Articles | Volume 24, issue 2
https://doi.org/10.5194/we-24-81-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-24-81-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comment on “Pollination supply models from a local to global scale”: convolutional neural networks can improve pollination supply models at a global scale
Alfonso Allen-Perkins
CORRESPONDING AUTHOR
Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain
Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
Angel Giménez-García
Basque Centre for Climate Change – BC3, Leioa, Spain
Ainhoa Magrach
Basque Centre for Climate Change – BC3, Leioa, Spain
Ikerbasque, Basque Foundation for Science, Bilbao, Spain
Javier Galeano
Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain
Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
Ana María Tarquis
Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain
Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid, Spain
Ignasi Bartomeus
Departamento de Ecología Integrativa, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
Related authors
Angel Giménez-García, Alfonso Allen-Perkins, Ignasi Bartomeus, Stefano Balbi, Jessica L. Knapp, Violeta Hevia, Ben Alex Woodcock, Guy Smagghe, Marcos Miñarro, Maxime Eeraerts, Jonathan F. Colville, Juliana Hipólito, Pablo Cavigliasso, Guiomar Nates-Parra, José M. Herrera, Sarah Cusser, Benno I. Simmons, Volkmar Wolters, Shalene Jha, Breno M. Freitas, Finbarr G. Horgan, Derek R. Artz, C. Sheena Sidhu, Mark Otieno, Virginie Boreux, David J. Biddinger, Alexandra-Maria Klein, Neelendra K. Joshi, Rebecca I. A. Stewart, Matthias Albrecht, Charlie C. Nicholson, Alison D. O'Reilly, David William Crowder, Katherine L. W. Burns, Diego Nicolás Nabaes Jodar, Lucas Alejandro Garibaldi, Louis Sutter, Yoko L. Dupont, Bo Dalsgaard, Jeferson Gabriel da Encarnação Coutinho, Amparo Lázaro, Georg K. S. Andersson, Nigel E. Raine, Smitha Krishnan, Matteo Dainese, Wopke van der Werf, Henrik G. Smith, and Ainhoa Magrach
Web Ecol., 23, 99–129, https://doi.org/10.5194/we-23-99-2023, https://doi.org/10.5194/we-23-99-2023, 2023
Short summary
Short summary
Modelling tools may provide a method of measuring pollination supply and promote the use of ecological intensification techniques among farmers and decision-makers. This study benchmarks different modelling approaches to provide clear guidance on which pollination supply models perform best at different spatial scales. These findings are an important step in bridging the gap between academia and stakeholders in modelling ecosystem service delivery under ecological intensification.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Angel Giménez-García, Alfonso Allen-Perkins, Ignasi Bartomeus, Stefano Balbi, Jessica L. Knapp, Violeta Hevia, Ben Alex Woodcock, Guy Smagghe, Marcos Miñarro, Maxime Eeraerts, Jonathan F. Colville, Juliana Hipólito, Pablo Cavigliasso, Guiomar Nates-Parra, José M. Herrera, Sarah Cusser, Benno I. Simmons, Volkmar Wolters, Shalene Jha, Breno M. Freitas, Finbarr G. Horgan, Derek R. Artz, C. Sheena Sidhu, Mark Otieno, Virginie Boreux, David J. Biddinger, Alexandra-Maria Klein, Neelendra K. Joshi, Rebecca I. A. Stewart, Matthias Albrecht, Charlie C. Nicholson, Alison D. O'Reilly, David William Crowder, Katherine L. W. Burns, Diego Nicolás Nabaes Jodar, Lucas Alejandro Garibaldi, Louis Sutter, Yoko L. Dupont, Bo Dalsgaard, Jeferson Gabriel da Encarnação Coutinho, Amparo Lázaro, Georg K. S. Andersson, Nigel E. Raine, Smitha Krishnan, Matteo Dainese, Wopke van der Werf, Henrik G. Smith, and Ainhoa Magrach
Web Ecol., 23, 99–129, https://doi.org/10.5194/we-23-99-2023, https://doi.org/10.5194/we-23-99-2023, 2023
Short summary
Short summary
Modelling tools may provide a method of measuring pollination supply and promote the use of ecological intensification techniques among farmers and decision-makers. This study benchmarks different modelling approaches to provide clear guidance on which pollination supply models perform best at different spatial scales. These findings are an important step in bridging the gap between academia and stakeholders in modelling ecosystem service delivery under ecological intensification.
