Articles | Volume 25, issue 1
https://doi.org/10.5194/we-25-59-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/we-25-59-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forested Natura 2000 sites under climate change: effects of tree species distribution shifts
Department of Remote Sensing, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
Remote Sensing Centre for Earth System Research, RSC4Earth, Leipzig, Germany
Ingolf Kühn
Department of Community Ecology, Helmholtz-Centre for Environmental Research – UFZ, Halle (Saale), Germany
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Andreas Schmidt
Department of Remote Sensing, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
Remote Sensing Centre for Earth System Research, RSC4Earth, Leipzig, Germany
Daniel Doktor
Department of Remote Sensing, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
Remote Sensing Centre for Earth System Research, RSC4Earth, Leipzig, Germany
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Related authors
No articles found.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Related subject area
Conservation Ecology
Insights into the habitat associations, phylogeny, and diet of Pipistrellus maderensis in Porto Santo, northeastern Macaronesia
Spatio-temporal patterns of co-occurrence of tigers and leopards within a protected area in central India
Models of poisoning effects on vulture populations show that small but frequent episodes have a larger effect than large but rare ones
Changes in the Cerrado vegetation structure: insights from more than three decades of ecological succession
Toward a new generation of effective problem solvers and project-oriented applied ecologists
Scientists' warning on endangered food webs
Towards the unravelling of the slug A. ater–A. rufus complex (Gastropoda Arionidae): new genetic approaches
Non-native invasive species as paradoxical ecosystem services in urban conservation education
Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant Drosophyllum lusitanicum
Leaf litter is essential for seed survival of the endemic endangered tree Pouteria splendens (Sapotaceae) from central Chile
Sand quarry wetlands provide high-quality habitat for native amphibians
Overview of the translocation of rupestrian ferruginous fields of Capão Xavier mine to the Serra do Rola Moça State Park, Minas Gerais – Brazil
Biodiversity offsetting in England: governance rescaling, socio-spatial injustices, and the neoliberalization of nature
Human population density and tenebrionid richness covary in Mediterranean islands
Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest
Biodiversity impacts of climate change – the PRONAS software as educational tool
Monitoring arthropods in protected grasslands: comparing pitfall trapping, quadrat sampling and video monitoring
Short Communication: Systems-based conservation and conflicts between species protection programs
The geography of high-value biodiversity areas for terrestrial vertebrates in Western Europe and their coverage by protected area networks
Eva K. Nóbrega, Nia Toshkova, Angelina Gonçalves, André Reis, Elena J. Soto, Sergio Puertas Ruiz, Vanessa A. Mata, Catarina Rato, and Ricardo Rocha
Web Ecol., 23, 87–98, https://doi.org/10.5194/we-23-87-2023, https://doi.org/10.5194/we-23-87-2023, 2023
Short summary
Short summary
We conducted an island-wide survey to investigate if the Madeiran pipistrelle still persists on the island of Porto Santo, where it was believed to be extinct. We detected bats in 28 out of 46 sampling sites, and their activity was particularly associated with water points. Furthermore, we found that bats from Porto Santo and Madeira have a close phylogenetic affinity and that they feed on a wide variety of insects, including several economically important pest species and disease vectors.
Anindita Bidisha Chatterjee, Kalyansundaram Sankar, Yadvendradev Vikramsinh Jhala, and Qamar Qureshi
Web Ecol., 23, 17–34, https://doi.org/10.5194/we-23-17-2023, https://doi.org/10.5194/we-23-17-2023, 2023
Short summary
Short summary
This study provides a record of co-occurrence patterns of tigers and leopards in a dry deciduous forest where both these sympatric predators coexist in high densities. Populations of large carnivores are decreasing on a global scale, and looking into their inter-species relationships is crucial to conserving these species. Our results show that leopards avoid tigers spatially in a dry deciduous system and show significant temporal overlap, with no fine-scale spatio-temporal avoidance.
Rigas Tsiakiris, John M. Halley, Kalliopi Stara, Nikos Monokrousos, Chryso Karyou, Nicolaos Kassinis, Minas Papadopoulos, and Stavros M. Xirouchakis
Web Ecol., 21, 79–93, https://doi.org/10.5194/we-21-79-2021, https://doi.org/10.5194/we-21-79-2021, 2021
Short summary
Short summary
Despite frequent media references about the mass poisoning of vultures, this study shows that small but frequent poisoning events may be even worse. Using both mathematical and computer simulation approaches we show that a chain of small poisoning events is more likely to extirpate a newly established colony than a few massive ones with the same overall mortality. Survival also depends critically on the initial population size. These results are of great relevance for restocking initiatives.
