encarnação Coutinho, Amparo Lázaro, Georg K. S. Andersson, Nigel E. Raine, Smitha Krishnan, Matteo Dainese, Wopke van der Werf, Henrik G. Smith, and Ainhoa Magrach
Web Ecol., 23, 99–129, https://doi.org/10.5194/we-23-99-2023,https://doi.org/10.5194/we-23-99-2023, 2023
Short summary

Related subject area

Landscape Ecology
Artificial perches increase bird-mediated seed rain in agricultural fallow area in southern Brazil
Thales Castilhos de Freitas, Gustavo Crizel Gomes, Artur Ramos Molina, Ernestino de Souza Gomes Guarino, Cristiano Agra Iserhard, and Rafael Beltrame
Web Ecol., 22, 59–74, https://doi.org/10.5194/we-22-59-2022,https://doi.org/10.5194/we-22-59-2022, 2022
Short summary
Perlin noise as a hierarchical neutral landscape model
Thomas R. Etherington
Web Ecol., 22, 1–6, https://doi.org/10.5194/we-22-1-2022,https://doi.org/10.5194/we-22-1-2022, 2022
Short summary
Impact of land-use change in mountain semi-dry meadows on plants, litter decomposition and earthworms
Ines Jernej, Andreas Bohner, Ronnie Walcher, Raja Imran Hussain, Arne Arnberger, Johann G. Zaller, and Thomas Frank
Web Ecol., 19, 53–63, https://doi.org/10.5194/we-19-53-2019,https://doi.org/10.5194/we-19-53-2019, 2019
Keep your enemies closer: enhancing biological control through individual movement rules to retain natural enemies inside the field
Thomas Delattre, Blanche Collard, and Claire Lavigne
Web Ecol., 19, 15–26, https://doi.org/10.5194/we-19-15-2019,https://doi.org/10.5194/we-19-15-2019, 2019
Short summary
Vulnerability, resilience, hazard, risk, damage, and loss: a socio-ecological framework for natural disaster analysis
Marco Modica and Roberto Zoboli
Web Ecol., 16, 59–62, https://doi.org/10.5194/we-16-59-2016,https://doi.org/10.5194/we-16-59-2016, 2016
Short summary

Cited articles

Alfonso, A.-P. and Ángel, G.-G.: WildPollinators_CNN_Models/Data, 2023. a
Allen‐Perkins, A., Magrach, A., Dainese, M., et al.: CropPol: A dynamic, open and global database on crop pollination, Ecology, 103, e3614, https://doi.org/10.1002/ecy.3614, 2022. a
Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini, G., and White, A. E.: Deep learning as a tool for ecology and evolution, Method. Ecol. Evolut., 13, 1640–1660, https://doi.org/10.1111/2041-210x.13901, 2022. a, b
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., and Bolker, B. M.: glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling, The R J., 9, 378–400, https://doi.org/10.32614/RJ-2017-066, 2017. a
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover Layers—Collection 2, Remote Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020. a, b, c, d
Download
Short summary
Machine learning models outperform simple mechanistic models in predicting pollinator visitation rates. We use deep learning to infer rules from land cover maps to estimate pollination services globally. Results suggest deep learning can improve predictions by identifying complex patterns in landscape composition, especially in data-rich but knowledge-poor areas. The challenge is to make deep learning algorithms more interpretable so that experts can validate prediction rules for pollination.