Juan J. Martin-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-145, https://doi.org/10.5194/nhess-2023-145, 2023
Manuscript not accepted for further review
Short summary
Short summary
This work includes vegetation (VCI) and water content index (WCI) series from two semiarid rangeland areas in Spain. Based on then, a Z-score for both was calculated to use it as an anomaly index. In this way, we associated negative anomalies with drought episodes. Then, we study the relations of these negative anomalies to see if it is possible to use WCI as an alarm of agronomic drought (VCI negative anomaly). The description of the behaviour of both areas and their comparison are made.
María Hurtado, Oscar Godoy, and Ignasi Bartomeus
Web Ecol., 23, 51–69, https://doi.org/10.5194/we-23-51-2023, https://doi.org/10.5194/we-23-51-2023, 2023
Short summary
Short summary
We found that crowded neighborhoods reduced individual seed production via plant–plant competition, but they also made individual plants more attractive for some pollinator guilds, increasing visitation rates and, therefore, plant fitness. The balance between these two forces varied depending on the species identity and the spatial scale considered. Our results indicate that plant spatial aggregation plays an important role in defining the net effect of mutualistic and antagonistic interactions.
Jonathan Rizzi, Ana M. Tarquis, Anne Gobin, Mikhail Semenov, Wenwu Zhao, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3873–3877, https://doi.org/10.5194/nhess-21-3873-2021, https://doi.org/10.5194/nhess-21-3873-2021, 2021
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020, https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020, https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Short summary
The Amazon rainforest is being destroyed, resulting in negative ecological and social impacts. We explore how stakeholders perceive the causes of the Amazon's degradation in Bolivia and Brazil and develop a series of scenarios to help strengthen the balance between human development and environmental conservation. The results suggest that the application of governance and well-integrated technical and social reform strategies encourages positive regional changes even under climate change.
Omar Roberto Valverde-Arias, Paloma Esteve, Ana María Tarquis, and Alberto Garrido
Nat. Hazards Earth Syst. Sci., 20, 345–362, https://doi.org/10.5194/nhess-20-345-2020, https://doi.org/10.5194/nhess-20-345-2020, 2020
Short summary
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
Carmelo Alonso, Ana M. Tarquis, Ignacio Zúñiga, and Rosa M. Benito
Nonlin. Processes Geophys., 24, 141–155, https://doi.org/10.5194/npg-24-141-2017, https://doi.org/10.5194/npg-24-141-2017, 2017
Short summary
Short summary
NDVI and EVI vegetation indexes, estimated from satellite images, can been used to estimate root zone soil moisture. However, depending on the spatial and radiometric resolution of the sensors used, estimations could change. In this work, images taken by satellites IKONOS-2 and LANDSAT-7 of the same location are compared on the four bands involved in these vegetation indexes. The results show that spatial resolution has a similar scaling effect in the four bands, but not radiometric resolution.
Ana M. Tarquis, María Teresa Castellanos, Maria Carmen Cartagena, Augusto Arce, Francisco Ribas, María Jesús Cabello, Juan López de Herrera, and Nigel R. A. Bird
Nonlin. Processes Geophys., 24, 77–87, https://doi.org/10.5194/npg-24-77-2017, https://doi.org/10.5194/npg-24-77-2017, 2017
Short summary
Short summary
Melon crop got different levels of N that constituted a contribution to the variation of soil N at mainly larger scales. During its development a proportion of the N was taken up, adding a second factor of variability at smaller scales. After the melon harvest, the wheat was sown across the plots and harvested at the end of the season. Wheat was used as a N sink crop and allowed us to evaluate the soil N residual. Multiscale and relative entropy were applied to study N scale dependencies.