Rogério Victor S. Gonçalves, João Custódio F. Cardoso, Paulo Eugênio Oliveira, and Denis Coelho Oliveira
Web Ecol., 21, 55–64, https://doi.org/10.5194/we-21-55-2021, https://doi.org/10.5194/we-21-55-2021, 2021
Short summary
Short summary
Cerrado savannas in Brazil are under increasing pressure. Long-term vegetation dynamics (1987–2019) of a Cerrado area showed marked woody plant encroachment (WPE) processes, possibly linked to fire and grazing suppression. Open shrubby grasslands and wetlands shrunk, while forest and denser woodlands increased, concurrently with vegetation indexes (NDVI). Decreasing open cerrado and wetlands may imply biodiversity and water supply losses. WPE should be considered for Cerrado conservation.
Corrado Battisti, Giovanni Amori, and Luca Luiselli
Web Ecol., 20, 11–17, https://doi.org/10.5194/we-20-11-2020, https://doi.org/10.5194/we-20-11-2020, 2020
Short summary
Short summary
In an era of environmental crises, conservation and management strategies need a new generation of applied ecologists. Here, we stimulate the next generation of applied ecologists to acquire a pragmatic mentality of problems solvers in real contexts, using the wide arsenal of concepts, approaches and techniques available in the project management (PM) arena and using a road map based on the main steps of the conservation project cycle.
Ruben H. Heleno, William J. Ripple, and Anna Traveset
Web Ecol., 20, 1–10, https://doi.org/10.5194/we-20-1-2020, https://doi.org/10.5194/we-20-1-2020, 2020
Short summary
Short summary
It is not only the climate that is changing. We are now also observing a global biological change. Here we revise the overwhelming evidence that these changes affect not only individual species but also simplify the structure of entire food webs, threatening long-term community persistence. We must take urgent action to protect the integrity of natural food webs, or we might rapidly push entire ecosystems outside their safe zones.
María L. Peláez, Antonio G. Valdecasas, Daniel Martinez, and Jose L. Horreo
Web Ecol., 18, 115–119, https://doi.org/10.5194/we-18-115-2018, https://doi.org/10.5194/we-18-115-2018, 2018
Short summary
Short summary
The Arion ater complex comprises two morphological forms: A. rufus and A. ater, and no consensus exists about their species status. Both forms belong to different phylogenetic clades, and we have investigated the correspondence to different species. To do it, we analysed three mitochondrial genes with two different genetic approaches (one classic, one cutting-edge). Results suggested that both clades, thus forms, are different species, and shed light on the taxonomic classification of the group.
Corrado Battisti, Giuliano Fanelli, Sandro Bertolino, Luca Luiselli, Giovanni Amori, and Spartaco Gippoliti
Web Ecol., 18, 37–40, https://doi.org/10.5194/we-18-37-2018, https://doi.org/10.5194/we-18-37-2018, 2018
Short summary
Short summary
Many practices have been proposed in conservation education to facilitate a re-connection between nature and young digitally dependent people in anthropized contexts. In this paper we suggest that, at least in some specific circumstances (urban and suburban areas), non-native invasive species may have a paradoxical and positive impact on conservation education strategies, playing a role as an experiential tool, which represents a cultural ecosystem service.
Susana Gómez-González, Maria Paniw, Kamila Antunes, and Fernando Ojeda
Web Ecol., 18, 7–13, https://doi.org/10.5194/we-18-7-2018, https://doi.org/10.5194/we-18-7-2018, 2018
Gastón Javier Sotes, Ramiro Osciel Bustamante, and Carolina Andrea Henríquez
Web Ecol., 18, 1–5, https://doi.org/10.5194/we-18-1-2018, https://doi.org/10.5194/we-18-1-2018, 2018
Short summary
Short summary
Pouteria splendens is an endemic endangered tree from central Chile. Natural regeneration in the species seems to be low and its distribution is restricted. We investigate seed dispersal and survival. Results indicated a low distance of seed dispersal, and the presence of leaf litter covering seeds increased survival. We suggest that future conservation programs should focus on protecting both adult plants and leaf litter under trees.