N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis
Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, https://doi.org/10.5194/nhess-14-2435-2014, 2014
P. Cely, A. M. Tarquis, J. Paz-Ferreiro, A. Méndez, and G. Gascó
Solid Earth, 5, 585–594, https://doi.org/10.5194/se-5-585-2014, https://doi.org/10.5194/se-5-585-2014, 2014
A. Matulka, P. López, J. M. Redondo, and A. Tarquis
Nonlin. Processes Geophys., 21, 269–278, https://doi.org/10.5194/npg-21-269-2014, https://doi.org/10.5194/npg-21-269-2014, 2014
Related subject area
Landscape Ecology
Artificial perches increase bird-mediated seed rain in agricultural fallow area in southern Brazil
Perlin noise as a hierarchical neutral landscape model
Impact of land-use change in mountain semi-dry meadows on plants, litter decomposition and earthworms
Keep your enemies closer: enhancing biological control through individual movement rules to retain natural enemies inside the field
Vulnerability, resilience, hazard, risk, damage, and loss: a socio-ecological framework for natural disaster analysis
Workshop summary: "Floods, state, dams and dykes in modern times: Ecological and socio-economic transformations of the rural world"
Defining heterogeneity as a second level of variation
Drought resistance of native pioneer species indicates potential suitability for restoration of post-mining areas
Effects of within-patch heterogeneity on connectivity in pond-breeding amphibians studied by means of an individual-based model
Prevalence, statistical thresholds, and accuracy assessment for species distribution models
Thales Castilhos de Freitas, Gustavo Crizel Gomes, Artur Ramos Molina, Ernestino de Souza Gomes Guarino, Cristiano Agra Iserhard, and Rafael Beltrame
Web Ecol., 22, 59–74, https://doi.org/10.5194/we-22-59-2022, https://doi.org/10.5194/we-22-59-2022, 2022
Short summary
Short summary
We highlight the arrival of 24 655 seeds in the experiment. We found that depending on how far the artificial perches are from the forest fragment, different seed communities are formed. It is also worth mentioning the extensive deposition of the alien species Australian cheesewood. The Tyrannidae bird family was the most represented. Artificial perches are efficient to increase seed rain in the fallow area but should be used with caution in landscapes with the presence of alien species.
Thomas R. Etherington
Web Ecol., 22, 1–6, https://doi.org/10.5194/we-22-1-2022, https://doi.org/10.5194/we-22-1-2022, 2022
Short summary
Short summary
Landscape ecologists often use virtual or imaginary landscapes to explore how landscapes can effect ecological processes. In a similar manner, procedural modelling algorithms are used in computer graphics for the creation of virtual or imaginary worlds used in movies and computer games. Perlin noise is a procedural modelling algorithm that could be very useful for landscape ecologists, and this work explains and translates Perlin noise for landscape ecologists.
Ines Jernej, Andreas Bohner, Ronnie Walcher, Raja Imran Hussain, Arne Arnberger, Johann G. Zaller, and Thomas Frank
Web Ecol., 19, 53–63, https://doi.org/10.5194/we-19-53-2019, https://doi.org/10.5194/we-19-53-2019, 2019
Thomas Delattre, Blanche Collard, and Claire Lavigne
Web Ecol., 19, 15–26, https://doi.org/10.5194/we-19-15-2019, https://doi.org/10.5194/we-19-15-2019, 2019
Short summary
Short summary
Natural enemies often originate from the (semi)natural habitats surrounding agricultural fields. In many cases, the biological control service is limited to the field borders, where the natural enemies can move easily from the surrounding habitats. This work uses movement rules and individual-based models to explore how the habitat quality of the field and its surroundings may be modified to help natural enemies move inside the field and therefore improve biological control.
Marco Modica and Roberto Zoboli
Web Ecol., 16, 59–62, https://doi.org/10.5194/we-16-59-2016, https://doi.org/10.5194/we-16-59-2016, 2016
Short summary
Short summary
Evaluating socio-economic losses due to natural disasters is challenging because of the complexity of the social and ecological systems affected (also under pressure from the expected effects of climate change). This paper suggests a general framework encompassing all the important concepts needed in the assessment of natural disasters. In particular, we propose a set of relationships among vulnerability, resilience, hazard, risk, damage, and loss which can guide socio-economic assessment.