Michael Sievers
Web Ecol., 17, 19–27, https://doi.org/10.5194/we-17-19-2017, https://doi.org/10.5194/we-17-19-2017, 2017
Short summary
Short summary
Artificial wetlands are becoming critical habitats as natural wetlands continue to be degraded and destroyed. I surveyed quarry wetlands to assess how they provide habitat for frogs and the factors driving patterns. Quarry wetlands consistently harboured more species and healthier individuals than reference wetlands. We need to encourage wildlife utilisation of quarry wetlands, and the methods outlined here provide a powerful, yet simple, tool to assess the overall health of artificial wetlands.
Alessandra F. Fernandes, Ana C. Maia, Juan F. S. Monteiro, João N. Condé, and Mauro Martins
Web Ecol., 16, 93–96, https://doi.org/10.5194/we-16-93-2016, https://doi.org/10.5194/we-16-93-2016, 2016
Short summary
Short summary
The Serra do Rola Moça State Park is located in Brazil and is home to Canga vegetation. The objective of the study was to conserve biodiversity. The species present mainly belong to the Asteraceae, Rubiaceae, Myrtaceae, Velloziaceae, Bromeliaceae, and Orchidaceae families. Approximately 15 000 individuals of Canga species were translocated and planted. This study indicates the possibility of nursery breeding of some of the native species and their use in the recovery of areas in mining regions.
Evangelia Apostolopoulou
Web Ecol., 16, 67–71, https://doi.org/10.5194/we-16-67-2016, https://doi.org/10.5194/we-16-67-2016, 2016
Short summary
Short summary
I use primary empirical data obtained through interviews in case studies around England to explore the neoliberal character of biodiversity offsetting, its interrelationship with governance rescaling, and the way the latter influences the distribution of offsetting’s costs and benefits. My results show that biodiversity offsetting in England has been a reactionary neoliberal policy characterized by important deficits from an environmental and socio-spatial justice perspective.
Simone Fattorini and Giovanni Strona
Web Ecol., 16, 63–65, https://doi.org/10.5194/we-16-63-2016, https://doi.org/10.5194/we-16-63-2016, 2016
Short summary
Short summary
An unexpected high biodiversity can be found even in densely inhabited areas, possibly as a result of a tendency of human settlements to be located in sites particularly favourable also for other organisms. We studied the relationship between human density and tenebrionid beetle richness in Italian islands. Tenebrionid richness increased with human population density. This suggests that islands that are more hospitable to humans are also those that can be more favourable for tenebrionids.
F. S. Campos, G. A. Llorente, L. Rincón, R. Lourenço-de-Moraes, and M. Solé
Web Ecol., 16, 9–12, https://doi.org/10.5194/we-16-9-2016, https://doi.org/10.5194/we-16-9-2016, 2016
Short summary
Short summary
This study evaluated the efficiency of the protected areas (PAs) from the Brazilian Atlantic Forest on the conservation of threatened amphibian species. This brief overview highlights not only the crisis faced by unprotected amphibians, but it also sounds the alarm regarding the situation of species covered by the PAs network. Such context can improve the environmental actions for the PAs integrity and reduce the extinction risk of threatened amphibian species in this region.
K. Ulbrich, O. Schweiger, S. Klotz, and J. Settele
Web Ecol., 15, 49–58, https://doi.org/10.5194/we-15-49-2015, https://doi.org/10.5194/we-15-49-2015, 2015
Short summary
Short summary
Only little of current biodiversity knowledge reaches the young generation. We developed the educational software PRONAS to show how scientists handle questions about the impact of climate change on species' habitats. About fifty European species have been used to demonstrate habitat losses and shifts and the mismatch of habitat dynamics of interacting species. We found that “educational software” is a useful format for scientific outreach. PRONAS is freely accessible in German and English.
J. G. Zaller, G. Kerschbaumer, R. Rizzoli, A. Tiefenbacher, E. Gruber, and H. Schedl
Web Ecol., 15, 15–23, https://doi.org/10.5194/we-15-15-2015, https://doi.org/10.5194/we-15-15-2015, 2015
Short summary
Short summary
Arthropod monitoring in protected areas often requires non-destructive methods in order to avoid detrimental effects on natural communities. Video monitoring recorded the highest number of individuals followed by quadrat sampling and pitfall trapping. Quadrat sampling showed the highest diversity followed by video monitoring and pitfall trapping. Thus, video monitoring has a great potential as a supplementary method for biodiversity assessments especially at the level of parataxonomic units.
F. Jordán and A. Báldi
Web Ecol., 13, 85–89, https://doi.org/10.5194/we-13-85-2013, https://doi.org/10.5194/we-13-85-2013, 2013
M. J. T. Assunção-Albuquerque, J. M. Rey Benayas, F. S. Albuquerque, and M. Á. Rodríguez
Web Ecol., 12, 65–73, https://doi.org/10.5194/we-12-65-2012, https://doi.org/10.5194/we-12-65-2012, 2012
Cited articles
Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., and Kraft, N. J.: The geography of climate change: implications for conservation biogeography, Divers. Distrib., 16, 476–487, https://doi.org/10.1111/J.1472-4642.2010.00654.X, 2010. a, b
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., Smith, A. M., and Huxman, T. E.: Ecohydrological consequences of drought- and infestation- triggered tree die-off: insights and hypotheses, Ecohydrology, 5, 145–159, https://doi.org/10.1002/ECO.233, 2012. a
Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecol. Manag., 259, 660–684, https://doi.org/10.1016/j.foreco.2009.09.001, 2010. a
Allouche, O., Tsoar, A., and Kadmon, R.: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS), J. Appl. Ecol., 43, 1223–1232, https://doi.org/10.1111/j.1365-2664.2006.01214.x, 2006. a
Anderegg, W. R., Kane, J. M., and Anderegg, L. D.: Consequences of widespread tree mortality triggered by drought and temperature stress, Nat. Clim. Change, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2012. a
Baatar, U. O., Dirnböck, T., Essl, F., Moser, D., Wessely, J., Willner, W., Jiménez-Alfaro, B., Agrillo, E., Csiky, J., Indreica, A., Jandt, U., Ka̧cki, Z., Šilc, U., Škvorc, Ž., Stančić, Z., Valachovič, M., and Dullinger, S.: Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species, Basic Appl. Ecol., 38, 23–35, https://doi.org/10.1016/j.baae.2019.06.002, 2019. a, b, c
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008. a
Bourgault, P., Huard, D., Smith, T. J., Logan, T., Aoun, A., Lavoie, J., Dupuis, É., Rondeau-Genesse, G., Alegre, R., Barnes, C., Beaupré Laperrière, A., Biner, S., Caron, D., Ehbrecht, C., Fyke, J., Keel, T., Labonté, M.-P., Lierhammer, L., Low, J.-F., Quinn, J., Roy, P., Squire, D., Stephens, A., Tanguy, M., and Whelan, C.: xclim: xarray-based climate data analytics, Journal of Open Source Software, 8, 5415, https://doi.org/10.21105/joss.05415, 2023a. a
Bourgault, P., Huard, D., Smith, T. J., Logan, T., Aoun, A., Lavoie, J., Dupuis, É., Rondeau-Genesse, G., Alegre, R., Barnes, C., Beaupré Laperrière, A., Biner, S., Caron, D., Ehbrecht, C., Fyke, J., Keel, T., Labonté, M.-P., Lierhammer, L., Low, J.-F., Quinn, J., Roy, P., Squire, D., Stephens, A., Tanguy, M., Whelan, C., and Braun, M.: xclim: xarray-based climate data analytics (v0.47.0), Zenodo [data set], https://doi.org/10.5281/zenodo.10292044, 2023b. a
Brandl, S., Paul, C., Knoke, T., and Falk, W.: The influence of climate and management on survival probability for Germany's most important tree species, Forest Ecol. Manag., 458, 117652, https://doi.org/10.1016/J.FORECO.2019.117652, 2020. a
Buckley, Y. M. and Csergo, A. M.: Predicting invasion winners and losers under climate change, P. Natl. Acad. Sci. USA, 114, 4040–4041, https://doi.org/10.1073/PNAS.1703510114, 2017. a
Buras, A. and Menzel, A.: Projecting tree species composition changes of european forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios, Front. Plant Sci., 9, 1986, https://doi.org/10.3389/FPLS.2018.01986, 2019. a, b
Cabeza, M. and Moilanen, A.: Design of reserve networks and the persistence of biodiversity, Trends Ecol. Evol., 16, 242–248, https://doi.org/10.1016/S0169-5347(01)02125-5, 2001. a
Chmielewski, F. M. and Rötzer, T.: Response of tree phenology to climate change across Europe, Agr. Forest Meteorol., 108, 101–112, https://doi.org/10.1016/S0168-1923(01)00233-7, 2001. a
Conrad, V.: Usual formulas of continentality and their limits of validity, Eos, Transactions American Geophysical Union, 27, 663–664, https://doi.org/10.1029/TR027I005P00663, 1946. a, b
Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models, Glob. Change Biol., 7, 357–373, https://doi.org/10.1046/J.1365-2486.2001.00383.X, 2001. a