M. Bostenaru Dan and D. Gheorghe
Web Ecol., 15, 29–31, https://doi.org/10.5194/we-15-29-2015, https://doi.org/10.5194/we-15-29-2015, 2015
Short summary
Short summary
The paper presents key discussion issues from the named workshop, including local disaster culture, the balance between floodplain and hydrological works, versus renewable energy, and participation issues in landscape planning in this context. For all this it is relevant to consider traditional knowledge instead of modern interventions.
B. B. Hanberry
Web Ecol., 15, 25–28, https://doi.org/10.5194/we-15-25-2015, https://doi.org/10.5194/we-15-25-2015, 2015
N. Winkler, W. Weymann, H. Auge, S. Klotz, P. Finkenbein, and H. Heilmeier
Web Ecol., 14, 65–74, https://doi.org/10.5194/we-14-65-2014, https://doi.org/10.5194/we-14-65-2014, 2014
Short summary
Short summary
In order to test whether invasive exotic species, predominantly used for restoring post-mining areas in north-eastern Vietnam, may be replaced by ecologically superior native pioneer species, we conducted a drought stress experiment in a greenhouse. Our results indicate with respect to drought resistance that native pioneer species are a potential alternative to exotic species for the ecological restoration of subtropical post-mining areas, which may accelerate secondary succession.
M.-B. Pontoppidan and G. Nachman
Web Ecol., 13, 21–29, https://doi.org/10.5194/we-13-21-2013, https://doi.org/10.5194/we-13-21-2013, 2013
B. B. Hanberry and H. S. He
Web Ecol., 13, 13–19, https://doi.org/10.5194/we-13-13-2013, https://doi.org/10.5194/we-13-13-2013, 2013
Cited articles
Alfonso, A.-P. and Ángel, G.-G.: WildPollinators_CNN_Models/Data, 2023. a
Allen‐Perkins, A., Magrach, A., Dainese, M., et al.: CropPol: A dynamic, open and global database on crop pollination, Ecology, 103, e3614, https://doi.org/10.1002/ecy.3614, 2022. a
Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini, G., and White, A. E.: Deep learning as a tool for ecology and evolution, Method. Ecol. Evolut., 13, 1640–1660, https://doi.org/10.1111/2041-210x.13901, 2022. a, b
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., and Bolker, B. M.: glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling, The R J., 9, 378–400, https://doi.org/10.32614/RJ-2017-066, 2017. a
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover Layers—Collection 2, Remote Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020. a, b, c, d
Civantos-Gómez, I., García-Algarra, J., García-Callejas, D., Galeano, J., Godoy, O., and Bartomeus, I.: Fine scale prediction of ecological community composition using a two-step sequential Machine Learning ensemble, PLOS Comput. Biol., 17, e1008906, https://doi.org/10.1371/journal.pcbi.1008906, 2021. a
Fahrig, L.: Why do several small patches hold more species than few large patches?, Global Ecol. Biogeogr., 29, 615–628, https://doi.org/10.1111/geb.13059, 2020. a
Gardner, E., Breeze, T. D., Clough, Y., Smith, H. G., Baldock, K. C. R., Campbell, A., Garratt, M. P. D., Gillespie, M. A. K., Kunin, W. E., McKerchar, M., Memmott, J., Potts, S. G., Senapathi, D., Stone, G. N., Wäckers, F., Westbury, D. B., Wilby, A., and Oliver, T. H.: Reliably predicting pollinator abundance: Challenges of calibrating process‐based ecological models, Method. Ecol. Evolut., 11, 1673–1689, https://doi.org/10.1111/2041-210x.13483, 2020. a, b, c, d, e
Giménez-García, A., Allen-Perkins, A., Bartomeus, I., Balbi, S., Knapp, J. L., Hevia, V., Woodcock, B. A., Smagghe, G., Miñarro, M., Eeraerts, M., Colville, J. F., Hipólito, J., Cavigliasso, P., Nates-Parra, G., Herrera, J. M., Cusser, S., Simmons, B. I., Wolters, V., Jha, S., Freitas, B. M., Horgan, F. G., Artz, D. R., Sidhu, C. S., Otieno, M., Boreux, V., Biddinger, D. J., Klein, A.-M., Joshi, N. K., Stewart, R. I. A., Albrecht, M., Nicholson, C. C., O'Reilly, A. D., Crowder, D. W., Burns, K. L. W., Nabaes Jodar, D. N., Garibaldi, L. A., Sutter, L., Dupont, Y. L., Dalsgaard, B., da Encarnação Coutinho, J. G., Lázaro, A., Andersson, G. K. S., Raine, N. E., Krishnan, S., Dainese, M., van der Werf, W., Smith, H. G., and Magrach, A.: Pollination supply models from a local to global scale, Web Ecol., 23, 99–129, https://doi.org/10.5194/we-23-99-2023, 2023. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press, http://www.deeplearningbook.org (last access: 17 November 2024), 2016. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), https://doi.org/10.1109/CVPR.2016.90, 2016. a
Kells, A. R. and Goulson, D.: Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK, Biol.l Conserv., 109, 165–174, https://doi.org/10.1016/s0006-3207(02)00131-3, 2003. a
Kennedy, C. M., Lonsdorf, E., Neel, M. C., Williams, N. M., Ricketts, T. H., Winfree, R., Bommarco, R., Brittain, C., Burley, A. L., Cariveau, D., Carvalheiro, L. G., Chacoff, N. P., Cunningham, S. A., Danforth, B. N., Dudenhöffer, J., Elle, E., Gaines, H. R., Garibaldi, L. A., Gratton, C., Holzschuh, A., Isaacs, R., Javorek, S. K., Jha, S., Klein, A. M., Krewenka, K., Mandelik, Y., Mayfield, M. M., Morandin, L., Neame, L. A., Otieno, M., Park, M., Potts, S. G., Rundlöf, M., Saez, A., Steffan‐Dewenter, I., Taki, H., Viana, B. F., Westphal, C., Wilson, J. K., Greenleaf, S. S., and Kremen, C.: A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems, Ecol. Lett., 16, 584–599, https://doi.org/10.1111/ele.12082, 2013. a
Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.: Self-Normalizing Neural Networks, https://doi.org/10.48550/arXiv.1706.02515, 2017. a
LeCun, Y., Kavukcuoglu, K., and Farabet, C.: Convolutional networks and applications in vision, in: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, IEEE, https://doi.org/10.1109/iscas.2010.5537907, 2010. a
Lonsdorf, E., Kremen, C., Ricketts, T., Winfree, R., Williams, N., and Greenleaf, S.: Modelling pollination services across agricultural landscapes, Annal. Botany, 103, 1589–1600, https://doi.org/10.1093/aob/mcp069, 2009. a, b, c, d
Lüdecke, D.: ggeffects: Tidy Data Frames of Marginal Effects from Regression Models., J. Open Source Softw., 3, 772, https://doi.org/10.21105/joss.00772, 2018. a
Lüdecke, D., Makowski, D., Waggoner, P., and Patil, I.: performance: Assessment of Regression Models Performance, CRAN, https://doi.org/10.5281/zenodo.3952174, r package, 2020. a
Martin, E. A., Dainese, M., Clough, Y., Báldi, A., Bommarco, R., Gagic, V., Garratt, M. P., Holzschuh, A., Kleijn, D., Kovács‐Hostyánszki, A., Marini, L., Potts, S. G., Smith, H. G., Al Hassan, D., Albrecht, M., Andersson, G. K., Asís, J. D., Aviron, S., Balzan, M. V., Baños‐Picón, L., Bartomeus, I., Batáry, P., Burel, F., Caballero‐López, B., Concepción, E. D., Coudrain, V., Dänhardt, J., Diaz, M., Diekötter, T., Dormann, C. F., Duflot, R., Entling, M. H., Farwig, N., Fischer, C., Frank, T., Garibaldi, L. A., Hermann, J., Herzog, F., Inclán, D., Jacot, K., Jauker, F., Jeanneret, P., Kaiser, M., Krauss, J., Le Féon, V., Marshall, J., Moonen, A., Moreno, G., Riedinger, V., Rundlöf, M., Rusch, A., Scheper, J., Schneider, G., Schüepp, C., Stutz, S., Sutter, L., Tamburini, G., Thies, C., Tormos, J., Tscharntke, T., Tschumi, M., Uzman, D., Wagner, C., Zubair‐Anjum, M., and Steffan‐Dewenter, I.: The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe, Ecol. Lett., 22, 1083–1094, https://doi.org/10.1111/ele.13265, 2019. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural Information Processing Systems 32, 8024–8035 pp., Curran Associates, Inc., https://doi.org/10.5555/3454287.3455008, 2019. a, b