De Graaff, M. A., van Groenigen, K. J., Six, J., Hungate, B., and van Kessel, C.: Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis, Glob. Change Biol., 12, 2077–2091, https://doi.org/10.1111/J.1365-2486.2006.01240.X, 2006. a
De Koning, J., Winkel, G., Sotirov, M., Blondet, M., Borras, L., Ferranti, F., and Geitzenauer, M.: Natura 2000 and climate change – Polarisation, uncertainty, and pragmatism in discourses on forest conservation and management in Europe, Environ. Sci. Policy, 39, 129–138, https://doi.org/10.1016/J.ENVSCI.2013.08.010, 2014. a
De Rigo, D., Caudullo, G., Houston Durrant, T., and San-Miguel-Ayanz, J.: The European Atlas of Forest Tree Species: modelling, data and information on forest tree species, in: The European Atlas of Forest Tree Species, edited by: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., and Mauri, A., 40–45, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/776635, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Dormann, C. F.: Effects of incorporating spatial autocorrelation into the analysis of species distribution data, Global Ecol. Biogeogr., 16, 129–138, https://doi.org/10.1111/J.1466-8238.2006.00279.X, 2007. a
Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Kissling, W. D., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., and Wilson, R.: Methods to account for spatial autocorrelation in the analysis of species distributional data: A review, Ecography, 30, 609–628, https://doi.org/10.1111/j.2007.0906-7590.05171.x, 2007. a
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance, Ecography, 36, 27–46, https://doi.org/10.1111/J.1600-0587.2012.07348.X, 2013. a
Dyderski, M. K., Paź, S., Frelich, L. E., and Jagodziński, A. M.: How much does climate change threaten European forest tree species distributions?, Glob. Change Biol., 24, 1150–1163, https://doi.org/10.1111/gcb.13925, 2018. a
European Commission: Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, Official Journal of the European Communities, 206, 7–50, 1992. a
European Commission and Directorate-General for Environment: Guidelines on climate change and Natura 2000 – Dealing with the impact of climate change, on the management of the Natura 2000 network of areas of high biodiversity value, Publications Office of the European Union, https://doi.org/10.2779/29715, 2013. a, b
European Environment Agency: Corine Land Cover (CLC) 2018, Version 2020_20u1, European Environment Agency [data set], https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac, 2019. a
European Environment Agency: Natura 2000 data – the European network of protected sites, Natura 2000 (vector) – version 2021, European Environment Agency [data set], https://www.eea.europa.eu/data-and-maps/data/natura-14/natura-2000-spatial-data/natura-2000-shapefile-1 (last access: 25 March 2025), 2021. a
European Environment Agency: The Natura 2000 protected areas network, https://www.eea.europa.eu/themes/biodiversity/natura-2000, last access: 23 December 2023. a
Freund, Y. and Schapire, R. E.: Experiments with a New Boosting Algorithm, in: Machine Learning: Proceedings of the Thirteenth International Conference, Bari, Italy, 3–6 July 1996, https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf (last access: 25 March 2025), 1996. a
Friedman, J., Hastie, T., and Tibshirani, R.: Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors), Ann. Statist., 28, 337–407, https://doi.org/10.1214/AOS/1016218223, 2000. a
Friedman, J. H.: Greedy function approximation: A gradient boosting machine, Ann. Statist., 29, 1189–1232, https://doi.org/10.1214/AOS/1013203451, 2001. a
Gerber, S., Chadoeuf, J., Gugerli, F., Lascoux, M., Buiteveld, J., Cottrell, J., Dounavi, A., Fineschi, S., Forrest, L. L., Fogelqvist, J., Goicoechea, P. G., Jensen, J. S., Salvini, D., Vendramin, G. G., and Kremer, A.: High rates of gene flow by pollen and seed in oak populations across Europe, PLoS ONE, 9, 1, https://doi.org/10.1371/journal.pone.0085130, 2014. a
Guisan, A., Weiss, S. B., and Weiss, A. D.: GLM versus CCA spatial modeling of plant species distribution, Tech. Rep., 1999. a
Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., and Zimmermann, N. E.: Climate change may cause severe loss in the economic value of European forest land, Nat. Clim. Change, 3, 203–207, https://doi.org/10.1038/nclimate1687, 2012. a
Hannah, L., Midgley, G. F., and Millar, D.: Climate change-integrated conservation strategies, Global Ecol. Biogeogr., 11, 485–495, https://doi.org/10.1046/J.1466-822X.2002.00306.X, 2002. a
Hastie, T.: gam: Generalized Additive Models, r package version 1.22-1, CRAN [code], https://cran.r-project.org/package=gam (last access: 25 March 2025), 2023. a
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Statist. Sci., 1, 297–310, https://doi.org/10.1214/SS/1177013604, 1986. a
Helmholtz-Centre for Environmental Research: gridded bio-climatic variables for Europe for 5 time periods within 1971–2098, Helmholtz-Centre for Environmental Research [data set], https://doi.org/10.48758/ufz.14933, 2024. a, b
Helmholtz-Centre for Environemental Research: UFZ-Forest Monitor, Helmholtz-Centre for Environemental Research [data set], https://web.app.ufz.de/waldzustandsmonitor/en?area=49&layer=347, last access: 18 March 2025. a
Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa, L., Giesecke, T., Fronzek, S., Carter, T. R., Cramer, W., Kühn, I., and Sykes, M. T.: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model, Global Ecol. Biogeogr., 21, 50–63, https://doi.org/10.1111/j.1466-8238.2010.00613.x, 2012. a, b, c, d, e, f, g
Hoyer, S., Roos, M., Joseph, H., Magin, J., Cherian, D., Fitzgerald, C., Hauser, M., Fujii, K., Maussion, F., Imperiale, G., Clark, S., Kleeman, A., Nicholas, T., Kluyver, T., Westling, J., Munroe, J., Amici, A., Barghini, A., Banihirwe, A., Bell, R., Hatfield-Dodds, Z., Abernathey, R., Bovy, B., Omotani, J., Mühlbauer, K., Roszko, M. K., and Wolfram, P. J.: xarray, Zenodo [code], https://doi.org/10.5281/zenodo.10023467, 2023. a
Hutchinson, G. E.: Concluding Remarks, Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427, https://doi.org/10.1101/SQB.1957.022.01.039, 1957. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New York, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (last access: 25 March 2025), 2013. a
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023. a
Jensen, J., Larsen, A., Nielsen, L. R., and Cottrell, J.: Hybridization between Quercus robur and Q. petraea in a mixed oak stand in Denmark, Ann. For. Sci., 66, 706–706, https://doi.org/10.1051/forest/2009058, 2009. a
Keenan, T. F., Luo, X., Stocker, B. D., De Kauwe, M. G., Medlyn, B. E., Prentice, I. C., Smith, N. G., Terrer, C., Wang, H., Zhang, Y., and Zhou, S.: A constraint on historic growth in global photosynthesis due to rising CO2, Nat. Clim. Change, 13, 1376–1381, https://doi.org/10.1038/s41558-023-01867-2, 2023. a
Kühn, I.: Incorporating spatial autocorrelation may invert observed patterns, Divers. Distrib., 13, 66–69, https://doi.org/10.1111/J.1472-4642.2006.00293.X, 2007. a
Leuschner, C.: Drought response of European beech (Fagus sylvatica L.) – A review, Perspectives in Plant Ecology, Evolution and Systematics, 47, 125576, https://doi.org/10.1016/j.ppees.2020.125576, 2020. a
Mahoney, M. J.: waywiser: Ergonomic Methods for Assessing Spatial Models, arXiv [preprint], https://doi.org/10.48550/arXiv.2303.11312, 2023. a
Malanoski, C. M., Farnsworth, A., Lunt, D. J., Valdes, P. J., and Saupe, E. E.: Climate change is an important predictor of extinction risk on macroevolutionary timescales, Science, 383, 1130–1134, https://doi.org/10.1126/SCIENCE.ADJ5763, 2024. a
Mathys, A. S., Brang, P., Stillhard, J., Bugmann, H., and Hobi, M. L.: Long-term tree species population dynamics in Swiss forest reserves influenced by forest structure and climate, Forest Ecol. Manag., 481, 118666, https://doi.org/10.1016/j.foreco.2020.118666, 2021. a, b, c, d
Mauri, A., Girardello, M., Strona, G., Beck, P. S., Forzieri, G., Caudullo, G., Manca, F., and Cescatti, A.: EU-Trees4F, a dataset on the future distribution of European tree species, Scientific Data, 9, 37, https://doi.org/10.1038/S41597-022-01128-5, 2022. a
Mauri, A., Girardello, M., Forzieri, G., Manca, F., Beck, P. S., Cescatti, A., and Strona, G.: Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe, Global Environ. Change, 80, 102676, https://doi.org/10.1016/J.GLOENVCHA.2023.102676, 2023. a, b
Mawdsley, J. R., O'Malley, R., and Ojima, D. S.: A Review of Climate-Change Adaptation Strategies for Wildlife Management and Biodiversity Conservation, Conserv. Biol., 23, 1080–1089, https://doi.org/10.1111/J.1523-1739.2009.01264.X, 2009. a
Nelder, J. A. and Wedderburn, R. W. M.: Generalized Linear Models, Journal of the Royal Statistical Society, Series A (General), 135, 370, https://doi.org/10.2307/2344614, 1972. a
Obladen, N., Dechering, P., Skiadaresis, G., Tegel, W., Keßler, J., Höllerl, S., Kaps, S., Hertel, M., Dulamsuren, C., Seifert, T., Hirsch, M., and Seim, A.: Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany, Agr. Forest Meteorol., 307, 108482, https://doi.org/10.1016/J.AGRFORMET.2021.108482, 2021. a
Ohlemüller, R., Gritti, E. S., Sykes, M. T., and Thomas, C. D.: Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931-2100, Global Ecol. Biogeogr., 15, 395–405, https://doi.org/10.1111/j.1466-822x.2006.00245.x, 2006. a, b
Panagos, P.: The European soil database, GEO: connexion, 5, 32–33, 2006. a
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421, 37–42, https://doi.org/10.1038/nature01286, 2003. a
Pearson, R. G. and Dawson, T. P.: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?, Global Ecol. Biogeogr., 12, 361–371, https://doi.org/10.1046/j.1466-822X.2003.00042.x, 2003. a, b
Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann, C., Cornu, G., Viennois, G., Bayol, N., Lyapustin, A., Gourlet-Fleury, S., and Pélissier, R.: Spatial validation reveals poor predictive performance of large-scale ecological mapping models, Nat. Commun., 11, 4540, https://doi.org/10.1038/s41467-020-18321-y, 2020. a, b
Pompe, S., Hanspach, J., Badeck, F., Klotz, S., Thuiller, W., and Kühn, I.: Climate and land use change impacts on plant distributions in Germany, Biol. Letters, 4, 564–567, https://doi.org/10.1098/rsbl.2008.0231, 2008. a, b, c, d
Pompe, S., Hanspach, J., Badeck, F. W., Klotz, S., Bruelheide, H., and Kühn, I.: Investigating habitat-specific plant species pools under climate change, Basic Appl. Ecol., 11, 603–611, https://doi.org/10.1016/j.baae.2010.08.007, 2010. a
Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M., and Wilson, K. A.: Conservation planning in a changing world, Trends Ecol. Evol., 22, 583–592, https://doi.org/10.1016/J.TREE.2007.10.001, 2007. a, b
Pretzsch, H., Grams, T., Häberle, K. H., Pritsch, K., Bauerle, T., and Rötzer, T.: Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment, Trees, 34, 957–970, https://doi.org/10.1007/S00468-020-01973-0, 2020. a
Reichmuth, A.: Forested Natura 2000 sites under climate change, Zenodo [code], https://doi.org/10.5281/zenodo.11400444, 2024. a, b
Reichmuth, A., Rakovec, O., Boeing, F., Müller, S., Samaniego, L., Marx, A., Komischke, H., Schmidt, A., and Doktor, D.: BioVars – A bioclimatic dataset for Europe based on a large regional climate ensemble for periods in 1971–2098, Scientific Data, 12, 217, https://doi.org/10.1038/s41597-025-04507-w, 2025. a
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F.: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure, Ecography, 40, 913–929, https://doi.org/10.1111/ECOG.02881, 2017. a
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, J. A.: Fingerprints of global warming on wild animals and plants, Nature, 421, 57–60, https://doi.org/10.1038/nature01333, 2003. a
Samaniego, L., Remke, T., Kevin, S., Boeing, F., Rakovec, O., Marx, A., Thober, S., and Müller, S.: High-resolution bias-adjusted and disaggregated climate simulation ensemble, Tech. Rep., https://www.helmholtz-klima.de/sites/default/files/medien/dokumente/rl_finalreport_helmholtz_klima_2022_v23_144dpi.pdf (last access: 25 March 2025), 2022. a
Schaber, J. and Badeck, F. W.: Plant phenology in Germany over the 20th century, Reg. Environ. Change, 5, 37–46, https://doi.org/10.1007/S10113-004-0094-7, 2005. a
Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C., and Wilmking, M.: Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany, Forest Ecol. Manag., 262, 947–961, https://doi.org/10.1016/j.foreco.2011.05.026, 2011. a
Sporbert, M., Keil, P., Seidler, G., Bruelheide, H., Jandt, U., Aćić, S., Biurrun, I., Campos, J. A., Čarni, A., Chytrý, M., Ćušterevska, R., Dengler, J., Golub, V., Jansen, F., Kuzemko, A., Lenoir, J., Marcenò, C., Moeslund, J. E., Pérez-Haase, A., Rūsiņa, S., Šilc, U., Tsiripidris, I., Vandvik, V., Vasilev, K., Virtanen, R., and Welk, E.: Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants, J. Biogeogr., 47, 2210–2222, https://doi.org/10.1111/JBI.13926, 2020. a
Thuiller, W.: Patterns and uncertainties of species' range shifts under climate change, Glob. Change Biol., 10, 2020–2027, https://doi.org/10.1111/J.1365-2486.2004.00859.X, 2004. a
Thuiller, W., Lavorel, S., and Araújo, M. B.: Niche properties and geographical extent as predictors of species sensitivity to climate change, Global Ecol. Biogeogr., 14, 347–357, https://doi.org/10.1111/J.1466-822X.2005.00162.X, 2005. a, b, c
Thuiller, W., Lavorel, S., Sykes, M. T., and Araújo, M. B.: Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe, Divers. Distrib., 12, 49–60, https://doi.org/10.1111/j.1366-9516.2006.00216.x, 2006. a
Valavi, R., Elith, J., Lahoz-Monfort, J. J., and Guillera-Arroita, G.: blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models, Methods Ecol. Evol., 10, 225–232, https://doi.org/10.1111/2041-210X.13107, 2019. a
Valavi, R., Elith, J., Lahoz-Monfort, J., Flint, I., and Guillera-Arroita, G.: blockCV: Spatial and Environmental Blocking for K-Fold and LOO Cross-Validation, r package version 3.1-3, CRAN [code], https://cran.r-project.org/web/packages/blockCV/ (last access: 25 March 2025), 2023. a
Van Liedekerke, M., Jones, A., and Panagos, P.: The European Soil Database distribution version 2.0, European Commission and the European Soil Bureau Network, https://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data (last access: 25 March 2025), 2006. a
Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarošík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nentwig, W., Ott, J., Panov, V. E., Reineking, B., Robinet, C., Semenchenko, V., Solarz, W., Thuiller, W., Vilà, M., Vohland, K., and Settele, J.: Alien species in a warmer world: risks and opportunities, Trends Ecol. Evol., 24, 686–693, https://doi.org/10.1016/J.TREE.2009.06.008, 2009. a
Walthert, L. and Meier, E. S.: Tree species distribution in temperate forests is more influenced by soil than by climate, Ecol. Evol., 7, 9473–9484, https://doi.org/10.1002/ECE3.3436, 2017. a
Webber, B. L., Cousens, R. D., and Atwater, D. Z.: Assumptions: respecting the known unknowns, CRC Press, Taylor & Francis, 97–126, https://doi.org/10.1201/9781003314332-7, 2023. a
Wessely, J., Essl, F., Fiedler, K., Gattringer, A., Hülber, B., Ignateva, O., Moser, D., Rammer, W., Dullinger, S., and Seidl, R.: A climate-induced tree species bottleneck for forest management in Europe, Nature Ecology & Evolution, 8, 1109–1117, https://doi.org/10.1038/s41559-024-02406-8, 2024. a, b
Zang, C., Pretzsch, H., and Rothe, A.: Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak, Trees, 26, 557–569, https://doi.org/10.1007/s00468-011-0617-z, 2012. a
Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra-Diaz, J. M., Thuiller, W., Yates, K. L., Zimmermann, N. E., and Merow, C.: A standard protocol for reporting species distribution models, Ecography, 43, 1261–1277, https://doi.org/10.1111/ECOG.04960, 2020. a, b
Short summary
We quantify the extent to which forested Natura 2000 sites are affected by tree species distribution shifts in a changing climate. As ecosystems of any type are highly dynamic, climate change can lead to additional severe pressure on statically defined conservation goals and management activities associated with this. We utilised 26 bio-climatic variables and analysed the climate-induced change of tree species distribution at Natura 2000 sites, the largest conservation area network worldwide.
We quantify the extent to which forested Natura 2000 sites are affected by tree species...