Polce, C., Termansen, M., Aguirre-Gutiérrez, J., Boatman, N. D., Budge, G. E., Crowe, A., Garratt, M. P., Pietravalle, S., Potts, S. G., Ramirez, J. A., Somerwill, K. E., and Biesmeijer, J. C.: Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain, PLoS ONE, 8, e76308, https://doi.org/10.1371/journal.pone.0076308, 2013. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 17 November 2024), 2021. a
Rahimi, E., Barghjelveh, S., and Dong, P.: Using the Lonsdorf model for estimating habitat loss and fragmentation effects on pollination service, Ecol. Process., 10, 22, https://doi.org/10.1186/s13717-021-00291-8, 2021. a
Ricketts, T. H., Regetz, J., Steffan‐Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., Gemmill‐Herren, B., Greenleaf, S. S., Klein, A. M., Mayfield, M. M., Morandin, L. A., Ochieng’, A., and Viana, B. F.: Landscape effects on crop pollination services: are there general patterns?, Ecol. Lett., 11, 499–515, https://doi.org/10.1111/j.1461-0248.2008.01157.x, 2008. a
Schielzeth, H.: Simple means to improve the interpretability of regression coefficients, Method. Ecol. Evolut., 1, 103–113, https://doi.org/10.1111/j.2041-210x.2010.00012.x, 2010. a
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, Int. J. Comput. Vis., 128, 336–359, https://doi.org/10.1007/s11263-019-01228-7, 2019. a, b
Stewart, R. I., Andersson, G. K., Brönmark, C., Klatt, B. K., Hansson, L.-A., Zülsdorff, V., and Smith, H. G.: Ecosystem services across the aquatic–terrestrial boundary: Linking ponds to pollination, Basic Appl. Ecol., 18, 13–20, https://doi.org/10.1016/j.baae.2016.09.006, 2017. a
Svensson, B., Lagerlöf, J., and G. Svensson, B.: Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape, Agr. Ecosyst. Environ., 77, 247–255, https://doi.org/10.1016/s0167-8809(99)00106-1, 2000. a, b
Taki, H., Murao, R., Mitai, K., and Yamaura, Y.: The species richness/abundance–area relationship of bees in an early successional tree plantation, Basic Appl. Ecol., 26, 64–70, https://doi.org/10.1016/j.baae.2017.09.002, 2018. a
Tscharntke, T. and Brandl, R.: Plant-Insect Interactions in Fragmented Landscapes, Annu. Rev. Entomol., 49, 405–430, https://doi.org/10.1146/annurev.ento.49.061802.123339, 2004. a
Vickruck, J. L., Best, L. R., Gavin, M. P., Devries, J. H., and Galpern, P.: Pothole wetlands provide reservoir habitat for native bees in prairie croplands, Biol. Conserv., 232, 43–50, https://doi.org/10.1016/j.biocon.2019.01.015, 2019. a
Westphal, C., Steffan‐Dewenter, I., and Tscharntke, T.: Mass flowering crops enhance pollinator densities at a landscape scale, Ecol. Lett., 6, 961–965, https://doi.org/10.1046/j.1461-0248.2003.00523.x, 2003. a
Short summary
Machine learning models outperform simple mechanistic models in predicting pollinator visitation rates. We use deep learning to infer rules from land cover maps to estimate pollination services globally. Results suggest deep learning can improve predictions by identifying complex patterns in landscape composition, especially in data-rich but knowledge-poor areas. The challenge is to make deep learning algorithms more interpretable so that experts can validate prediction rules for pollination.
Machine learning models outperform simple mechanistic models in predicting pollinator visitation...